
Design Deisions for UML and MOF based

Domain-spei� Language Models: Some Lessons

Learned

∗

Bernhard Hoisl

1,2
, Stefan Sobernig

1
, Sigrid Shefer-Wenzl

1,2
, Mark

Strembek

1,2
, and Anne Baumgrass

1,2

1
Institute for Information Systems, New Media Lab,

Vienna University of Eonomis and Business (WU Vienna)

2
Seure Business Austria Researh (SBA Researh)

{firstname.lastname}�wu.a.at

Abstrat. In reent years, the development of domain-spei� modeling

languages (DSMLs) that are based on the MOF and/or UML has beome

a popular option in the model-driven development ontext. As a result,

the model-driven software engineering ommunity olleted many design

and implementation experienes. However, most researh ontributions

on this topi do not aim at supporting the DSML development proess as

a repetitive deision-making proess. In this paper, we doument some of

our experienes gathered from developing ten MOF/UML-based DSMLs

and present our experienes in a reusable manner via deision templates.

In partiular, this paper fouses on design deisions for the initial phase

of the DSML development proess, i.e. the de�nition of the DSML's ore

language model.

Keywords: Domain-spei� modeling, Domain-spei� languages, De-

sign deisions, UML, Model-driven development

1 Introdution

In model-driven development (MDD), a domain-spei� modeling language

(DSML) is a speialized modeling language tailored for a partiular appliation

domain (e.g., aess ontrol, bakup poliies, or system auditing) (see, e.g.,

[1,2,3,4℄). Thus, a DSML's abstration level, its expressiveness, and onrete

syntax are ustomized for software developers and for experts in the DSML's

appliation domain. Often DSMLs are developed based on the Uni�ed Model-

ing Language (UML) [5℄. The UML an leverage industry-grade tool support,

sienti� evaluations of its semanti foundations, and standardized modeling

extensions (e.g., SoaML for servie-oriented systems [6℄). The UML bene�ts

∗

This work has partly been funded by the Austrian Researh Promotion Ageny

(FFG) of the Austrian Federal Ministry for Transport, Innovation and Tehnology

(BMVIT) through the Competene Centers for Exellent Tehnologies (COMET K1)

initiative and the FIT-IT program.

303

2 Deisions for UML and MOF based DSL Models: Lessons Learned

from its organizational maintenane through the Objet Management Group

(OMG) and builds upon a standardized metamodel: the Meta Objet Faility

(MOF) [7℄. With this, the MOF and the UML provide a rih DSML development

toolkit.

In reent years, a number of ontributions disussed the development of

domain-spei� languages (DSLs). Examples inlude empirial researh evidene

(e.g., ase study researh [8,9,10℄), DSL development proesses [1℄, develop-

ment guidelines and patterns [2,3,4,11℄, or seleted faets of UML-based DSMLs

[12,13℄. Despite the availability of suh soures of design knowledge, most ontri-

butions fall short in one or several respets: Many experienes lak empirially

gathered evidene (e.g., an expliitly doumented researh design). Many are

not spei�ally tailored toward DSMLs in general, or MOF/UML-based DSMLs

in partiular, but rather toward textual DSLs. Others re�et design knowledge

whih is spei� to a partiular toolkit (e.g., the Elipse Modeling Framework,

EMF). Our work omplements the experienes mentioned above by providing

reusable design knowledge for designing the ore language model of MOF/UML-

based DSMLs; i.e. spei� options, onsequenes, and dependenies of deisions

in this partiular phase of DSML development.

The purpose of this paper is to present our experienes, lessons learned, and

some of the hallenges we faed while developing ten MOF/UML-based DSMLs

over the last years. For an overview of these projets see Table 1 (P1�P10). From

these experienes, we extrated two deision points with orresponding deision

options for the initial DSML development phase of onstruting the ore language

model. The ore language model aptures all relevant domain abstrations and

spei�es the relations between these abstrations. Aordingly, we de�ned a ore

language model for eah of our DSMLs. We doument the design deisions in

a reusable manner by adopting deision templates inspired by related work on

doumenting arhitetural design deisions (see, e.g., [3℄). The basi phases of

DSML development are adopted from [1℄.

The remainder of the paper is strutured as follows: In Setion 2, we intro-

due the proess model of DSML development aording to [1℄. In Setion 3, we

desribe the relations between the deisions and the respetive deision options

in a strutured manner. Limitations of our ontribution are disussed in Setion

4. Setion 5 provides an overview of related work and Setion 6 onludes the

paper.

2 Bakground: DSML Development Phases

Before we outline the lessons learned from our DSML projets (see Table 1), we

give an overview of the DSML development proess applied in our projets (for

a detailed disussion see [1℄). The following steps were performed iteratively to

build the DSMLs:

De�ne DSML ore language model One �rst de�nes an initial ore lan-

guage model and the orresponding language model onstraints for the target

domain. By following a domain analysis method, suh as domain-driven design

304

Deisions for UML and MOF based DSL Models: Lessons Learned 3

Objetives Domain

P1

An approah to model interdependent onern behavior using

extended UML ativity models [14℄.

Separation of onerns

P2

An integrated approah for modeling proesses and proess-

related RBAC models (roles, hierarhies, statially and dynam-

ially mutual exlusive tasks et.) [15℄.

Business proesses, role-

based aess ontrol

(RBAC)

P3

A UML extension for an integrated modeling of business pro-

esses and proess-related duties; partiularly the modeling of

duties and assoiated tasks in business proess models [16℄.

Business proesses,

proess-related duties

P4

An approah to provide modeling support for the delegation of

roles, tasks, and duties in the ontext of proess-related RBAC

models [17℄.

Business proesses, delega-

tion of roles, tasks, and du-

ties

P5

A UML extension to model on�dentiality and integrity of ob-

jet �ows in ativity models [18℄.

Data on�dentiality and

integrity

P6

UML modeling support for the notion of mutual exlusion and

binding onstraints for duties in proess-related RBAC models

[19℄.

RBAC (onsisteny heks

for duties)

P7

Inorporation of data integrity and on�dentiality into the

model-driven development of proess-driven servie-oriented ar-

hitetures [20℄.

Integrity and on�dential-

ity for servie invoations

P8

Integration of ontext onstraints with proess-related RBAC

models and thereby supporting ontext-dependent task exeu-

tion [21℄.

Business proesses, RBAC,

ontext onstraints

P9

A generi UML extension for the de�nition of audit requirements

and spei�ation of audit rules at the modeling-level [22℄.

Audit rules

P10

An approah based on model transformations between the valid

strutural and behavioral runtime states that a system an have

[23℄.

Model transformation

Table 1. Overview of onduted DSML development projets.

(see, e.g., [24℄), domain abstrations are identi�ed and form the language model

of a DSML. Beause the language model often annot apture all restritions

and/or semanti properties of the DSML elements, language model onstraints

are added, if neessary. This phase results in the DSML ore language model and

a atalog of DSML language model onstraints.

De�ne DSML onrete syntax In this phase, graphial or textual notation

symbols as well as omposition and prodution rules are de�ned. The DSML

ore language model and the DSML language model onstraints serve as input

to produe the DSML onrete syntax spei�ation.

De�ne DSML behavior The behavior spei�ation of a DSML determines

how the DSML elements interat to produe the behavior intended by the DSML

designer. Syntax and behavior of a DSML are usually de�ned in parallel. The

DSML behavior spei�ation (e.g., ontrol �ow models, formal textual spei�a-

tions) is the output of this phase.

DSML platform integration All artifats de�ned for a DSML are mapped

to the features of a seleted platform, either by extending an existing platform

or by developing a new tool set. Platform integration is ahieved by de�ning

model transformations (see, e.g., [25℄) to onvert a model into another platform-

spei� model (model-to-model transformation, M2M) or into mahine-readable

software artifats (model-to-text transformation, M2T).

305

4 Deisions for UML and MOF based DSL Models: Lessons Learned

#
Deision/Option

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

D1
Language model formalization

O1.1
M1 lass model

O1.2
Pro�le de�nition × × × × ×

O1.3
Metamodel extension × × × × × × × × × ×

O1.4
Metamodel modi�ation

O1.5
Combination of options

1

⊂ ⊂ ≍ ⊂ ⊂

D2
Language model onstraints

O2.1
Expliit onstraint expressions × × × × × × × × × ×

O2.2
Code annotations

O2.3
Constraining M2T transformations × ×

O2.4
Textual annotations × × × ×

O2.5
Combination of options

1

≍ ⊂ ≍ ⊂ ⊂ ⊂

O2.6
None

Table 2. Overview of design deision points and options.

3 Colleted Deisions on the Core Language Model

Most of our DSMLs (see Table 1) provide modeling support for di�erent types of

seurity aspets in a business proess ontext. P10 [23℄ is an exeption and aims

at desribing program transformations in dynami programming environments.

Eah of the ten DSML projets adopted the development proess skethed in

Setion 2. However, due to di�ering requirements, we did not always perform all

DSML development phases. For example, we do not provide platform integration

for P10. Thus, to doument our experienes from the ten projets, we fous on

a single phase and on two spei� deisions that appeared in eah of the ten

projets. In partiular, this paper reports on the ore language model de�nition

and on the respetive design deisions.

For eah ase presented in Table 1, we identi�ed di�erent deision options.

The development of a DSML ore language model requires two important dei-

sions: DSML language model formalization (Setion 3.1) and de�ning language

model onstraints (Setion 3.2). Table 2 summarizes these options for both de-

sign deision points and lists the options adopted for eah of the ten ases. Fig.

1 depits an overview of the two deisions, the orresponding options, as well as

the interdependenies between the deisions and their options. These relations

are then disussed for eah deision in the respetive Consequenes sub-setion

(see below).

3.1 D1 Language Model Formalization

Deision In whih way should the domain onepts be formalized?

Context Domain abstrations are identi�ed and form the language model of

a DSML (i.e., the abstrat syntax). This language model de�nition an be ex-

pressed, for instane, in a narrative text form, with mathematial expressions

(e.g., set algebra), or via a modeling language (e.g., the UML). The language

model de�nition serves as input for the phase of formalizing the domain on-

struts into the ore language model expressed via the UML.

1

⊂ options omplementary; ≍ options equivalent

306

Deisions for UML and MOF based DSL Models: Lessons Learned 5

D1

Language model

formalization

O1.1 Class

model

O1.2 Profile

definition

O1.3 MM

extension

O1.4 MM

modification

O1.5 Combi-

nation

D2

Language model

constraints

O2.1 Explicit

constraints

O2.2 Code

annotations

O2.3 M2T

constraints

O2.4 Textual

annotations

O2.6 None

O2.5 Combi-

nation

R4

R6

R5

R2

R1

R3

Fig. 1. Relations (R1�R6) between deision options.

Options For UML-based DSMLs, the language model an be de�ned within the

boundaries of the modeling language via dediated language extension onstruts

(suh as UML pro�les) or by extending the modeling language to provide the

required semantis (see, e.g., [5,26℄).

O1.1 M1 lass model : UML lass models are an ad-ho instrument to for-

malize domain abstrations. Domain onepts an be expressed as lasses and

relationships as assoiations.

O1.2 Pro�le de�nition: Pro�les are a language extension option to tailor the

UML for di�erent purposes. A pro�le onsists of a set of stereotypes whih de�ne

how an existing UML metalass may be extended.

O1.3 Metamodel extension: A metamodel extension introdues, for instane,

new metalasses and/or new assoiations between metalasses (MOF-based ex-

tension [7℄).

O1.4 Metamodel modi�ation: In ontrast to a metamodel extension, existing

metalasses of the UML metamodel are modi�ed; e.g., by hanging the type of

a lass property or by deleting existing assoiations (MOF-based extension [7℄).

O1.5 Combination of options : A ombination may inlude the de�nition of a

metamodel extension as well as an equivalent pro�le de�nition (e.g., P7). Simi-

larly, stereotype de�nitions an be provided to aompany a metamodel modi�-

ation (e.g., P9).

Drivers

Domain spae: The degree of overlap between the domain spae of the DSML

onepts and the general purpose language onstruts (i.e., the UML spei�a-

tion) has a diret impat on whether a pro�le de�nition is su�ient or on whether

a metamodel extension/modi�ation is needed (O1.2�O1.4). In general, a UML

extension is reusable if it is ompliant with the UML standard.

DSML expressiveness : For instane, a UML pro�le (O1.2) an only speialize

the UML metamodel in suh a way that the pro�le semantis do not on�it with

the semantis of the referened metamodel. Therefore, pro�le onstraints may

307

6 Deisions for UML and MOF based DSL Models: Lessons Learned

only de�ne well-formed rules that are more onstraining (but onsistent with)

those spei�ed by the metamodel [5℄. In ontrast, a metamodel extension/modi-

�ation (O1.3 and O1.4) is only limited by the onstraints imposed by the MOF

metamodel.

Portability and evolution: A metamodel extension/modi�ation (O1.3 and

O1.4) reates a fork of a ertain version of the UML spei�ation. The metamodel

does not inherit revisions oming from newly released OMG spei�ations and

an deviate from the UML or MOF standard.

DSML integration: Available DSMLs, software systems, and tool support

have a diret impat on the design proess of a DSML in terms of integration

possibilities. For instane, the UML spei�ation de�nes a standardized way to

use ions and display options for pro�les (O1.2). Tool support for authoring

UML lass models and pro�les (O1.1 and O1.2) is widely available.

Consequenes (see Fig. 1)

R1 Constraint limitations for lass models : A lass model de�nes a language

model at the UML instane level (i.e. at the M1 level, see [7℄). This means,

no metamodel is de�ned to re�et the domain spae and, thus, domain onepts

an neither be instantiated nor expliitly onstrained for their usage as modeling

onstruts. Thus, restritions an only be de�ned in terms of text annotations

attahed to the language model.

R2 Pro�le dependeny : Dependenies an our from ombined language

model formalizations. For instane, pro�les are dependent on the UML meta-

model. If a pro�le is ombined with a metamodel modi�ation, hanges to the

metamodel an lead to impliit and unwanted hanges a�eting the de�ned

stereotypes (e.g., if a stereotype-extended metalass is modi�ed).

Examples In all DSML projets, we formalized the language models as meta-

model extensions (O1.3). Additionally, pro�les (O1.2) were employed in P1, P3,

P7, P9, and P10. Therefore, we e�etively adopted ombined strategies (O1.5).

In order to be ompliant with the OMG spei�ations, we did not onsider modi-

fying the UML metamodel (O1.4). As an example, Fig. 2 depits an exerpt from

a UML extension (taken from P7). On the left hand side, it shows a UML pakage

de�nition alled SeureObjetFlows::Servies as an example of a metamodel

extension, on the right hand side, it shows a UML pro�le spei�ation named

SOF::Servies. Mappings between these two language-model representations

are provided as M2M transformations. Both UML ustomizations provide the

same modeling apabilities for using one of our UML seurity extensions (for

details see [18,20℄) with the SoaML spei�ation [6℄.

3.2 D2 Language Model Constraints

Deision Do we have to de�ne onstraints over the ore language model(s)? If

so, how should these onstraints be expressed?

Context A ore language model has been formalized in the UML, using either a

UML metamodel extension/modi�ation, a UML pro�le, or a UML lass model

(see Setion 3.1). The resulting language model desribes the domain-spei�

language in terms of its language elements and their interrelations. The de�nition

308

Deisions for UML and MOF based DSL Models: Lessons Learned 7

<<metamodel>>

SecureObjectFlows::Services

<<metaclass>>

ServiceInterface
(from SoaML::Services)

+ isStrict:Boolean = false

<<metaclass>>

SecureInterface

<<metaclass>>

SecureActivityParameterNode

<<metaclass>>

SecurePin

<<metaclass>>

SecureDataStoreNode

<<profile>>

SOF::Services

<<metaclass>>

Class
(from Kernel)

+ isStrict:Boolean = false

<<stereotype>>

SecureInterface

<<stereotype>>

secure

<<stereotype>>

ServiceInterface
(from SoaML)

Fig. 2. Exemplary UML metamodel extension and pro�le de�nition [20℄.

of these interrelations is limited through the expressiveness of the MOF and

the UML (e.g., part-of relations). A strutural UML model, however, annot

apture ertain ategories of onstraints over domain onepts that are relevant

for the desription of the target domain. Examples are invariants for domain

onepts, pre-onditions and post-onditions, as well as guards (referred to as

stati onstraints, hereafter). As a result, the language model formalization ould

be inomplete or ambiguous.

If the language model has been realized by reating multiple formalizations

(e.g., multiple pro�les), there is an additional risk of introduing inonsistenies

provided that the DSML an be used in di�erent on�gurations (e.g., di�erent

pro�le ompositions). Consider, for example, pro�les whih provide a bridge

between two UML extensions.

Options

O2.1 Constraint-language expressions : One an make language model on-

straints expliit using a onstraint-expression language, for instane, via the Ob-

jet Constraint Language (OCL) or via the Epsilon Validation Language (EVL)

in Elipse.

O2.2 Code annotations : The language model and its elements are enrihed

through annotations whih ontain expressions in the host language (or a lan-

guage embedded within the host language). For example, this an be realized by

using model annotations and UML's OpaqueExpression [5℄.

O2.3 Constraining M2T transformations : The onstraints over the language

model are expressed at the level of transformation templates. That is, template

expressions ontain heks (e.g., onditional statements based on model nav-

igation expressions) whih test model instanes for the impliit �t with orre-

sponding domain onstraints; e.g., onditional Epsilon Transformation Language

(ETL) statements based on Epsilon Objet Language (EOL) expressions.

O2.4 Textual annotations : Certain onstraints (e.g., temporal bindings)

eliited from the target domain annot be aptured su�iently via evaluable

expressions (i.e., onstraint language expressions, ode annotations) and/or the

onstraints serve a doumentary purpose (to the domain expert). In suh ases,

309

8 Deisions for UML and MOF based DSL Models: Lessons Learned

unstrutured text annotations may apture onstraint desriptions meant for

the human reader only (e.g., via UML omments).

O2.5 Combination of options : For instane, textual annotations are used as

an addition to onstraint-language expressions.

O2.6 None: Stati onstraints over the language model are not made expliit

in (or along with) the language model.

Drivers

Constraint formalization: In early iterations (e.g., DSML prototyping), on-

straints might not be expressed via well-formed, syntatially valid onstraint-

language expressions, but rather as pseudo-expressions or unstrutured text.

With the language model maturing during subsequent iterations these annota-

tions an be transformed into evaluable expressions.

Automated language model heking : Depending on whether tool integration

for model heking is a requirement, the options O2.1�O2.3 are andidates. A

driver toward either option is the intended model-heking time. Relevant points

in time follow from the model formalization option adopted (e.g., lass model

vs. metamodel-based) and the platform-support (model-level or instane-level

heks). Language-model heking based on template expressions (O2.3) real-

izes the latest possible heking point. Therefore, this option does not o�er any

onstraint-based feedbak during model development.

Native language model onstraints : Constraint-language expressions are de-

veloped with the purpose of integrating (i.e., navigating and heking) with the

(meta-)model representations. Examples are standard-ompliant and vendor-

spei� OCL expressions for the UML, as well as EVL expressions and Java-

oded onstraints over seondary Eore representations of UML models (Elipse

EValidator framework).

Maintainability : Expliitly stating model onstraints (O2.1 through O2.3)

reates strutured text artifats whih must be maintained along with the model

artifats (e.g., the XMI representation). Toolkits and their model representations

o�er di�erent strategies for this purpose, for instane, embedding onstraints into

model elements (i.e., model annotations, suh as UML omments), maintaining

onstraint olletions as external resoures (e.g., separate text �les), or editor

integration. Eah strategy a�ets the artifat omplexity and the e�ort needed

to keep the onstraints and the models synhronized.

Portability : If the portability of onstraints between di�erent MDD toolkits

(e.g., Elipse MDT, Rational Software Arhitet, MagiDraw, Dresden OCL)

is a mandatory requirement, the platform-dependent options O2.2 and O2.3

an be exluded. However, due to the version inompatibilities and the di�erent

vendor-spei� onstraint-language dialets (e.g., Elipse MDT OCL), even O2.1

does not guarantee portability for the underspei�ed setions of the OCL/UML

spei�ations (e.g., navigating stereotypes in model instanes or for transitive

quanti�ers suh as losure [27℄).

Consequenes (see Fig. 1)

R3 Conformane between language model and onstraints : Constraints on the

language model an be de�ned separately from the referening metamodel (e.g.,

310

Deisions for UML and MOF based DSL Models: Lessons Learned 9

using ode annotations; O2.2) or at a later stage (e.g., for M2T transformations;

O2.3). It must be ensured that languagemodel onstraints do not ontradit their

language model formalization and vie versa. Moreover, onstraints may need to

be adapted when the orresponding metamodel hanges (e.g., OCL navigation

expressions).

R4 Constraint inonsistenies : A ombination of di�erent language model

formalizations (e.g., a UML pro�le and a metamodel extension; O1.5) may re-

quire the dupliation and modi�ation of expliit onstraint de�nitions.

R5 Unambiguous language model : If no further onstraints to the language

model are spei�ed, the language model must be fully and unambiguously de-

�ned using the hosen formalization option and their impliitly enfored restri-

tions (e.g., by using pro�les and, thus, inheriting all semantis from the UML

metamodel; O1.2).

R6 Impossible onstraint evaluation: Some onstraints annot be aptured

by the means of onstraint languages and the underlying language models, ode

annotations, or model transformation templates (see, e.g., [5℄; O2.1�O2.3). Suh

onstraints have to be provided as text annotations in a natural language (O2.4).

These onstraints either have a doumentation purpose only, or they serve for

porting the onstraints to another environment as they are not bound to a

onrete expression form.

Examples In our DSMLs, we enountered all options but ode annotations

(O2.2) and entirely unonstrained language models (O2.6). So far, we provide

onstraint-language expressions (O2.1) in the OCL for all of our ases. This is

beause preise exeution semantis were to be expressed in terms of the founda-

tions of UML ativities (token �ows, e.g., in P1) and of the UML state mahines

(state/transition; in P10). In eight out of ten DSMLs (P2�P9), these semantis

are desribed by a generi and MOF-ompliant metamodel, as well as orre-

sponding metamodel extensions. The generi onstraints were then mapped to a

UML-based language formalization (i.e. the atual language model and the re-

spetive OCL expressions). Code annotations (O2.2) were not onsidered beause

the additional model onstraints should not be spei� to a partiular platform

(e.g., model representation APIs, generator language). For two DSMLs (P7, P9),

we additionally inorporated onstraining M2T transformations (O2.3). Textual

annotations (O2.4) are either used to omplement OCL onstraints (P5, P8,

P10) or as full substitutes (P2) for otherwise formally expressed onstraints.

Constraint 1 : The operands spei�ed in a ContextCondition are either ContextAt-

tributes or ConstantValues.

ontext ContextCondition inv:

self.expression.operand .olAsType(OperandType)->forAll(o |

o.olIsKindOf(ContextAttribute) or

o.olIsKindOf(ConstantValue))

Constraint 5 : The ful�lled

CD

Operations must evaluate to true to ful�ll the orrespond-

ing ContextCondition.

311

10 Deisions for UML and MOF based DSL Models: Lessons Learned

As an example for these two di�erent purposes, onsider the above exerpt

from P8: For an ativity, eah ation an be guarded by a onstraint whose on-

ditions refer to a set of operands and heking operations. At the instane-level

(M0), the operations are alled to evaluate whether an ation should be entered,

depending upon some ontextual state. Constraint 1 shows a omplementary

textual annotation. Constraint 5 exempli�es a onstraint expressed in natural

language due to a model-level mismath: While the onstraint is aptured at the

language-model level (M2), the operation alls (whose boolean return values are

ombined to yield the runtime evaluation of the guard) beome manifest at the

ourrene level of an ativity instane (M0) only.

4 Limitations

The most important limitations of the work presented in this paper are that

1) our lessons learned result only from a olletive experiene and that 2) the

underlying deisions were taken by the same group of researhers who developed

the ten DSMLs. We reported deisions being harateristi for a single phase

(i.e. de�ning the DSML ore language model) and their interdependenies. Do-

umenting the remaining phases (see Setion 2) is future work. Moreover, there is

the risk of a tehnology bias given that the ten DSML projets were all performed

in a spei� tehnology ontext (e.g., MOF/UML, OCL, Elipse modeling tools).

Methodially, this paper presents the results of a narrative synthesis [28℄ of

our DSML development experienes. Therefore, by emphasizing a preseleted

proess model and one of its phases [1℄, we may have negleted design deisions

beyond the sope of this approah. Other risks are the disagreement among the

authors during the synthesis proess and the dependene of the synthesis results

on the review performane of eah author (time onstraints, level of experiene).

To mitigate these, we onduted multiple re�ning iterations over the deision

templates and the deision relations, under shifting roles of data heker and

data extrator.

5 Related Work

Related work on DSL development [1,2,3,4,8,9,10,11,12,13℄ was already outlined

in Setion 1. Below, we review the work relevant for our methodial approah.

For re�eting and synthesizing the deision-related �ndings from our DSML-

development projets, we adapted the guidelines on onduting narrative synthe-

ses proposed by [28℄. That is, we seleted a proess model and its phases as the

impliit �theory� underlying our DSML projets. We then olleted meta-data

about the primary works (e.g., partiipants, setting, outomes, target domain,

MDD tehnologies). Based on the seleted �theory� (i.e., phases and develop-

ment artifats), we then haraterized the deisions taken in eah development

projet. In partiular, we adopted previously de�ned deision templates.

The pratie of doumenting design deisions in a template-based or model-

based manner has been proposed for arhitetural design deisions (see, e.g.,

312

Deisions for UML and MOF based DSL Models: Lessons Learned 11

[29℄). In our work, we share the primary motivation of doumenting reusable

design deisions, i.e., deisions and options whih are harateristi for every

deision-making proess in a given tehnial domain.

6 Conluding Remarks

In this paper, we presented lessons learned from ten DSML development projets

in the form of a narrative synthesis. We doumented MOF/UML-based deision

options and relations between them for the phase of de�ning the ore language

model for a DSML in a strutured and reusable form. By doing so, we pro-

vide deision support for future deision-making proesses, failitate deision

doumentation, and o�er sa�olding for making deisions under inomplete or

hanging requirements (i.e., in early stages of developing or prototyping). Al-

though we espeially fous on design deisions for MOF/UML-based DSMLs,

ertain deision options do also apply to other modeling languages used in MDD

proesses. In our future work, we will doument additional deision points to

over the remaining phases of the DSML development proess.

Referenes

1. Strembek, M., Zdun, U.: An Approah for the Systemati Development of

Domain-Spei� Languages. Software: Pratie and Experiene (SP&E) 39(15)

(2009) 1253�1292

2. Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-spei�

Languages. ACM Computing Surveys (CSUR) 37(4) (2005) 316�344

3. Zdun, U., Strembek, M.: Reusable Arhitetural Deisions for DSL Design: Foun-

dational Deisions in DSL Projets. In: Pro. of the 14th European Conferene on

Pattern Languages of Programs (EuroPLoP). (2009)

4. Spinellis, D.: Notable Design Patterns for Domain-spei� Languages. Journal of

Systems and Software 56(1) (2001) 91�99

5. Objet Management Group: OMG Uni�ed Modeling Language (OMG UML), Su-

perstruture � Version 2.4.1. Available at: http://www.omg.org/spe/UML (2011)

6. Objet Management Group: Servie oriented arhiteture Modeling Language

(SoaML) � Version 1.0. Available at: http://www.omg.org/spe/SoaML (2012)

7. Objet Management Group: OMG Meta Objet Faility (MOF) Core Spei�ation

� Version 2.4.1. Available at: http://www.omg.org/spe/MOF (2011)

8. Zdun, U.: A DSL Toolkit for Deferring Arhitetural Deisions in DSL-based

Software Design. Information and Software Tehnology 52(9) (2010) 733�748

9. Wile, D.: Lessons Learned from Real DSL Experiments. Siene of Computer

Programming 51(3) (2003) 265�290

10. Kelly, S., Pohjonen, R.: Worst Praties for Domain-Spei� Modeling. IEEE

Software 26(4) (2009) 22�29

11. Karsai, G., Krahn, H., Pinkernell, C. et al.: Design Guidelines for Domain Spei�

Languages. In: Pro. of the 9th OOPSLA Workshop on Domain-Spei� Modeling

(DSM). (2009)

12. Seli, B.: A Systemati Approah to Domain-Spei� Language Design Using

UML. In: Pro. of the IEEE International Symposium on Objet-Oriented Real-

Time Distributed Computing (ISORC), IEEE (2007)

313

12 Deisions for UML and MOF based DSL Models: Lessons Learned

13. Robert, S., Gérard, S., Terrier, F. et al.: A Lightweight Approah for Domain-

Spei� Modeling Languages Design. In: Pro. of the 35th Euromiro Conferene

on Software Engineering and Advaned Appliations, IEEE (2009)

14. Strembek, M., Zdun, U.: Modeling Interdependent Conern Behavior using Ex-

tended Ativity Models. Journal of Objet Tehnology 7(6) (2008) 143�166

15. Strembek, M., Mendling, J.: Modeling Proess-related RBAC Models with Ex-

tended UML Ativity Models. Information and Software Tehnology 53(5) (2010)

16. Shefer, S., Strembek, M.: Modeling Proess-Related Duties with Extended UML

Ativity and Interation Diagrams. In: Pro. of the International Workshop on

Flexible Work�ows in Distributed Systems. (2011)

17. Shefer, S., Strembek, M.: Modeling Support for Delegating Roles, Tasks, and Du-

ties in a Proess-Related RBAC Context. In: Pro. of the International Workshop

on Information Systems Seurity Engineering (WISSE), Springer, LNBIP (2011)

18. Hoisl, B., Strembek, M.: Modeling Support for Con�dentiality and Integrity of

Objet Flows in Ativity Models. In: Pro. of the 14th International Conferene

on Business Information Systems (BIS), Springer, LNBIP (2011)

19. Shefer, S.: Consisteny Cheks for Duties in Extended UML2 Ativity Models.

In: Pro. of the International Workshop on Seurity Aspets of Proess-aware In-

formation Systems (SAPAIS), IEEE (2011)

20. Hoisl, B., Sobernig, S.: Integrity and Con�dentiality Annotations for Servie In-

terfaes in SoaML Models. In: Pro. of the International Workshop on Seurity

Aspets of Proess-aware Information Systems (SAPAIS), IEEE (2011)

21. Shefer-Wenzl, S., Strembek, M.: Modeling Context-Aware RBAC Models for

Business Proesses in Ubiquitous Computing Environments. In: Pro. of the 3rd

International Conferene on Mobile, Ubiquitous and Intelligent Computing. (2012)

22. Hoisl, B., Strembek, M.: A UML Extension for the Model-driven Spei�ation of

Audit Rules. In: Pro. of the 2nd International Workshop on Information Systems

Seurity Engineering (WISSE'12), Springer, LNBIP (2012)

23. Zdun, U., Strembek, M.: Modeling Composition in Dynami Programming Envi-

ronments with Model Transformations. In: Pro. of the 5th International Sympo-

sium on Software Composition, LNCS, Vol. 4089, Springer (2006)

24. Evans, E.: Domain-driven Design: Takling Complexity in the Heart of Software.

Addison-Wesley (2004)

25. Mens, T., Gorp, P.v.: A Taxonomy of Model Transformation. Eletroni Notes in

Theoretial Computer Siene 152 (2006) 125�142

26. Bruk, J., Hussey, K.: Customizing UML: Whih Tehnique is Right for You?

Available at: http://www.elipse.org/modeling/mdt/uml2/dos/artiles/

Customizing_UML2_Whih_Tehnique_is_Right_For_You/artile.html (2008)

27. Objet Management Group: OMG Objet Constraint Language (OCL) � Version

2.3.1. Available at: http://www.omg.org/spe/OCL (2012)

28. Cruzes, D., Dybå, T.: Synthesizing Evidene in Software Engineering Researh.

In: Pro. of the International Symposium on Empirial Software Engineering and

Measurement (ESEM). ACM (2010)

29. Obbink, H., Kruhten, P., Kozazynski, W. et al.: Software Arhiteture Review

and Assessment (SARA) Report, Version 1.0. Available at: http://kruhten.om/

philippe/arhiteture/SARAv1.pdf (2002)

314

