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ABSTRACT

Dynamic Software Product Lines (DSPLs) implement fea-
tures of a product family, from which products can be de-
rived and reconfigured at runtime. This way, systems can
alternate their configurations without service interruption.
The activation and deactivation of features at runtime pose
challenges for the implementation of a DSPL, in particular
for handling object states such as runtime changes to object-
scoped variables, their value assignments, and the variable
properties. To quantify the complexity of this object mi-
gration, we propose a systematic code-level measurement
approach which harvests feature implementations and the
corresponding variability models for code introductions re-
sponsible for critical changes to object states.

We have applied our measurement process tentatively to
data sets representing 9 SPLs implemented using Fuji. This
way, we arrived at first insights on object-migration com-
plexity in SPLs. For example, we observed that the number
of feature-specific object states is distributed very unequally
in Fuji SPLs, with a few objects having an overly complex
map of potential object states and the majority of objects
potentially seeing transitions between 1 and 5 object states.
We also evaluated different tactics of applying SAT solvers
to analyze variability models in this context.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Complexity mea-
sures; D.1.5 [Software]: Programming Techniques—Object-
oriented Programming
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1. INTRODUCTION
A software product line (SPL) provides a common code

base for a family of related software products; a variability
model (e.g., a feature model) specifies the set of valid prod-
ucts that can be built from the product line. Including a
feature into a program is referred to as binding a feature.
Feature binding can occur at several binding times (pre-
processing time, compile time, load time, program execution
time), and in certain binding modes (i.e., fixed, changeable,
or dynamic; [11, 26]). In contrast to static SPLs, where vari-
ability is commonly bound before runtime, dynamic software
product lines (DSPLs) allow features to be bound and to be
unbound at program-execution time [14, 18].

In feature-oriented programming (FOP), features are im-
plemented as distinct and composable units of functionality
referred to as feature modules [3]. FOP environments of-
ten extend an object-oriented base language by abstractions
suitable for representing features, in particular, object col-
laborations, roles, and class refinements. A product derived
from a product line, which is implemented using FOP, is
realized as a composed set of collaborating objects (collab-
oration). The behavior defined by an object, i.e., the set
of methods owned by or invocable on an object, can reflect
different roles [3] played by an object in different feature
modules. In FOP, role-implementing method sets specific
to a given feature are commonly organized into dedicated
composition units, i.e., class refinements.
Under dynamic feature binding, an object can take or dis-

card roles by receiving or by dismissing the corresponding
refinements; that is, it migrates from one behavioral configu-
ration to another. Changing the class of an (already created)
instance (dynamic object re-classification) is an established
example of object migration in dynamic object-oriented pro-
gramming (e.g., [13, 30, 12]). In a feature-oriented product-
line implementation, dynamic feature binding raises ques-
tions over the way existing objects should be handled when
a product changes during runtime. Lacking other options,
existing objects might simply remain unchanged and a new,
decoupled product must be derived. An interesting alter-
native, however, is to migrate existing object states. In
this case, the programmer realizing a feature implementa-
tion must anticipate object migration to a certain extent.

The attempt to anticipate this migration, however, turns
out to be tricky: Under static feature binding, there is of-
ten an implicit order in which feature implementations are
meant to be composed. Note that this order is not neces-
sarily made explicit in the variability model or the feature



implementation. Often, the composition order is implicitly
established by coding convention or the build environment.
Under dynamic feature binding – and provided that there
is no order-enforcing mechanism and the composition oper-
ation is commutative – a product (e.g., from a Graph Prod-
uct Line; GPL [20]) containing 2 features (e.g., Colored,
Weighted) can be derived in 2 different ways: by binding
feature Colored first and Weighted second, or vice versa.
Both ways yield one and the same feature configuration.

Features are typically implemented having a feature-local
focus. In particular, the way objects as class instances are
initialized using constructor methods (which, e.g., assign an
initial or default value to fields) considers initial object states
for the scope of only one feature implementation. For exam-
ple, programmers limit constructor methods introduced by
one feature implementation to touch on fields introduced by
this feature only. This improves the cohesiveness of a feature
implementation [1]. However, under dynamic feature bind-
ing, decisions on state initialization taken by programmers of
other feature implementations, which become bound or un-
bound before a given feature, might interfere. This way, con-
straints imposed on an object’s state by other programmers
or other feature implementations of the same programmer
may end up conflicting at the time of binding or unbinding.
The situation becomes even more tedious when, in a dedi-
cated feature-oriented language kit (FeatureC++ [25], Ob-
jectTeams [17]), special-purpose initialization methods (e.g.,
lifters in ObjectTeams) are executed at the binding time of
feature complement constructor methods. In addition, the
orthogonal object-oriented inheritance hierarchies must be
kept in mind when it comes to anticipating the linearization
order of constructor methods.

An interesting question arises: How many object-state
transitions (in terms of bindable and unbindable features)
must be anticipated by the programmer of a given feature
implementation in existing product-line implementations?
To shed light on this, we propose a measurement approach
to analyze object-state migration paths in the code bases
of feature-oriented product lines. We explored the proce-
dure using nine different product lines from the Fuji reposi-
tory1 [2]. Based on these insights, in future work, we hope to
devise appropriate Design-by-Contract techniques [28] and
variants of FOP-specific access modifiers [2] to help FOP
programmers in coping with object-migration complexity.
By presenting and reflecting on our ongoing research project
in terms of this research-in-progress report, we hope to re-
ceive valuable feedback from the reviewers and workshop
participants already in this early stage.

In Section 2, we explain the background of our research-
in-progress by eliciting the notions of object migration and
constructor anomalies, among others. To better communi-
cate the motivation of our research to the reader, we then
provide an example of constructor anomalies under object
migration in Section 3. The actual analysis and measure-
ment approach is then introduced and critically reviewed
upon in Section 4. Section 5 highlights our next steps and,
in Section 6, we briefly iterate over closely related work. The
paper is summarized in Section 7.

2. BACKGROUND
In this research project, we assume some background

1http://fosd.net/fuji, last accessed: 12.11.2013.

knowledge on object migration and constructor anoma-
lies, formal approaches to analyzing variability models (i.e.,
SAT solving), and dynamic FOP techniques (i.e., Object-
Teams [17]).

Object migration. A method implementation as part
of an object’s or a role’s behavior definition operates typi-
cally under assumptions on the object state, i.e, the object-
scoped variables, their value assignments (at a given time),
and the variable properties (e.g., multiplicity and data-type
constraints). Object migration in FOP for DSPLs, as the
process of moving a live object from one behavioral configu-
ration to another, challenges such fundamental assumptions:

• Combinatorial complexity : The number of possible,
valid feature combinations may grow exponentially
leading to hundreds of possible state configurations,
even for medium sized examples like the Graph Prod-
uct Line (GPL; [20]).

• Symmetry of binding/unbinding : For feature bindings
to be fully dynamic, the binding operation must be
reversible [14]. This is also necessary to form valid
products during runtime when facing mutually exclu-
sive features. As a result, object migration must sup-
port both initializing and de-initializing object states
according to a given feature configuration.

• Non-monotonicity : Refinements that change the type
of an object variable require migrating the currently
assigned value. Only monotonic changes that widen
the valid value-range of object variables are without
issues.

• Constructor anomalies: In mainstream object-oriented
languages such as Java and C#, but also others (e.g.,
Eiffel), the construction of fresh instances from a given
class can result in exceptional, unrecoverable program
states [10]. For example, during the execution of a
constructor method, fields of non-null types may con-
tain null values and thereby break code that assumes
non-null values, e.g., yielding null pointer exceptions in
Java. Such anomalies can be due to constructor meth-
ods often being statically bound, so constructors are
dispatched on not fully initialized objects. In addition,
a constructor may call methods that are dynamically
bound, i.e., the specific method implementation called
is unknown at compile time (at least in Java and C#).
In addition, a constructor must implicitly or explicitly
call the super constructor at the appropriate location.

Analyzing feature models using SAT solvers. In
this research project, we consider feature models [11] as
a specific kind of variability modeling technique. Feature
models capture hierarchies of features, including their in-
clusion constraints (e.g., mandatory, optional) and their
hierarchical variation relationships (e.g., exclusive-or and
inclusive-or feature groups). In addition, non-hierarchical
dependency relationships (so-called cross-tree constraints)
can be expressed. For automatic analysis, a feature model
can be expressed as a propositional formula [21]. The
respective features are represented as logic variables with
true meaning that a feature is selected. Satisfiability (SAT)
solvers can be used to check whether the propositional for-
mula has an interpretation and to find all interpretations
representing all product variants which honor the con-
straints of the feature model. The propositional formula is
typically turned into its Conjunctive Normal Form (CNF)



to allow efficient processing by SAT solvers. Performance is
critical, as the possible number of product variants in the
worst case is 2n, where n is the number of (purely optional)
features. In our ongoing research, we employ SAT solvers
to compute the sets of valid feature configurations from a
given variability model.

ObjectTeams. ObjectTeams [17] is a Java extension
that supports aspects and collaboration-based designs which
are dynamically composable via delegation layers [23].
Classes and collaborations (called teams) can be nested.
This way, ObjectTeams realizes the FOP concept of roles
using classes nested in teams. Role-representing nested
classes are specified using the playedBy keyword. Roles as
well as base classes can act as teams. A role may explicitly
set a superclass. In addition, a role can implicitly extend
the role class that shares the same name of the enclosing
class’ super collaboration. The constructor of a role may
call up to 3 different constructors: super() calls the su-
perclass constructor, base() calls the base constructor of a
bound role, and tsuper() calls the implicit constructor. All
3 constructor calls are optional, as long as the suitable base
constructor is implicitly invoked. Furthermore, the order,
in which the constructors are to be called, is not restricted.

3. A MOTIVATING CONSTRUCTOR

ANOMALY IN FOP
A critical part of object migration is the correct initializa-

tion of the object state. In a dynamic setting, refinements
may add an object variable of a specified type to a class
(as in object re-classification in a non-FOP context). This
object variable needs to be instantiated. The state initial-
ization involves pitfalls known as constructor anomalies.

The example below shows a problem related to construc-
tor anomalies in plain Java. Consider the execution of the
constructor G(). The super-class constructor F() is called,
then the dynamically bound method G.m() is executed,
which in turn accesses the uninitialized state, i.e., the field
value is not properly initialized yet. As a consequence, a
NullPointerException is raised.

1 public class F {

2 public F() { m(); }

3 public void m() { }

4 }

5 public class G extends F {

6 private Object value = null;

7 public G() { super(); value = new Object(); }

8 public void m() { System.out.print(value.toString()); }

9 }

Dynamic collaborations are one of the approaches to FOP
of DPLs [26], and specifically interesting for object migra-
tion. A common Java extension for dynamic collaborations
is ObjectTeams (OT; [17]). As mentioned in the section
“Background”, a role class in OT can call 3 different con-
structors in any particular order and constructor calls may
be omitted (as long as base is called explicitly or implicitly
via superclass constructors). The following example shows
a constructor anomaly problem in OT:

1 public team class BaseCollaboration {

2 public team class Base {

3 protected Object baseField;

4 public void Base() { }

5 }

6 }

7 public team class Outer {

8 public team class Super {

9 protected class Role { // implicit super role

10 protected Object superTeamField;

11 public Role() { superTeamField = new Object(); }

12 }

13 }

14

15 public team class Collaboration extends Super playedBy

BaseCollaboration {

16 protected class SuperRole { // explicit super role

17 protected Object superField;

18 public SuperRole() { superField = new Object(); }

19 }

20

21 protected class Role extends SuperRole

22 playedBy Base<@base> {

23 public Role() {

24 // choice of three possible constructors to call:

25 // base(), super() or tsuper()

26 base(); // calls BaseCollaboration.Base.Base()

27 superField.toString(); // exception!

28 superTeamField.toString(); // exception!

29 } } } }

Consider lines 23–28 in the above example, in which the
constructor implementation may access the state (i.e., ob-
ject variables) of all other classes, including team classes
and also the field baseField (the latter via callin mech-
anism). Furthermore, all 4 constructors can call methods
that may be dynamically bound to methods of the class
role defined in line 21. Finally, the constructor defined
in the lines 23–28 may explicitly call all other 3 construc-
tors: base() calls BaseCollaboration.Base, tsuper would
call Super.Role.Role() and super would call Collabora-
tion.SuperRole.SuperRole(). However, only the base()

constructor call is mandatory. Consequently, accessing any
of the uninitialized fields (lines 27 and 28) leads to a Null-

PointerException.
Compared to the plain Java example, the constructor

anomalies emerge by merely accessing object variables. It
becomes clear that the 2 additional types of constructors
(base and tsuper) add new dimensions to the constructor-
anomaly problem. An extended example would include
dynamic method calls from within the above constructors
and, furthermore, Base itself may have a super class that in
turn has bound roles. We argue that the implicit constraints
may quickly surpass what can be anticipated manually by a
programmer. The resulting complexity calls for programmer
assistance to overview state initialization and object state
migration in a FOP-based DSPL implementation.

4. COMPLEXITY OF OBJECT MIGRA-

TION PATHS
The aim of our research is to analyze the variability mod-

els of SPLs in conjunction with code-level measurements
(i.e., code units introduced by feature modules) to assess
the complexity of object migration under dynamic feature
binding. The established degree of complexity should, for
example, guide us in assessing the risk level of experiencing
unwanted constructor anomalies. In the following, we give
a brief synopsis of the process to analyze the complexity of
object migration in DSPLs.

4.1 Measurement Process
The chosen measurement approach is based on the object

migration graphs for all objects of a product, when the set
of activated features changes. For every role of every col-
laboration an object migration graph is calculated. It is not
necessary to calculate a set of such graphs for every valid
configuration (feature selection), but only for these feature



selections that contain for a particular role implementation
state-affecting refinements (refinements that can change the
object state, e.g., by setting field values). The state-affecting
refinements are identified by analyzing the feature specific
constructor refinements of a role. Only the state-affecting
features are required for building the object migration graph
for this role. The nodes of the object migration are labeled
by the elements of the power set of the state-affecting fea-
tures. Assuming that transitions between all feature sec-
tions are possible (e.g., multiple features can be activated at
once), the result is a complete graph where all nodes are con-
nected. Note that this assumption can be altered to include
a particular (often implicit) order of composing features.

{}

{Colored}

{Weighted,Colored}

{Weighted}

Weighted Colored

Graph
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Figure 1: Calculating object-migration paths using an ex-
cerpt from the Graph Product Line (GPL)

Consider the minimal example depicted in Figure 1, a
small excerpt from the Graph Product Line (GPL; [20]).
The GPL models variability for different types of graphs
(colored, weighted, etc.). The Figure depicts in the top row
the feature model and valid configurations (features abbre-
viated) and in the lower row the implementation aspects
for a role and the entailed object migration path. For ex-
ample, the feature Colored allows to attach a value rep-
resenting edge colors, while DFS (Depth First Search) is a
feature that implements the basic graph search algorithm.
The implementation of the GPL includes the role Edge that
implements the functionality to store edges of a graph. The
state-affecting features for the role Edge are Colored and
Weighted, but not DFS because DFS does not require any
state-affecting refinement of role Edge (see lower lower left
graphic of Figure 1). The nodes of the object migration
path are built from the elements of the power-set of the
state-affecting features for this role. Provided that all ob-
ject migrations are permitted, this leads to the migration
paths depicted as a complete graph (lower right graphic in
Figure 1).

The subsequent activities of our measurement process are
depicted in Figure 2. Based on code-level measurements of
an SPL implementation, data about all refinements, includ-
ing their type (e.g., constructor refinement) is gathered for
all roles, in addition to information about accessed variables.
This data is queried for state-affecting constructor refine-
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Figure 2: Overview of the measurement procedure

ments. A relation between features and roles is recorded by
the result of the query (depicted as feature/role relation in
Figure 2). A feature and a role are related if the feature in-
troduces a state-affecting constructor refinement. The sec-
ond input to the process is the feature model of an SPL,
which is exported to a propositional formula in CNF. Cur-
rently, we employ 2 alternative SAT-based tactics. As SAT
platform, we have decided to use picosat [6], a reportedly
fast single-threaded SAT solver.

Tactic 1. All valid product configurations (i.e., all intro-
ductions) are computed via a SAT solver once and are then
queried for partial feature combinations which are relevant
for each role, based on the feature/role relation.

Tactic 2. An alternative tactic involves role-wise SAT op-
erations. For each role, there are 2r possible combinations of
refinements, with r being the number of state-affecting con-
structor refinements. For each of these role-specific combina-
tions a per-role CNF formula is computed and then checked
with a SAT solver whether it is valid (i.e., whether there is
at least one introduction).

Tactic 2 allows for scaling our measurement approch to
SPLs which are large in features. SAT-solver calls per role
can be executed in parallel. Assuming the same performance
results as described by Mendonca et al. [21] as an approxi-
mation, an individual SAT call can be estimated in the order
of 100 milliseconds (ms) for feature models of about 1,000
nodes and more. For 16 refinements per role (216 combi-
nations), for instance, approximately one second would be
required considering 100ms per SAT call using 8 parallel
SAT processes.

In our initial analysis (see Section 4.3), we adopt both
tactics. A tactic is selected on a per-SPL basis by choosing
the calculation path (i.e., all products or per-role) according
to the observed feature-model complexity (e.g., the number
of optional features, number of state-affecting constructor
refinements). In the final 2 steps, a graph of the possible
state-migration paths of a role is constructed from the re-
sulting data of the SAT analysis (using either tactic 1 or 2).
To quantify the complexity of this fully connected graph, we
currently count the number of nodes. Using this quantifi-
cation of complexity for each role of an SPL, it is possible
to analyze the SPL with descriptive statistics, which in turn
allows for comparing 2 or more SPLs. We address the limi-
tations of the described measurement setup in Section 4.4.

4.2 Data Sets
Table 1 summarizes important characteristics of the cur-

rently analyzed Fuji data sets [2] and illustrates the differ-
ence in size of the respective feature models. SLOC refers to
the source lines of code of the SPL implementation, roles is
the number of roles, refs is the total number of refinements,
cf refers to the number of concrete features of the respec-
tive feature models and f stands for the total number of
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BerkeleyDB 45 000 408 620 1 99 114

EPL 111 5 15 2 12 16

GameOfLife 1 461 37 39 2 15 23

GPL 1 930 16 57 2 25 36

MobileMedia8 4 189 60 127 2 47 54

PKJab 3 373 51 68 2 8 12

Prevayler 5 268 158 149 2 6 8

TankWar 4 845 22 88 2 37 37

Violet 7 151 67 157 1 83 96

Table 1: Overview of the data sets. refs: refinements; cf:
concrete features; f: total features

features (abstract and concrete). Abstract features are part
of the feature model, but do not have any impact on the im-
plementation level, unlike concrete features [27]. Concrete
features are implemented as dedicated feature modules and
are usually depicted as leafs in the feature diagram [27].

Featurewise, the data sets results from SPLs of various
sizes (e.g., TankWar having 37 features). The two largest
data sets, both in terms of features and SLOC, are Berke-
leyDB and Violet. In the SAT-analysis step, tactic 1 has
been applied to the 7 SPLs of low- to medium feature-model
complexity (see column tactic of Table 1). Tactic 2 has
been used to analyze BerkeleyDB and Violet, the 2 most
complex SPLs.

4.3 Preliminary Observations
We started by extracting data (variability models, code in-

troductions by features) from the 28 feature-oriented prod-
uct lines available in the Fuji repository [2]. Nine out of
these 28 SPLs provide an explicit variability model (see also
Table 1). In the following, we refer to 3 notable examples of
Fuji SPLs: GPL, Violet, and BerkeleyDB. 2

Refinements per role. Recall from Figure 1 that at
the beginning the relation between features and roles is es-
tablished from analyzing code introductions and structural
references in the SPL code bases. More specifically, we are
interested in state-affecting constructor refinements. There-
fore, we query refinements that initialize object state (e.g.,
object variables) in a constructor. In terms of operational-
ization, we queried for refinements which introduce construc-
tor methods that access and initialize at least one field.

Figure 3 summarizes the refinements per role for the 3
SPLs. The top plot shows statistics on all refinements per
role, while the bottom plot shows the corresponding statis-
tics on the subset of state-affecting constructor refinements.
We use box-plots to visualize the distribution structure of
the data sets, including dispersion and skewness. Outliers in
the data are displayed as individual points. The boxes de-
pict the first, second (i.e., median) and third quartile. A line
(whisker) is drawn between the top end of the box and the
last value that is within the third quartile plus the interquar-
tile range (IQR). If all statistics have comparable values, the
box is degenerated to a single, thick line.

For BerkeleyDB in general, we find many refinements per
role. As for state-affecting constructor refinements, the max-
imum is an outlier at only 4 refinements. Violet shows much

2Note that for BerkeleyDB and Violet, we were not able
to compute all possible product configurations (see Sec-
tion 4.4).
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Figure 3: Boxplots for the observed refinements per role

fewer refinements per role, but also shows a high outlier in
the bottom box-plot that represents 16 constructor refine-
ments (!) within just one role. The topmost outlier for
the GPL example are six different constructor refinements
within one role. For all 3 SPLs, the observation is that the
majorities of roles have a comparably low number of state-
affecting constructor refinements (1-2 refinements per role).
Size of the migration graph. To quantify possible

object migrations, the migration graph for each role is sum-
marized by the order of the graph (number of nodes). Each
node represents a state-affecting feature selection for this
role (i.e, in Figure 1 the state-affecting feature selections
of the role Edge). When all features are optional, n state-
affecting features require the object migration to be of an
order of 2n. If we allow migrations between all nodes, 2n ∗

(2n − 1) migrations are possible for this role.
Figure 4 shows histogram and kernel density plots of this

size measurement for the object migration graphs for each
role in the 3 Fuji SPLs (i.e., the number of roles having a
certain number of nodes in their object migration graphs).

For the BerkeleyDB, the topmost plot illustrates one role
with 8 nodes. Furthermore, there are 2 roles having 4 nodes.
However, the vast majority of roles have 0− 2 nodes in the
object migration graph. Violet is notable (see the middle
plot in Figure 4): The scale had to be changed to a logarith-
mic scale, because the order of the object migration graphs
of 2 roles a role was already quite high: The maximum out-
lier, role “UMLEditor” EditorFrame, has an object migra-
tion graph containing 530,000 480 nodes a second outlier
represents the role ”EditorFrame“, has a migration graph
with 480 nodes.3

3 Corrigendum: The published revision of this research-in-
progress report referred to the value of 530,000 nodes (UM-
LEditor) as the maximum outlier. This number turned out
incorrect, being reported due to a mistake in one of our
data-processing scripts: Instead of counting constructor re-
finements only, refinements of ordinary methods were taken
into account. The corrected observation of an outlier graph





that change the object state. Another option is to assign
complexity weights to constructors, e.g., to distinguish that
a constructor that references five different object variables
is more complex than one that changes a single variable.

Analysis of additional data sets: We will apply our
analysis to actual DSPL code bases. ObjectTeams supports
dynamic role binding, in which a role object can be added
to a base object at runtime. ObjectTeams does not support
object migration or object re-classification, as defined in this
paper; however, there exists a related concept called lifter
methods to initialize the state of a newly bound role. There
are real world programs implemented in ObjectTeams, no-
tably the Eclipse plugin “Equinox”; the code is freely avail-
able. The only drawback is that these plug-ins do not make
the implemented variability explicit. A possible solution
is to derive a feature model, e.g., all plug-ins are optional
features and plugin dependencies are modeled as cross-tree
constraints. In addition, we also plan to contact the Object-
Teams community and ask for further SPL examples.

Strategies to resolve scalability issues: As pointed
out in Section 4.4, the tactic of calculating all valid products
(see Figure 2) does not scale to SPLs of approx. 100 or
more features. Similarly, deriving per-role formulae is also
limited by the combinatorial complexity of per-role feature
combinations. For the Fuji data set, we observed up to six
state-affecting refinements per role, with outliers of up to 16
refinements for Violet (see Figure 3).

Next, we will explore a third, hybrid tactic to calculate all
valid product configurations with a very narrow propagation
constraint first (i.e., a variant of tactic 1) and then process
missing feature combinations per role each in a single SAT
call (i.e., tactic 2). Additionally, we plan to investigate alter-
natives to using a SAT solver in our measurement process,
e.g., using Constraint Satisfaction Problem (CSP) solvers
and Binary Decision Diagrams (BDD; see [5, 4]).

6. RELATED WORK
Research closely related to our work falls into 3 categories:

object migration, SAT-based analysis of variability models,
and structural metrics in object-oriented systems.

Object Migration. The notion of object migration
can be found in literature on distributed systems and
distributed-object mobility and on dynamic object-oriented
database and language systems. Our work adds to the state
of the art in the latter field. In object-oriented databases,
(see, e.g., [12]) object migration deals with dynamic prop-
erties, especially when changing an object’s class. With-
out considering object persistence, this is also discussed
as dynamic object re-classification in language-engineering
communities (e.g., CLOS [19]).

First destroying an object as an instance of the old class
and then recreating it as an object of the new class is of-
ten not feasible, especially when considering foreign-key con-
straints in database systems persisting the changing objects.
In the following, object migration was first studied between
immediate subclasses and superclasses. Later, object migra-
tion was studied in the context of roles [13, 30] as means of
object evolution. While objects can play different roles over
time, they typically allow only a limited or predefined set of
role transitions (or, object-migration paths in our terminol-
ogy). In contrast to this early line of research [12, 30], we
study arbitrarily complex object-migration paths resulting
from dynamic feature binding and unbinding in DSPLs. For

optional features, the migration graph is complete.
Object migration shares challenges faced by other com-

munities, in particular Context-Oriented Programming
(COP; [9]) and Dynamic Updates [29, 24, 16, 31]. Wernli
et al. [29] allow dynamic updates based on contexts in a
multi-threaded setting by keeping 2 real copies of each ob-
ject and providing bidirectional transformations between
the 2 copies. Previtali and Gross [24] propose a method
to perform dynamic software updates based on aspects and
aim at an automatic update process, with newly added at-
tributes still requiring manual glue code. Dynamic software
updates have been proposed for static programming lan-
guages as well, including C++ [16]. Our work is specifically
tailored towards object migration in the context of DSPLs,
as realizable using dynamic FOP techniques such as Object-
Teams (OT; [17]). This adds further challenges to the issue
of object migration, namely the combinatorial complexity
in integrated variability analyses.

SAT-based analysis of variability models. Checking
with a SAT solver whether a configuration is a valid prod-
uct is efficient for typical SPL examples [21], but artificial
feature models can be generated where the problem is NP
complete [21, 4]. In addition, SAT solvers do not scale well
on multi-core servers [15] and therefore, we decided to use
picosat [6], a fast single-threaded SAT solver that can derive
all models of a propositional formula.

The performance and scalability problems we experienced
are due to the operation that is classified by Benavides et.
al [5] as “all products”, i.e., meaning to calculate all valid
configurations of a feature model. Other operations, such
as calculating the number of valid products are not suffi-
cient for deriving the migration graph of a role. Besides
SAT-based approaches to calculate all products, there are
also approaches based on description logic [5] and constraint
programming [5, 4].

Object-oriented software measurement. It is inter-
esting to observe that in software measurement approaches
for object-oriented systems, constructors are often not taken
into account. They are rather excluded from measurement
as data points, for example, when calculating cohesion mea-
sures [7]. The definition of the measures tight class cohesion
(TCC) and loose class cohesion (LCC) requires the exclusion
of constructors. As for cohesion, constructors are considered
problematic because they typically access most of the class
attributes, thereby linking the constructor with any method
that accesses at least one of these attributes. This can result
in reporting an overstated value of cohesion [7]. In our ap-
proach, constructors are key data points to identify critical
refinements and to construct object-migration graphs.

7. SUMMARY & OUTLOOK
We set out to quantify the complexity of object migration

in dynamic software product lines (DSPLs) implemented us-
ing feature-oriented programming (FOP) techniques. Our
aim is to estimate the number and the complexity of mi-
gration steps and to characterize problems that, paired with
complex object migrations, constitute a possible source of
unanticipated, unrecoverable program states.

To this end, we have developed a measurement proce-
dure that combines variability analysis using SAT solvers
and code-level measurements. We have applied the process
to an initial selection of SPLs, available from the Fuji repos-
itory [2]. Our preliminary findings have illustrated circum-



stances that lead to complex object states. For Violet, for in-
stance, multiple optional features refine the same role caus-
ing changes to the constructor by initializing object states.
The optional features of Violet lead to a combinatorial ex-
plosion in the number of possible object migrations. In one
case, the resulting object-migration graph indicates 530,000
480 different states of a single object.3 This complexity in-
troduces risks, especially, when a programmer is required to
manually implement functionality to handle transitions be-
tween object states (e.g., lifter methods in ObjectTeams).

We argue that for state-affecting features to be fully dy-
namic, as described by Hallsteinsen et al. [14], the problem
of constructor anomalies under object migration must be ad-
dressed. Furthermore, object-migration graphs can be used
to identify situations in which object migration is impos-
sible and should be prevented since the resulting construc-
tor anomalies would cause runtime exceptions. Migration
graphs can be used to generate tooltips in an IDE to high-
light colliding constructors or to warn a programmer about
otherwise implicit state constraints.
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