
Attributed Variability Models: Outside the Comfort Zone

Norbert Siegmund
Bauhaus-University Weimar,

Germany

Stefan Sobernig
WU Vienna, Austria

Sven Apel
University of Passau, Germany

ABSTRACT

Variability models are often enriched with attributes, such as per-
formance, that encode the influence of features on the respective
attribute. In spite of their importance, there are only few attrib-

uted variability models available that have attribute values obtained
from empirical, real-world observations and that cover interactions
between features. But, what does it mean for research and prac-
tice when staying in the comfort zone of developing algorithms
and tools in a setting where artificial attribute values are used and
where interactions are neglected? This is the central question that
we want to answer here. To leave the comfort zone, we use a com-
bination of kernel density estimation and a genetic algorithm to
rescale a given (real-world) attribute-value profile to a given vari-
ability model. To demonstrate the influence and relevance of realis-
tic attribute values and interactions, we present a replication of a
widely recognized, third-party study, into which we introduce re-
alistic attribute values and interactions. We found statistically sig-
nificant differences between the original study and the replication.
We infer lessons learned to conduct experiments that involve at-
tributed variability models. We also provide the accompanying tool
Thor for generating attribute values including interactions. Our
solution is shown to be agnostic about the given input distribution
and to scale to large variability models.
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Figure 1: Exemplary density plots of real-world (left) and

generated (right) attribute-value distributions. The density

captures the probability of a set of features or interactions

taking on attribute values over a specific range.

1 INTRODUCTION

The rise of variability modeling has been a success story both
in industry [9] and research [13]. A variability model describes
all valid configurations of a configurable system by specifying
variation points in terms of features and constraints among them.
Often, features influence quality attributes of a system, such as
performance. To incorporate this influence in engineering tasks,
such as finding an optimal configuration, developers and domain
experts model and reason about attributes of features yielding an
attributed variability model [8].

Attributed variability models form the conceptual basis of vari-
ous research areas, such as multi-objective configuration optimiza-
tion [19], runtime software adaptation [25], and service-oriented
architecture [39]. In spite of their importance and general applica-
bility, there are only few variability models publicly available that
contain realistic attribute values [24], as we will discuss. Obtaining
realistic values for performance and other quantitative quality at-
tributes is expensive, as this requires measuring actual system vari-
ants (i.e., configurations) and determining the effects of selecting
individual features on the attributes. Even worse, effects on qual-
ity attributes caused by interactions between features are largely
ignored in prior work, although it has been shown that feature in-
teractions are key to practicality and feasibility [32].

What does it mean for research and practice when staying in
the comfort zone of developing algorithms and tools in a setting
where artificial attribute values are used and where interactions
are neglected? This is the central question that we want to answer
here. Clearly, simply generating attribute values following stan-
dard distributions hinders researchers to explore corner cases or
even to vary the input for their techniques systematically. For ex-
ample, on the left of Figure 1, we show an attribute-value (perfor-
mance) distribution obtained from a real-world system (Apache’s
Web server). Compare this distribution with a normal distribution
(Figure 1, right), frequently assumed in the literature. This artificial
distribution gives rise to a configuration space in which the optimal
configurations can be easily found via simple hill climbing. In the
same vein, ignoring feature interactions yields problem instances
in which non-linearity does not occur – the resulting search space
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becomes homogeneous and steady. This renders a search task into
a convenient one, if not trivial. As a research community, we need
to ask ourselves: Have we enjoyed the comfort zone and kept ig-
noring attribute-value distributions and interactions as important
factors in our experiments for years?

Our aim is not only to make the community aware of this prob-
lem, but also to provide a solution to step outside the comfort zone.
To mitigate the lack of realistic attributed variability models and
to enable systematic testing of algorithms and tools in this area,
we propose an approach and accompanying tool, called Thor, to
generate realistic attributed variability models based on a given dis-
tribution of attribute values for features, interactions, and configu-
rations. Based on insights from feature-interaction detection [3],
Thor is able to generate different distribution patterns of interac-
tions, both in terms of their number and degree. To make a leap to-
ward a realistic setting, we have developed a novel technique that
combines kernel density estimation [35] and the genetic algorithm
NSGA-II [15]. Our technique allows to apply a given (empirically
determined) attribute-value distribution profile to a given variabil-
ity model. That is, we rescale a given distribution to another vari-
ability model such that we yield a similar distribution, guaranteed
by kernel density estimation, as we will explain. So, for the first
time, one can systematically explore how realistic distributions and
interactions affect the quality, optimality, error-proneness, and per-
formance of their respective algorithm or tool.

To summarize, we have two goals. First, we want to raise the
community’s awareness of the consequences of using unrealistic
settings to develop, tune, and test their algorithms and tools on at-
tributed variability models. Second, we want to offer a comprehen-
sive solution to overcome the lack of realistic attributed variability
models for quantitative quality attributes. To reach these goals, we
make the following contributions:

• Wepropose an approach based on kernel density estimation and
a genetic algorithm to apply (empirically determined) attribute-
value distributions to a given variability model, and we incor-
porate interactions in a realistic manner. We demonstrate that
our approach is agnostic about the given value distribution.

• We provide the open-source tool Thor and evaluate the effec-
tiveness of kernel density estimation as well as Thor’s scalabil-
ity with respect to a different number of configurations.

• We report on a replication of a study on multi-objective opti-
mization of attributed variability models by Sayyad et al. [27],
demonstrating that the inclusion of interactions and the choice
of the attribute-value distribution indeed affect the outcome of
such a study. The study has been the basis of several follow-up
studies, rendering it a reference point in this area. The differ-
ences between the original study and our replication offer new
insights into the effects of attribute-value distributions and in-
teractions and affects also very recent papers that reuse the
same experimental setting.

Background material, a replication package, all measurement data,
the open-source tool Thor, and the corpus of real-world distribu-
tions are available at a supplementary Web site: https://github.com/
se-passau/thor-avm.

2 PRELIMINARIES AND PROBLEM
STATEMENT

In this section, we give background information on attribute-value
distributions as probability distributions and report on a literature
study we conducted to assess the current state of using attributed
variability models.

2.1 Probability Distributions

An attribute-value distribution is the ordered set of continuous prob-
abilities of features or interactions taking certain quality-attribute
values—hence, a probability distribution of quality-attribute val-
ues. That is, it captures how features distribute over different in-
tervals of attribute values. For example, a distribution indicates
whether the attribute can be represented by typical attribute val-
ues only (e.g., summary statistics, such as median and variance).
An attribute-value distribution is commonly reported using box-
plot statistics and visualized, for example, using a kernel-density
plot over the continuous attribute-value range (as in Figure 1).

The shape of a distribution can highlight majority and minority
groups of features and interactions as well as their relative influ-
ence on a given quality attribute. The capacity to highlight the rel-
ative influence of a minority is critical, because conventional sum-
mary statistics represent majority groups only. When analyzing
attributed variability models, however, minorities (e.g., single fea-
tures) can contribute heavily to characterizing a system’s quality
profile. For example, in a content management system, many fea-
tures do not contribute to the performance of the system, but the
choice of the database feature affects most of the system’s perfor-
mance. In this vein, Siegmund and others demonstrated that perfor-
mance models derived from small sets of individual features cap-
ture important system-wide performance influences [31].

2.2 State of the Art

We conducted a literature study to obtain an overview of (a) the
extent to which generated and real values for attributed variability
models are used in the literature, (b) the assumptions and choices
made by researchers that use generated attribute values, and (c) the
awareness of the relevance of feature interactions. We present our
methodology (e.g., the selection criteria), a description of the ana-
lyzed papers, and threats to validity on our supplementary Web site.
In what follows, we summarize the procedure and the key findings:
Based on an iterative paper selection, we obtained a set of 2346
papers, which we analyzed for references to attributed variabil-
ity models. More specifically, we were interested in all papers, in
which attributed variability models have been used to accomplish
a certain task (e.g., optimization). This analysis revealed 69 papers,
which we analyzed further. We found that 52 of the 69 papers use
generated attribute values. Only 8 papers rely on real-world values,
either obtained by actual measurements or extracted from other
sources (e.g., theWeb). From the 52 papers, 21 papers used a random
value generator following a uniform distribution, 10 papers use a
normal distribution, and 13 papers assign values in an ad-hoc man-
ner without a certain target distribution. 17 papers do not specify
the way how they generated the data. Remarkably, from the 69 pa-
pers we analyzed, not a single paper considered interactions. Only
8 papers discuss the absence of interactions as a threat to validity.
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Our findings raise the question of whether research in this area
is on solid grounds. Even some of the authors of the papers in
question explicitly state this threat:
"Finally, a threat is due to the artificial way the values of the
attributes were assigned[..]" [19]

Furthermore, it seems that this threat to validity, explicitly men-
tioned though, is not carefully considered. In the work of Sayyad
et al. [27], the authors state:
"A potential threat to construct validity is the use of artificial
attribute values as attributes of features[...]. Future work should
attempt to collect real data for use with IBEA and other MEOAs
to best optimize product configuration."

Overall, there are 6 papers in our corpus published within just
two years in top-ranked software-engineering conferences that
explicitly cite Sayyad’s paper and use the same artificial data as
attribute values. Unfortunately, the corresponding threat to validity
is not even mentioned anymore. Likewise, the fact that interactions
are practically ignored in research is astonishing as much as it
is disturbing especially as interactions are common in real-world
software systems [3].

3 GENERATING REALISTIC ATTRIBUTED
VARIABILITY MODELS WITH THOR

Figure 2: Generating attributed variability models.

In our approach, we consider quantitative quality attributes mea-
sured on ametric scale. The key idea is to generate corresponding at-
tribute values for a given variability model based on attribute values
determined before, either through (i) empirical observations of real-
world applications (e.g., performancemeasurements), (ii) reverse en-
gineered values (e.g., fromWeb sites [23]), or (iii) specifically gener-
ated attribute distributions (e.g., to test corner cases). Furthermore,
users may include different sorts of interactions with their respec-
tive attribute values into the model. For the first time, this approach
allows users to create their own and highly controlled test bed, in
which they can purposefully vary the number and distribution of in-
teractions as well as reuse profiles of attribute values that have been
obtained from real applications. In what follows, we use the term
distribution profile to describe a specific distribution of attribute
values over the set of features, interactions, and configurations.

Figure 2 provides an overview of all steps involved in generat-
ing a realistic attributed variability model. Steps of the upper part
aim at obtaining distribution profiles of a real system for features,
interactions, and configurations. There are a few data sets already
available [31, 33, 34], which have been incorporated into Thor, the
tool accompanying the approach; the community can contribute
further distribution profiles.

Here, we concentrate on the steps of the lower part in Figure 2:
As input, we require a variability model (e.g., in SPLOT or DIMACS
format), which is going to be augmented by realistic attribute val-
ues. In a next step, a user specifies whether we should generate
interactions between features of the given variability model. This
step addresses the problem that most variability models lack fea-
ture interactions (cf. Section 2.2). Then, the user specifies the dis-
tribution profiles to be applied to features, interactions, and con-
figurations. These profiles act as separate objectives in the multi-
objective optimization step, in which we generate attribute values
using a genetic algorithm (see Section 3.3).

3.1 Objective Formalization

An attributed variability model is a triple AVM = (F ,C,M), where
F is the set of features, C is the set of constraints, and M is a
mapping M = { fc �→ r | fc ∈ P(F ) ∧ r ∈ R} from a feature or a
combination of features (i.e., an interaction, which is an element
of the powerset P) to their quality attribute, represented as a real
number inR.1 Since we are interested in the distribution of attribute
values and not necessarily in the specific mapping, we compute an
output distribution profile DO as a vector on real numbers with

DO = 〈r | r ∈ M(P(F ))〉

Let us first review the goal of our approach from a single objective
point of view: The user specifies an input distribution profile DI

as a vector of real numbers. The objective is now to generate an
output distribution profileDO such thatDO is similar toDI given
a certain similarity metric (following the notation by Boyd and
Vandenberghe [10]):

maximize
M

sim(DI ,DO ), (1)

where sim is a similarity measure that can be instantiated with dif-
ferent functions. In essence, we aim at finding an optimal mapping
from features and interactions to attribute values, such that their dis-
tribution is similar to the given one.
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Figure 3: Comparison of an input

and output distribution.

Let us assume that a
user specifies a distribu-
tion profile (i.e., the input
distribution in Figure 3) us-
ing only 20 elements in the
vector. The optimization
process now aims at find-
ing an output distribution
(cf. Figure 3) for a desired
variability model with 500
features and interactions,
while maintaining the overall distribution profile of the input.

Next, we have to extend our optimization problem to three types
of input distribution profiles. The background is that the attribute
values of individual features of a system often have a different dis-
tribution profile (e.g., in the effect strength and in their number of

values) than interactions among features. Hence, we consider DF
I

as the input profile for features and DI
I
as the input profile for in-

teractions. Furthermore, there is the distribution profile of valid
configurations (i.e., system variants) denoted byDV

I
. The inclusion

1The size of P is exponential in the size of F. In practice though, there are way fewer
interactions that have a relevant effect on an attribute value.
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of the latter renders our approach fundamentally different from ex-
isting work. This is because most of the algorithms in the literature
do not work directly on the attribute values of features, but rather
on the attribute values of configurations [26]. For instance, finding
the fastest configuration using a genetic algorithm evaluates the
performance of configurations and not of individual features [27].

An attribute value of an individual configuration is computed
by aggregating the attribute values of features and their interac-
tions that appear in the configuration (i.e., all selected features and
their corresponding interactions). A common aggregation function
Π : P(F ) �→ R computes the linear combination of all relevant at-
tribute values of a given configuration fc as follows [31]:

Π(fc) =
∑

i ∈P(fc)

M(i)

Here, we sum the values of all elements in the powerset of configu-
ration fc, which includes all features and all interactions. Further-
more, function Φ

Φ(F ,C) = {vc | vc ∈ P(F ) ∧ vc is valid wrt. C}

computes the set of all valid configurations based on the features
and constraints in the attributed variability model. Each configura-
tion contains only the features that are selected. Function Φ is usu-
ally realized by a SAT solver [6]. To obtain the distribution profile
DV
O
, we compute the attribute values of all valid configurations:

DV
O = 〈r | r = Π(vc) ∧ ∀vc ∈ Φ(F ,C)〉

An important challenge for computing DV
O

to be similar to

DV
I

is that DV
O

depends on the mappingM, such that changing

DF
O

and/or DI
O

influences also DV
O
. For example, changing the at-

tribute value of a single feature inM changes the attribute value
of every configuration, in which the respective feature is selected.
Moreover, DV

O
takes only valid configurations into account. There-

fore, constraints can have a substantial influence on which com-
binations of features and which interactions can occur in a valid
configuration, affecting DV

O
.

In Figure 4, we give an example of how we compute DV
O

based
on a genetic encoding using (a) a configuration matrix (m × r ,
wherem is the number of configurations and r is the sum of the
number of features and interactions) to model feature selections
and the resulting presence of interactions and (b) a value matrix
to model the mappings from features and interactions to their
values (r × 1). Each row in the configuration matrix on the left
represents a genetically encoded valid configuration. The whole set
of configurations is computed using function Φ. The presence of
interactions depends on whether their corresponding features are
also selected in the respective configuration. In the center of the
figure, we depict the value matrix, where features and interactions
are mapped to their corresponding attribute values. We use a global
ordering of features and interactions, such that we can use the dot
product to compute the attribute value of each configuration, as
shown with the matrix (m× 1) on the right of the figure. We further
show the relationship between the mapping functionM and the

distribution profiles DF
O

and DI
O

as well as how we obtain DV
O
.

Combining the three input profiles results in the following multi-
objective optimization problem:

Φ
Conf.1
Conf.2
.
.
.
Conf.m

f 1 f 2 . .
.

f n

0 1 .. 0
1 0 .. 1
.
.
.
1 1 .. 1︸������︷︷������︸

F

{f
1,
f 2
}

{f
1,
f 3
}

. .
.
{f
1,
..
, f
n
}

0 0 .. 0
0 1 .. 0
.
.
.
1 1 .. 1︸������︷︷������︸
P(F)−F

·

M
f1 �→ 10.5 ⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
DF
O

f2 �→ −3.2
.
.
.
fn �→ 34.8

{f1, f2 } �→ −0.8 ⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
DI
O

{f1, f3 } �→ −2.7
.
.
.
{f1, .., fn } �→ 12.0

=

Π
125.3 ⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
DV
O

173.7
.
.
.
268.6

Figure 4: The process of computing the output distribution

profile DV
O

based on a genetic encoding of features and in-

teractions combined into a configurationmatrix. The config-

uration matrix is combined using the dot product with the

matrix containing values of features and interactions, deter-

mined by function M.

maximize
M

w1 · sim(DF
I
,DF

O
) +w2 · sim(DI

I ,D
I
O ) +

w3 · sim(DV
I ,D

V
O )

(2)

where w1 +w2 +w3 = 1 and 0 ≤ w1,w2,w3 ≤ 1. The remaining
task is to efficiently learn functionM.

3.2 Including Interactions

As said previously, most variability models do not come with in-
teractions. So, we have to include new interactions into the given
model. However, we cannot include interactions blindly, because
then interactions will often have no effect. For example, generat-
ing an interaction between mutually exclusive features will not af-
fect the attribute value of a configuration, because both features
will never be present together in any valid configuration. Further-
more, interactions arise not randomly in practice, but follow cer-
tain patterns. Hence, in Thor, a user can specify (1) the number of
interactions and (2) the ratio of the degree of the interactions to
be included.2 For example, we can specify that 80 % of all interac-
tions are of degree two (i.e., between two features) and 20 % of the
interactions are of degree three (i.e., among three features).

Our algorithm to inject an interaction is as follows: First, we
select two features (for pair-wise interactions) at random. Second,
we query a SAT solver to verify: Are there valid configurations with
both features selected and where each feature is selected, but not
the other one? Third, if so, we add an interaction with the chosen
features to the model; we repeat otherwise. For example, if we find
that the features f1, f2, and f5 can be simultaneously selected in a
configuration and the selection of any of these features does not
imply the selection of another feature in this set, an interaction will
be generated such that there is a mapping M : { f1, f2, f5} → R

that needs to be learned in the optimization process.

3.3 Generating Attribute Values

The remaining task is to find an optimal mapping from features and
interactions to real numbers such that we solve the multi-objective
optimization problem defined in Equation 2.We start from a random
set of values and use a genetic algorithm for adjusting the values to
optimize for all three objectives (i.e., the three terms in Equation 2).

2The degree of an interaction denotes the number of participating features in the
interaction.
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As a result, we compare the Pareto front of all solutions with respect
to the distribution profiles. The Pareto front can be used to inspect
the solutions to find the output distribution that fits best a user’s
requirements. For example, some users might prefer a precise match

between DF
I

and DF
O
, whereas others might tend to a mapping

closer to the similarity of the distribution profiles of configurations.

Kernel Density Estimation. Starting from randomly initialized
values seems to be inefficient and can lead to suboptimal solutions
due to local optima. Hence, we propose an optimization to the pro-
cess described before based on kernel density estimation [35]. Ker-
nel density estimation is a non-parametric method in statistics for
estimating the probability density function P(x) of a random vari-
able x: P(x) =

∫ ∞

−∞
K(x)dx , where K(x) is the kernel function to

be determined. So, when we apply this function to a given input
distribution profile DI , we obtain a probability density function
that describes an underlying function from which the values in DI

originate. Now, we can draw new samples from this function while
maintaining the overall distribution (as we did in Figure 3). This
method solves two problems: (1) we can scale a given distribution
profile to a much larger distribution profile |DI | 
 |DO | without
having the same values; (2) we provide a good starting assignment
for the mapping function to speed up the optimization process and
mitigate the thread of local optima. To additionally improve simi-
larity for the initial assignment of values, we use the two-sample
Kolmogorov–Smirnov test [36] to measure the extent (“goodness”)
of the fit between the input distribution and the intermediate out-
put distribution generated by kernel density estimation. Of course,
also the other metrics are applicable here.

Optimization Process. Starting from an initial set of solutions
(e.g., randomly assigned numbers or drawn from kernel density
estimation), the genetic algorithm changes the numbers in the
mapping function in an iterative process to maximize the objective
function (i.e., to improve the goodness-of-fit scores). Changes to the
numbers are made by standard genetic operators, such as mutation
and crossover, as provided by NSGA-II.

To make the computation ofDV
O

feasible, we select and measure
only a sample set of configurations. The sample set is collected
using a user-defined sampling technique in combination with a SAT
solver. The rows in the matrices on the left in Figure 4 represent
the sample set. Based on this set, we compute the presence of
interactions by checking for each interaction and each configuration
whether the features causing the interaction are all present in the
respective configuration (see the right part of the matrix on the left
of Figure 4). We compute the matrix on the left only once before we
start the genetic algorithm. All other vectors and matrix operations
have to be populated and applied in each evolutionary step, as the
generated attribute values change after each iteration. That is, in
each iteration, we compute the dot product to obtain the attribute
value for each configuration.

4 EVALUATION: REPLICATION

To demonstrate how Thor facilitates the systematic investigation of
the relevance of interactions and the choice of attribute values, we
replicate a popular study on attributed variability models [27, 28].
We selected this study because we had identified it as the most fun-
damental one. Our literature study revealed the two corresponding

papers as the most cited ones. In addition, we found critical details
of Sayyad’s study adopted by several follow-up studies (e.g., the
attribute data).

In a series of experiments, Sayyad et al. [27, 28] contrasted the
performance (solution quality and speed) of two evolutionary meta-
heuristics (NSGA-II, IBEA) on finding valid configurations of attrib-
uted variability models under multiple objectives. The objectives
were: validity of a solution, maximal configuration size, as well as
attribute values of features, such as state of reuse, defect counts,
and costs. Sayyad et al. performed their experiments on seven dif-
ferent, reverse-engineered variability models taken from the LVAT
repository3 in DIMACS format. Each variability model was asso-
ciated with artificial attribute values having the same properties
(distributional profiles). The key findings were that the tested meta-
heuristics are capable of finding valid and optimal configurations
in practical time boxes (30 minutes) for configuration and optimiza-
tion spaces otherwise unsuitable for exact approaches. In particular,
IBEA was found to out-perform NSGA-II regarding solution qual-
ity for the computation tasks at hand. Solution quality was mea-
sured in terms of Hypervolume (HV) and valid solutions in Pareto-
optimal solution sets (PCORRECT).4

While considering a diverse set variability models, the original
study by Sayyad et al. [27] does not include robustness checks of the
meta-heuristics in the face of varying attribute-value distributions
and the presence of interactions. With the kind support of Sayyad
et al., we performed replications for the seven variability models
from the baseline experiment to assess the robustness regarding
systematically varying attribute-value distributions and for the
inclusion of interactions.

In our replications, we re-run the experiments with identical pro-
tocol and operationalization conditions of Sayyad’s baseline exper-
iment, while altering only two experimental conditions: the distri-
butional shape of attribute values and the presence of feature inter-
actions. All the other details of protocol, operationalization, and the
other experimental objects remain unchanged, including: variabil-
ity models, algorithm implementation, number of objective func-
tions, parameter settings, outcome measures, timeboxes. Design-
wise, this is a form of operational or differentiated replication [17].
This implies that, for the scope of such a replication, other threats
to the baseline experiment are not controlled for (e.g., threats to
internal or construct validity). We designed and report this repli-
cation according to the guidelines on robustness of computational
tests [4, 5] with emphasis on evolutionary meta-heuristics [37]. A
statistical companion and the replication package are available at
the supplementary Web site.

In Section 4.1, we report on the replication for one LVAT model
(Toybox) in all detail. Toybox is a command-line utility that com-
bines a subset the GNU shell commands into a single executable.
We selected the Toybox model as a showcase because it is illustra-
tive for robustness effects found across the replications. Then, in
Section 4.2, we summarize the replication results for the six remain-
ing LVAT models, which were obtained from running the identical
replication protocol as for Toybox.

3https://code.google.com/archive/p/linux-variability-analysis-tools/
4Hypervolume (HV): a ratio capturing the coverage of a known Pareto front with
respect to the objective space in a 2+-optimization problem [11]; PCORRECT: the ratio
of valid configurations contained by the Pareto-optimal solution set [27].
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4.1 Toybox Replication

To establish a baseline, we successfully confirmed the original re-
sults for Toybox’s variability model (using 50 rather than 10 inde-
pendent runs): At comparable levels of HV (IBEA: median 0.22/
MAD5 0.0004; NSGA-II: 0.21/0.011), a search process using IBEA re-
sults in more than twice as many valid configurations in the Pareto-
optimal solution sets than NSGA-II (IBEA 25.2% valid, on average;
NSGA-II: 10.83% valid, on average).

Setup. We are interested in whether the winning IBEA performs
equally well when varying the attribute values for one objective
(COST) as compared to the confirmatory replication. All other
four objectives remained unchanged. We selected the attribute
COST, because it has a continuous data scale. This allows us to test
a range of different distributions without introducing additional
assumptions. Planned variations of COST included (a) imposing an
empirical data distribution derived from a real-world data set (as
opposed to the original normal distribution) and (b) the inclusion of
interactions between features affecting COST. As data set, we use
measurements from x264, a video encoding library. We included the
same number of interactions as features are in the Toybox variability
model (544; hence, 100 %, denoted as FI100); other numbers have
shown similar results. The interaction degrees follow artificial and
empirical (x264) interaction data [31].

We tested the following null hypotheses on the two outcome
variables available for Toybox from the original study (HV, PCOR-
RECT):

H10: There is no difference between the mean outcome obtained
by IBEA when optimizing for the original, normally distributed
(“artificial”) attribute COST and the x264-based (“empirical”) at-
tribute COST.

H20: There is no difference between the mean outcome obtained
by IBEAwhen optimizing for the original COST attribute without
interactions (F) and a COST attribute adjusted for interactions
(FI100).

H30: There is no difference between different combinations of
artificial/empirical distribution shapes and of COST computation
with/without interactions.

We tested these hypotheses using a two-way analysis of variance
(ANOVA) procedure based on a 2×2 data layout: DIST (normal,
x264) × FINT (F, FI100). In preparation, we performed the standard
checks for an ANOVA (i.e., normality of residuals and the homo-
geneity of variances in each data cell). The nulls are discredited at
a significance level smaller or equal than 0.05.

The computational test for the extended replication included
50 runs per factor combination (i.e., 200 independent runs each
limited to 30 minutes runtime maximum). We performed the runs
on an HPC cluster, offering 17 nodes running Ubuntu 14.04 with
64 GB RAM and 20 cores each (Intel Xeon E-5 2690v2 CPU, 10
physical cores). Each run was allocated identical computational
resources to guarantee comparability. The job script is available at
the supplementary Web site.

Results. We tested the three hypotheses for each outcome vari-
able, HV and PCORRECT, respectively; see Table 1. For both, we
found significant, substantial, and non-trivial variability in the light

5Median absolute deviation; a robustness measure.

of different attribute-value distributions (DIST: normal, x264) and
of the inclusion/exclusion of interactions (FINT: F, FI100).6

Figure 5 shows a line graph to examine the main effects of DIST
and FINT on HV and PC, respectively, as well as their interaction
effects. The mean outcomes (HV, PC) for each level of one factor
(DIST: normal, x264) are plotted over all levels of FINT (F, FI100).
An interaction line connects pairs of mean outcomes (HV, PC) from
the angle of the experimental factor on the x-axis (i.e., FINT; see
A–B and C–D in Fig. 5). The interaction lines and their relative
position allow us to visually identify the type and the strength of the
(possible) interaction effects. For example, two parallel lines signal
that there is no interaction effect at all and two intersecting lines
denote the presence of some interaction between the two factors.

Hypervolume (HV). There is a significant, but small ordinal in-
teraction (p<0.001, η2 <0.01) between FINT and DIST (H3): The
effect of distributions (normal, x264) is different at the two FINT
levels (F and FI100), that is, it appears slightly stronger for COST
computations neglecting interactions (F). However, the order of
magnitude of the DIST effect is unchanged (hence, ordinal) across
the two different FINT levels (F and FI100). Despite this interaction
effect, there is a noteworthy—significant and large—effect of FINT
(p<0.001, η2 = 0.859) on HV (H2): 85.9 % of the variance in HV is as-
sociated (covaries) with FINT (excluding or including interactions).
HV obtained by IBEA increases by 1.16 scores (confidence interval,
CI: 95 %: 1.12 to 1.18; Tukey HSD) when including feature inter-
actions (FI100); or decreases by the same amount when excluding
them (see the steep slopes of the interaction lines A–B and C–D
in Fig. 5, on the left). Testing different value distributions (DIST:
normal, x264) results in a significant, medium-level effect of DIST
(p<0.001, η2=0.134; H1). This effect is visualized by the gap between
the mid-points of the interaction lines in Fig. 5 (on the left).

PCORRECT (PC). We found a significant and large disordinal
(“cross-over”) interaction between DIST and FINT (p<0.001, η2 =
0.428): 42.8 % of the variance in PCORRECT can be linked to the
levels of FINT and DIST interacting with each other (H3). The order
of magnitude of the DIST effect changes (hence, disordinal) across
the two different levels of cost (with and without interactions). In
Figure 5 (on the right), this disordinal interaction is depicted as a
cross-over between the two interaction lines A–B and C–D. This
interaction effect between FINT and DIST gives rise to a significant
and immediately tangible difference: Including interactions (FI100)
for the real-world distribution (x264) yields additionally 9.6 % (CI:
95 %: 9.3 to 9.9 %) of valid configurations found by IBEA when
compared to neglecting interactions for the same distribution (see
the different slopes of the x264 interaction line C–D and the normal
interaction line A–B in Fig. 5, on the right). When compared to
the original setup (no interactions, normal; A vs. C), this difference
amounts to an averaged decrease of 4.7 % (CI: 95%: 4.4 to 5). Hence,
depending on the combination of distribution and interactions,
IBEA yields considerably more or less valid configurations in its
solution set. Given their disordinal interaction, the results and
interpretations of the effects of DIST must always be qualified in
terms of the effect of FINT; and vice versa. As a consequence, we

6Beware that the term interaction has twomeanings in this section: “feature interaction”
as an experimental factor in its own right (FINT: F, FI100) vs. “interaction effect”
between two experimental factors (DIST+FINT) in terms of the ANOVA.
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Figure 5: Nested box and interaction plots for the outcome

variables, with the lines A–B and C–D representing the

“interaction lines”; on the left (Hypervolume, HV): signifi-

cant ordinal interaction effect (DIST+FINT), plus significant

main effects (DIST, FINT); on the right (PCORRECT): signif-

icant disordinal interaction effect (DIST+FINT)

do not interpret the effects of FINT and DIST (although significant)
in isolation from each other (H1, H2).

Table 1: Variance tables; SS: sum of squares; Df: degrees of

freedom; MSS: Mean sum of squares; +: interaction between

two factors

Src SS Df MSS F p η2

HV

DIST (H1) 1.1e−3 1 1.1e−3 12714 <0.001 0.134
FINT (H2) 6.8e−3 1 6.8e−3 81544 <0.001 0.859
DIST+FINT (H3) 3.5e−5 1 3.5e−5 423 <0.001 0.005

1.6e−5 196 8.3e−8

PC

DIST (H1) 6.5 1 6.48 15 <0.001 0.003
FINT (H2) 1280.0 1 1280.0 3098 <0.001 0.535
DIST+FINT (H3) 1025.0 1 1025.0 2479 <0.001 0.428

81.0 196 0.41

Next, we summarize the replications of the computational ex-
periments for all other LVAT models used by Sayyad et al. [27].

Table 2: Effects and effect sizes (mean differences) on Hy-

pervolume (HV) and the ratio of correct configurations (PC)

from the replications of Sayyad et al. for six out of seven

LVAT models; significance level ≤0.05; CI95%

Model HV Mean Differences on FINT (F–FI100)

effect(s)a η2

Toybox FINT (DIST) 0.859 (0.134)

axTLSb FINT+DIST 0.401
eCos FINT (DIST) 0.966 (0.034)
FreeBSD FINT (DIST) 0.993 (0.005)
Fiasco FINT (DIST) 0.997 (0.002)
uClinux FINT (DIST) 0.914 (0.075)

Model PC Mean Differences on FINT+DISTc

effect(s)a η2

−10% −5% 0 5% 10%

Toybox FINT+DIST 0.443
axTLS FINT+DIST 0.401

eCosb FINT, DIST 0.452, 0.542

FreeBSDb FINT, DIST 0.350, 0.551
Fiasco FINT+DIST 0.181
uClinux FINT+DIST 0.794

aFINT, DIST: two significant and substantial main effects; FINT (DIST): two significant
main effects, but DIST is not substantial; FINT+DIST: a significant and substantial
interaction effect, no main effects
baxTLS (for HV) as well as eCos and FreeBSD (for PC) represent important exceptions
from the otherwise observed effect patterns that are discussed in the text.
cMean differences between F/normal and FI100/x264

4.2 Further Replications

We conducted the differentiated replication as detailed for Toybox
in Section 4.1 also for the other six LVAT models: axTLS, eCos,
FreeBSD, Fiasco, uClinux, and Linux. As reported for the baseline
experiment [27], Linux does not yield results for IBEA (unless using
a seed configuration), therefore, it is excluded from the following
report. Table 2 summarizes the findings for the remaining six mod-
els (incl. Toybox). Overall, we found significant, substantial, and
non-trivial effects of different attribute-value distributions (DIST:
x264 vs. normal) and of the presence of interactions (FINT: F vs.
FI100) on solution-quality indicators (HV, PC) when applying the
evolutionary meta-heuristic IBEA on the six optimization problems
(see columns “effect(s)” in Table 2):
FINT, DIST: There are both main effects (significant and substan-

tial).
FINT (DIST): FINT shows a significant and substantial effect, DIST

is significant but not substantial.
FINT+DIST: There is a significant and substantial interaction ef-

fect between FINT and DIST (no main effects).

Hypervolume. First, in five replications, adding or removing in-
teractions from the computation (FINT) is capable of increasing or
decreasing the coverage of the objective space by the solution set
(HV), independently from the underlying distribution (DIST). The
upper compartment of Table 2 summarizes the typical differences
ranging between 1.16 (min, Toybox) to 6.7 HV scores (max, eCos).
The same replications also indicate a significant and, when com-
pared to interactions, very small effect of the underlying attribute-
value distribution (normal, x264). A noteworthy exception is the
axTLS replication, which counters the above findings. There is an in-
teraction FINT+DIST with HV being reduced substantially for x264
attribute-value distribution with interactions, while it increases
for the normal distribution with interactions (by a smaller fraction
though). IBEA for axTLS with an x264 distribution and with inter-
actions (FI100/x264) obtains 11.43 HV scores less than axTLS with
normal distribution and without interactions (F/normal).

PCORRECT. Second, in the original study, the use of IBEA was
reported superior because it results in more valid system configura-
tions (PC) being found in a timebox of 30 minutes than using NSGA-
II.While our replications confirm this general picture, we found that
PC is sensitive to the presence/absence of interactions (FINT) as well
as the distribution shape (DIST) for all six models (see Table 2; lower
compartment). In three replications (Toybox, axTLS, and uClinux),
interactions (FINT) and distribution shape (DIST) interfere to an
extreme (cross-over): An IBEA search on a realistic attribute-value
distribution (x264) yields significantly less configurations than one
based on an artificial one without interactions (F/normal), and more
valid configurations for the realistic distribution with interactions
(FI100/x264). The latter effect amounts to mean differences on PC
between 1.73% (min, uClinux) and 8.33% (max, Fiasco; see Table 2).
For eCos and FreeBSD, however, interactions (FINT) and distribu-
tion (DIST) take effect independently from each other. The sizes of
the effects on PC are comparatively smaller than the one interaction-
effect size for the other four models: up to approximately 1% in-
crease or decrease (FreeBSD) in valid configurations found.
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Summary. In our experiments, we learnt that the solution qual-
ity (HV, PC) in the Sayyad et al. experiment is sensitive to the pres-
ence of feature interactions and realistic attribute-value distribu-
tions. Varying both factors (FINT, DIST) at a time as the experi-
mental condition is also capable of revealing exceptional variations
(axTLS, eCos, and FreeBSD). Note that changes to the setting will
likely add to the observed effects on HV and PC (since we touched
only one out of five objectives). Such changes include realistic dis-
tributions for the remaining attributes, varying the number of fea-
ture interactions,7 or dropping the original value for FINT (5.0,15.0)
in favor of realistic values (due to negative boundaries and hetero-
geneous intervals for attribute values; see Section 2).

4.3 Threats to Validity

Running a differentiated replication gives rise to threats to con-
struct validity: Considering interactions required us to adjust the
original true Pareto fronts for the HV computation to include lower
and upper boundaries based on the interactions’ attribute values.
Also note that we had to incorporate corrections to address unre-
ported issues in the original study. These include a contradiction
regarding attribute-value distributions: Sayyad et al. stated a de-
pendency between two attributes (objectives) used in their experi-
ment (USED_BEFORE, DEFECTS), which effectively led to one set
of test data not having the claimed normal distribution. Therefore,
we performed the replication with and without this dependency,
and report any variations in the statistical companion. However,
the big picture does not change. A threat to external validity is that
our robustness experiment is limited to one systematic variation
(FI100, x264, one value range). At this point, however, the objective
was to demonstrate the mere existence of significant and substan-
tial variations due to the choice of the distribution and the pres-
ence of interactions. In future work, we shall investigate possible
variation patterns on solution-quality indicators by systematically
varying attribute-value distribution characteristics.

5 EVALUATION: VALIDITY & SCALABILITY

Although we have already successfully applied Thor to conduct
the replication in Section 4, in what follows, we shed more light on
the validity and scalability of Thor.

5.1 Validity Experiments

The validity of Thor naturally depends on whether the generated
attributed variability models are realistic. By using kernel density
estimation, we rescale a given distribution to another variability
model. That is, the degree of realism depends on whether the input
distribution is realistic. What remains to be shown is whether our
main innovation—applying kernel density estimation as a prestep
of the genetic algorithm—actually improves the similarity of the
output distributions with respect to the input distributions. To
this end, we conducted an experiment, in which we generate an
attributed variability model for the same input distribution and
the same variability model, once using kernel density estimation
(KDE+GA) and once using only the genetic algorithm (GA). This
way, we want to answer the following research question:

7Prior work shows that quadratic numbers of interactions can be foundwhen compared
to the feature count [21].

RQ1: Does kernel density estimation (KDE+GA) improve the sim-
ilarity of the output distributions to the input distributions com-
pared to pure genetic optimization (GA)?

Setup. To rate the similarity between the output and input dis-
tribution, we need ground-truth attributed variability models. We
were able to get hold of five models with feature attributes, in-
teraction attributes, and attribute values of all valid configura-
tions [18, 31, 32], which we use for this purpose. Our aim here is
to show that our technique is agnostic with respect to the given
distribution profile. As similarity measures, we use three tests: the
Anderson-Darling test, the Pearson’s correlation coefficient, and
the Euclidean distance. The rationale of using three different sta-
tistics is that a single one is usually not sufficient for comparison,
due to implications of the central limit theorem: Ideally, we can
check whether the output distribution and the input distribution
are drawn from the same probability distribution, which is why
we use the p-value of the Anderson-Darling test as a first mea-
sure. However, with a growing size of the data set, every change
becomes significant and so the p-value tends to become zero. In
this case, we can combine two other statistics. First, we compute
Pearson’s correlation coefficient to assess the linear dependence
(correlation) between the input and output distribution. If the value
is 1, both distributions are linearily correlated. However, this mea-
sure alone can become misleading when the output distribution
has been shifted towards smaller or larger values. Hence, we com-
pute, in addition, the distance of both distributions dist(DI ,DO ) =

abs(
∑
DI −

∑
DO )/|DO |8 to capture such shifts. We consider an

output distribution similar to a given input when it yields a high
p-value or a high correlation plus a low distance.

Since we have non-determinism in the genetic algorithm and
the kernel density estimation, we execute the whole optimization
process 30 times. Also, we use all 50 solutions provided by the
genetic algorithm. This means that our metrics are averaged over
30+50 output distributions. The plotted output distributions (red&
bright in Table 3) represents the best solution with respect to the
p-values. We provide also a comparison with all other distributions
at our supplementary Web site.

Results. In Table 3, we show the results of our validity experi-
ment. For each model, we compare the three statistics when using
KDE+GA against GA. Furthermore, to illustrate how the actual dis-
tributions compare, we plot the input distributions (blue&dark) and
output distributions (red&bright). We highlighted the cells in green,
in which the respective statistics suggest closer similarity. Table 3
clearly shows that, for most systems, KDE+GA provides more sim-
ilar output distributions. For Apache, h264, and LLVM, the high

p-values indicate that DF
O

and DI
O

are drawn from the same prob-

ability distribution as DF
I
and DI

I
, respectively. For Apache, we

also see that, although the p-value is close to zero forDV
O
, we have

a nearly perfect match when looking at the plotted distributions of
the configurations. For the remaining models, the p-value is usu-
ally too low such that we need to look at correlation and distance.
For BDBC, we see that all metrics perform very similar for both ap-
proaches, which can also be seen in the plotted distributions. For
BDBJ, we observe again a clear trend that KDE+GA approximates

8We sum up all elements of both distributions and compute the absolute difference,
and we divide by the number of values in the distribution to obtain the mean distance.
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Table 3: Comparing output distributions with input distri-

butions using kernel density estimation (KDE) and genetic

algorithm (GA). AD=Anderson-Darling test; Cor=Pearson’s

correlation coefficient; Dist=Euclidean distance

AD Cor Dist Distributions

A
p
a
ch

e
G
A

DF
O

0.57 0.22 81 Features Interactions Configurations

DI
O

0.02 0.61 461

DV
O

0 0 1698

K
D
E
+
G
A

DF
O

0.65 0.52 96 Features Interactionsee Configurations

DI
O

0.66 0.46 51

DV
O

0 0 448

B
D
B
C

G
A

DF
O

0.17 0.57 0 Features Interactions Configurations

DI
O

0 0.5 0

DV
O

0 0 3

K
D
E
+
G
A

DF
O

0.1 0.55 1 Features Interactions Configurations

DI
O

0.39 0.55 4

DV
O

0 0 13

B
D
B
J

G
A

DF
O

0 0.49 2623 Features Interactions Configurations

DI
O

0 0.56 5342

DV
O

0 0 110525

K
D
E
+
G
A

DF
O

0.01 0.53 1694 Features Interactions Configurations

DI
O

0.17 0.4 1450

DV
O

0 0 14069

h
2
6
4

G
A

DF
O

0.27 0.37 24 Features Interactions Configurations

DI
O

0.08 0.5 20

DV
O

0 0 1277

K
D
E
+
G
A

DF
O

0.23 0.54 45 Features Interactionsoo Configurationsoo

DI
O

0.21 0.44 93

DV
O

0 0 1087

L
L
V
M

G
A

DF
O

0.08 0.32 77 Features Interactions Configurations

DI
O

0 0.45 97

DV
O

0 0 1606

K
D
E
+
G
A

DF
O

0.43 0.6 44 Features Interactionstt Configurations

DI
O

0.57 0.48 4

DV
O

0 0 298

the true distributions substantially better than GA. This is espe-
cially apparent in the plotted distributions.

Discussion. The results paint a clear picture: Kernel density es-
timation improves the similarity of the output distributions sub-
stantially (RQ1). It seems that relying only on genetic optimization

quickly saturates in a local optimum, such that, in many cases, DF
O

and DI
O

are still uniformly distributed. We conclude that, to avoid
this general trap in meta-heuristic optimizations, initializing the

optimization process using a seed distribution is crucial. Moreover,
we also observe that statistical measures are not entirely suitable
as they may depend on the size of the distribution and other fac-
tors. This is why we suggest a visual comparison at the end of the
optimization process to select a proper candidate out of the Pareto
front generated by Thor.

5.2 Scaling Experiments

Beside validity, we want to assess the scaling capabilities of Thor
to larger-sized variability models. In particular, we want to answer
the following research question:

RQ2: How does Thor’s performance scale with an increasing
number of configurations?

The rationale of RQ2 is that computing the matrix of configurations
(cf. Figure 4) has its limits, as we can potentially generate 2 |F | valid
configurations. Hence, we want to assess how different sizes of the
matrix affect optimization time.

Setup. To answer RQ2, and for the same reasons as in our repli-
cation (see Section 4), we use Toybox’s variability model. This vari-
ability model is realistic and feasible to observe how Thor scales
with respect to an increasing number of configurations. For this
purpose, we generate 109 interactions (20 %) divided into 80% of
degree 2, 10 % of degree 3, and 10% of degree 4. We repeated the
run of the genetic algorithm 10 times, to account for measurement
bias and random effects. We aborted the genetic algorithm after
5000 iterations and evaluate 50 populations per iteration. As input
distributions, we use the distributions of binary size values (in KB)
of BDBC (other distribution profiles yielded similar results).

We used an Intel Core i7–4790 @ 3.60 GHz with 16GB RAM run-
ning Windows 10 Pro, version 1607, build 14393.5 for all experi-
ments. We provide all data at the supplementary Web site.

Results. Figure 6 shows the performance factors of the individual
steps when generating attribute values (RQ2). We can see that
the tasks to be executed only once have only a marginal effect
on the overall execution time. Executing Φ includes the sampling
process (i.e., taking only a subset of all valid configurations) and
the SAT check. Matrix creation computes the binary matrix (left
in Figure 4) based on the set of determined configurations and
the set of generated interactions. Computing the dot product and
the fitness values have to be performed at each iteration of the
genetic algorithm, 50 times (one for each candidate). The largest
portion of computation time (80 %) requires the computation of
the dot product, in which the matrix of the selected features and
interactions are multiplied with the generated attribute values.
For illustration, this operation requires approximately 1500s for a
matrix with 125,000 rows and 653 columns. The remaining 20 % of
computation time are mainly consumed by calculating and ranking
the fitness of all solutions.

Discussion. To answer RQ2, the results of our performance exper-
iments show that Thor scales linearly with the number of sampled
configurations, which are used to computeDV

O
. All remaining tasks

have only a constant influence on execution time. Son, the linear
dependence enables Thor to handle large-scale variability models.

276



ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Norbert Siegmund, Stefan Sobernig, and Sven Apel

0

500

1000

1500

2000

25000 50000 75000 100000 125000
Number of sampled configurations

Ti
m

e 
in

 s

Tasks
Configuration Generation
Matrix Creation
Dot Product
Fitness Calculation

Computation time of the genetic algorithm

Figure 6: Processing time fractions with an increasing sam-

ple set, before and during executing the genetic algorithm.

5.3 Threats to Validity

Internal Validity. There are threats resulting from the setting
choices on the genetic optimization (GA) and the computational
test environment. As for the GA, we adopted the built-in NSGA-II
operators plus parameter defaults as provided by the library JMet-
alCSharp, because the focus was on a comparison based on a stan-
dard setup. Systematically studying the effects of alternative GAs,
domain-specific operators [12], and parameter tuning is needed to
eliminate this threat, entirely. The reported execution times may
have been dependent on the machine load. We mitigated this threat
by aggregating over 10 independent runs. An environmental threat
arises from possible bugs in our implementation. So, we tested for
multiple goodness-of-fit metrics and compared the results manu-
ally in multiple steps of the GA. Hence, we are convinced that our
metrics are correctly implemented. Furthermore, we use existing
open-source implementations for some metrics and the GA (JMet-
alCSharp), which further mitigates this threat.

External Validity. We have used a number of different variability
models and distribution profiles for the validity and the scaling
experiment.What we did not report here, due to space limitations, is
that we performed additional experiments with models taken from
the SPLOT repository as well as models generated using BeTTy.
Thesemodels have different sizes and constraints so that we covered
a large spectrum of variabilitymodels and the big picture is the same.
Further information is available at the supplementary Web site.

6 RELATEDWORK

Variability-Model Generators. A popular variability-model gen-
erator is provided by SPLOT [22]. SPLOT allows users to specify
the number of features, the ratio of alternative and optional fea-
tures, and the number of cross-tree constraints. SPLOT contains
also an online repository of variability models. Most of the papers
in our literature study used models from the SPLOT repository. The
SPLOT models can be used as an input for Thor.

The closest approach to ours is BeTTy, a Java library for gen-
erating variability models [29]. It also supports the assignment of
constants as well as the random generation of attribute values fol-
lowing normal and uniform distributions. However, BeTTy (and
other generators, as well) does not support the generation of inter-
actions and it is not possible to supply realistic distribution profiles.

Variability-Model Synthesis. Synthesizing realistic variabilitymod-
els has recently gained momentum. There are different approaches
that aim at reverse engineering variability models based on textual

descriptions and feature dependencies [30], documentation of indi-
vidual products and their relationships [14], requirements specifica-
tion [1, 38], and genetic programming [20]. Recent approaches aim
at improving the hierarchy within the model, for instance, based
on an ontology [7]. All approaches do not consider attribute values.
Only recently, Nasr and others have demonstrated that also tech-
nical descriptions, such as attribute values, can be extracted from
product descriptions [23]. We see this work as an important source
to obtain further realistic input distribution profiles.

Distribution Profiles. There are various domains, in which the
distribution of data is important and can affect the outcome and
behavior of an analysis. The testing community, for instance, is
constantly developing novel approaches to find bugs in programs.
But, it is always difficult to state to which degree an approach
or a test suite can find unknown bugs and—similar to real-world
attributed variability models—there are often too few real faults
to be used in experiments [2]. Mutation testing is a way to assess
the quality of test suites and detection algorithms [16]. The idea is
to inject faults into a program such that a developer can evaluate
whether the test suite can spot the faults. A related study explored
whether faults generated by hand or from mutation operators are
representatives of real faults [2]. The study found that one must
carefully select the mutation operators and there is danger in using
manually seeded faults. We draw a similar conclusion for attribute-
value distributions of variability models.

7 CONCLUSIONS

Attributed variability models are used in various areas, but, due to
the lack of realistic attribute values, the overwhelming majority of
algorithms and tools operating on attributed variabilitymodels have
been developed and trained on artificial attribute values, ignoring
feature interactions. The overarching goal of our work is to make
researchers and practitioners aware of this problem, and we strive
for a more realistic and robust setting—leaving the comfort zone of
artificial attributed variability models. We conducted a literature
study with the main outcome that interactions are not considered
by state-of-the-art experiments and that attribute values are mostly
generated based on artificial distributions. As the first replication of
this kind, we reproduced a popular experimental setting of Sayyad
et al. [27] and found that, while the key results of the original study
hold, feature interactions and varying attribute-value distributions
lead to important deviations in solution quality.

As an actionable solution, we provide Thor, a tool for including
realistic attribute values and feature interactions into a given vari-
ability model. We employ kernel density estimation for this pur-
pose, to rescale an input distribution to the features, interactions,
and configurations of a given variability model. Using a genetic al-
gorithm, we adjust the attribute values such that they match the
input distributions. In a series of experiments, we demonstrated
that (a) using kernel density estimation is key for obtaining a good
match with output distributions and that (b) our approach scales
linearly with the number of configurations that are used for com-
puting the distribution profile.
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