
This is the authors’ post-print of the manuscript titled “Reusable and generic design decisions for de-
veloping UML-based domain-specific languages” accepted for publication by “Information and Software
Technology”. The publisher’s version is available at https://doi.org/10.1016/j.infsof.2017.07.008.

(C) 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.

1

https://doi.org/10.1016/j.infsof.2017.07.008
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reusable and Generic Design Decisions for Developing UML-based Domain-specific
Languages

Bernhard Hoisla, Stefan Soberniga,∗, Mark Strembecka,b,c

aVienna University of Economics and Business (WU), Welthandelsplatz 1, 1020 Vienna, Austria
bSecure Business Austria (SBA) Research gGmbH, Favoritenstraße 16, 1040 Vienna, Austria

cComplexity Science Hub Vienna (CSH), Josefstädter Straße 39, 1080 Vienna, Austria

Abstract

Context: In recent years, UML-based domain-specific model languages (DSMLs) have become a popular option in model-driven
development projects. However, making informed design decisions for such DSMLs involves a large number of non-trivial and
inter-related options. These options concern the language-model specification, UML extension techniques, concrete-syntax
language design, and modeling-tool support.
Objective: In order to make the corresponding knowledge on design decisions reusable, proven design rationale from existing
DSML projects must be collected, systematized, and documented using an agreed upon documentation format.
Method: We applied a sequential multi-method approach to identify and to document reusable design decisions for UML-based
DSMLs. The approach included a Web-based survey with 80 participants. Moreover, 80 DSML projectsI, which have been
identified through a prior systematic literature review, were analyzed in detail in order to identify reusable design decisions
for such DSMLs.
Results: We present insights on the current state of practice in documenting UML-based DSMLs (e.g., perceived barriers, doc-
umentation techniques, reuse potential) and a publicly available collection of reusable design decisions, including 35 decision
options on different DSML development concerns (especially concerning the language model, concrete-syntax language de-
sign, and modeling tools). The reusable design decisions are documented using a structured documentation format (decision
record).
Conclusion: Our results are both, scientifically relevant (e.g. for design-space analyses or for creating classification schemas for
further research on UML-based DSML development) and important for actual software engineering projects (e.g. by providing
best-practice guidelines and pointers to common pitfalls).

Keywords: model-driven software development, domain-specific language, design decision, design rationale, Unified
Modeling Language, survey

1. Introduction

In model-driven development (MDD), a domain-specific
modeling language (DSML) is a domain-specific language
(DSL) for specifying design-level and platform-independent
concerns in the target domain, rather than implementation-
level concerns (see, e.g., [1]). In this context, DSMLs
typically provide (but are not limited to) a graphical con-
crete syntax. A DSML is built on top of a tailored abstract
syntax (i.e. the core language model) which is typically
defined using metamodeling techniques. In addition to
a DSML’s abstract syntax (metamodel), DSML developers
often use formal textual specification techniques to express
the DSML’s structural and behavioral semantics [2]. Once

INote that it is pure coincidence that there were 80 participants in the
survey and that 80 DSML projects were reviewed.
∗Corresponding author
Email addresses: bernhard.hoisl@wu.ac.at (Bernhard Hoisl),

stefan.sobernig@wu.ac.at (Stefan Sobernig),
mark.strembeck@wu.ac.at (Mark Strembeck)

the abstract syntax and a corresponding concrete syntax are
specified, a DSML is typically integrated into an MDD tool
chain, such as the Eclipse Modeling Framework (EMF).

In recent years, the development of DSMLs based on
the Unified Modeling Language (UML [3]) and/or on the
Meta Object Facility (MOF [4]) has become a popular choice
among software engineers: In a related survey, we found
that more than 50% of the participating MDD researchers
and practitioners have contributed to at least one UML-based
DSML between 2000 and 2015 [5]. In addition to our own
findings, the UML’s relevance for DSML development is
also reported in numerous other contributions (see, e.g.,
[6, 7, 8, 9, 10]). On the one hand, this momentum is due
to a general trend towards the usage of DSLs in MDD [11].
On the other hand, the UML and the MOF provide native
extension techniques for a) developing fully customized
modeling languages (e.g., new diagram types) and b) for
adapting the UML to domain-specific purposes while reusing
UML features. Examples of such techniques include UML
profiles [9, 12], pruning/reduction [13], metamodel slic-

Preprint submitted to Elsevier July 28, 2017

ing [14], or package referencing and merging [15, 16].
In this paper, we focus on DSMLs that are based on and
embedded into the UML.

Design Knowledge for Reuse. At the time of writing, expe-
riences and lessons learned from developing UML-based
DSMLs in a disciplined manner are barely documented.
Furthermore, even when documented, the level of detail
necessary to become useful to other DSML developers is
often missing. In recent years, different research approaches
and research methods have been applied to collect, orga-
nize, and review current (best and worst) practices, such
as case studies (see, e.g., [10]), controlled experiments
(see, e.g., [17]), critical-analytical studies based on a ref-
erence theory (see, e.g., [18]), and systematic literature
reviews (SLRs; see, e.g., [19]). So far, these contributions
focused on isolated elements of a DSML design (e.g., on
the concrete syntax for improving its cognitive effective-
ness or on patterns of structuring the abstract syntax).
However, design-decision making for DSML development
includes multiple, interrelated decisions on language-model
definition, constraint specification, concrete-syntax design,
platform integration [20], and adequate software tool-
ing [21]. To be useful, a design decision must be captured
along with the rationale on why this particular decision
is important or meaningful. Rationale details include a)
different solutions (so called decision options) that should
be considered before making a final design decision, b)
the decision-makers’ positive and negative assessments of
the respective options given a set of corresponding DSML
requirements (so called decision drivers), and c) the positive
and negative effects on subsequent design-decision making
(the decision consequences).

The lack of documented design-decision rationale in
software engineering is sometimes referred to as the capture
problem of design-rationale documentation [22, 23]. An
important barrier to documenting design rationale (DR) in
all necessary detail is the considerable overhead of creating
and maintaining DR documentation. For example, a study
on capturing architectural design knowledge quantified the
time effort needed for a project including capturing design
rationale to be twice the time needed for a project with-
out that extra effort [24]. Other problems explored in the
research on documenting DR include the intrusiveness of
documentation techniques, lack of incentives, and cognitive
barriers in software-design processes (see, e.g., [23, 25, 26]).
As a consequence, new DSML development projects cannot
benefit from the experiences gained in prior projects and
valuable design knowledge might be lost [27].

In this context, two important objectives in software-
engineering research are to limit the effort for documenting
design decisions and to increase the quality of the docu-
mented rationale [25, 22, 23]. To achieve these objec-
tives, existing documentation approaches distill common or
reusable knowledge—similar to software patterns [27]—
from decisions made in actual development projects to
document and share proven solutions along with their

forces, consequences, and (alternative) solutions (see, e.g.,
[28, 29, 30, 31]). For developing DSLs (including DSMLs)
prior work has started by gathering DR and best practices.
Results include procedural models on systematic DSL devel-
opment (see, e.g., [20, 32]) as well as pattern collections
(see, e.g., [33, 34]). However, so far the empirical evidence
gathered from corresponding UML-related projects is limited
to the UML core, for example as reported in a review of 49
empirical studies [35]. Moreover, only tentative results exist
on applying DR and best practices in DSML development
projects (see, e.g., [36, 37]). In this context, our work
complements existing approaches by documenting reusable
design knowledge for developing UML-based DSMLs.

Synopsis. Our study for capturing reusable and generic
design decisions includes three consecutive stages (see Fig-
ure 1). In particular, we started by documenting our own
DSMLs, reviewed DR found in the related work via back-
ward snowballing, and conducted an initial pilot SLR (see
[38, 39]). The result of these preparatory studies was a first
revision of the catalog of reusable design decisions [40].
Next, we designed, conducted, and documented an SLR
(see [21, 41]) to arrive at a revised version of our decision
catalog (post-study revision [42]). Finally, we performed
a Web-based survey with 80 MDD researchers and practi-
tioners on documenting and reusing DR. The survey’s main
objective was to collect data to decide on a design-decision
documentation format (see [5, 42]).

Contribution. The results of our Web-based survey show the
potential for DR reuse on UML-based DSMLs, as well as the
perceived barriers for documenting DR in DSML develop-
ment projects. For example, missing standards or require-
ments for documenting design decisions, time and budget
constraints, absence of documentation-tool support, or the
lack of prior design decisions for reuse (see above). A ma-
jority of the survey participants confirmed the importance of
using DR as part of DSML design documentation. This impor-
tance extends to all forms of DR, whether self-documented
(e.g. via DR documentation activities, such as meeting/in-
terview protocols, participant observations, or written docu-
mentation) or reused from other sources (such as scientific
publications, guidelines, or pattern collections).

In a long-term research effort of about three years [38,
41, 21], we have collected, documented, and systematized
design rationale from 80 UML-based DSMLs. The key re-
sult is a publicly available catalog of reusable design deci-
sions [42]. The decision catalog consists of seven reusable de-
sign decisions (decision records), each describing a repeatedly
observed decision context (e.g., a development phase or cer-
tain technology choices), a repeatedly reported design prob-
lem regarding a DSML design element, as well as correspond-
ing design options to solve the problem. In total, the catalog
documents 35 decision options. In addition, the reusable de-
sign decisions also report on the inter-dependencies between
different reusable decisions (e.g., between designing the ab-
stract syntax and the concrete syntax of a DSML).

3

Stage 1 Stage 2 Stage 3

Preparatory studies

(design reviews, backward
snowballing, draft review protocol,

pilot study)

Systematic literature review

(quasi-gold standard corpus,
conduct automated main search

and backward snowballing)

Web-based survey

(reusable decision documentation format,
DSML developing experience, scienti�c/

industry DSML characteristics,
documenting/using DR, demographic data)

Catalog of reusable
design decisions

(Pre-study revision)

Catalog of reusable
design decisions

(Post-study revision)

SLR protocol Survey report

activity result

here

previously

 / (reported)

Figure 1: Overview of research stages for collecting, documenting, systematizing design rationale (DR) on UML-based DSMLs. In this paper, we report on
the design and the execution of the research activities at Stage 3 (web-based survey), as well as the corresponding research results: i) the survey and ii) the
catalog of reusable design decisions.

The reusable decisions and their details are defined in
a way such that they can be directly referenced from other
documents (e.g., decision templates). This way, the design-
decisions catalog aims at providing a practical means for as-
sisting DSML engineers in reusing DR from prior projects and
in documenting the rationale behind their own decision mak-
ing.

This paper is accompanied by (publicly available) supple-
mental material: 1) a detailed technical report on the survey
design and survey results [5], 2) a complete design-decisions
catalog [42], 3) an earlier systematic literature review (SLR)
which is documented via a prior publication [41].

The remainder of this paper is structured as follows: In
Section 2, we elaborate on DR documentation for UML-based
DSMLs, on the content structure of the design-decisions cat-
alog, and on the origins of the empirical data which entered
the construction of the catalog (survey, literature review).
Section 3 gives a motivating application example for the pre-
sented design-decisions catalog. Section 4 is dedicated to
a selective presentation of the catalog’s contents, including
design-decision options, decision drivers, and associations
between different decisions. The limitations of our overall
approach (esp. the survey) are discussed in Section 5. In
Section 6, we iterate over the requirements on DSML DR
documentation as indicated by the survey. Related work is
discussed in Section 7 before Section 8 concludes the paper.

2. Background and Preliminaries

2.1. Documenting Design Rationale on DSMLs
A domain-specific language (DSL) is a tailor-made soft-

ware language for a (narrow) application domain. Thus, a
DSL is based on corresponding domain abstractions and pro-
vides at least one concrete syntax. A domain-specific model-
ing language (DSML) is a DSL that provides a graphical con-
crete syntax for the primary purpose of diagrammatic mod-
eling in a particular application domain [20, 32]. A DSML is

commonly deployed as part of a model-driven development
(MDD) toolkit (e.g. as part of the Eclipse Modeling Frame-
work, EMF). For the scope of this paper, we look at DSMLs
which are internal to or embedded into the Unified Modeling
Language version 2.x (UML 2.x [9, 12, 43]).

DR [22, 23] on DSML development includes reasoning
and justification of decisions made when designing, creat-
ing, and using the core artifacts of a DSML (e.g. the abstract
and concrete syntax, behavior specification, metamodeling
infrastructure, or the MDD tool chain). Documenting DR ex-
plicitly aims at assisting software engineers by providing and
explaining past decisions (e.g. in a design-space analysis) and
by improving the understanding of a particular DSML design
choice during development and maintenance (e.g. as a kind
of design-process documentation).

For the purposes of this paper, we distinguish two kinds
of DSML DR [27]: 1) DSML-specific DR reflects on the rea-
soning over different decision options during a particular
design process for a single DSML. Examples of such explicitly
documented, specific DR may be found in artifacts created in
source-configuration management tools, development-issue
trackers, and open-standards artifacts. 2) DSML-generic DR
includes knowledge obtained through developing multiple
DSMLs, for one or several application domains. Generic DR
is commonly found only as implicit knowledge of experi-
enced DSML engineers. For example, software patterns have
been used in software-language engineering to explicitly
document generic DR (see, e.g., [33, 44]).

In general, the DSML development process involves a
number of characteristic development activities [20]. From a
decision-making perspective, each development activity also
marks a decision point, i.e. a point in time at which partic-
ular design-decisions must be addressed. In particular, this
means that different design solutions as well as their effects
on subsequent design decisions have to be assessed. From
the DR documentation perspective, a decision point is a point
in time for recording an on-going decision-making process.

4

In our study, DR on a given decision point is captured from
multiple DSML projects and represented as a reusable option
for decision making (see Section 2.2).1 In particular, we
consider seven concerns of UML-based DSML development
and, therefore, seven reusable decisions (D1–D7, hereafter;
see Section 4).

Survey Design. In order to assess the importance of DR for
the development of DSMLs, we conducted a Web-based
survey with researchers and practitioners (see also Sec-
tion 6) [5]. The target population were peers in the field
of designing and developing scientific/industry DSMLs. We
applied a non-probabilistic sampling method by contacting
MDD researchers and practitioners identified via dedicated
scientific venues (e.g. authors of research papers, program
committee members of conferences, associate editors of
journals) to take part in the survey (i.e. convenience sam-
pling [45]). Venues included premier outlets for researchers
and practitioners in the field of MDD and DSMLs, such as,
the ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems (MoDELS)2 or
the International Journal on Software and Systems Modeling
(SoSyM)3. The prospective participants were invited to take
part in the Web-based survey via email. Prior to sending
out the invitation emails, we pretested our questionnaire
and adjusted the content as well as its length so that it took
approx. 15–20 minutes for the participants to complete it.

The questionnaire was divided into four main parts:

1. An introductory text and an agreement concerning the
participation in the survey;

2. Questions concerning the participants’ experiences
with developing DSMLs (e.g. number of developed
scientific/industry DSMLs, job description while con-
tributing to the DSMLs);

3. Questions about characteristics of the developed
DSMLs (e.g. application domains, metamodeling lan-
guages) and about aspects of documenting and using
DR when developing these DSMLs (e.g. DR documen-
tation activities/barriers, DR reuse);

4. Demographic questions (e.g. country of residence);

Moreover, the participants were asked to indicate whether
they like to receive a copy of the research report as well as
their availability for a possible follow-up survey. We also pro-
vided a text box for additional (optional) feedback.

For the purposes of our study, we defined an industry
DSML as a language that has been developed as part of
one or several predominantly industry-driven software-
development projects with the primary aim to create or

1Throughout the paper, we apply some notation conventions to refer to
reusable design decisions and their content items such as decision options.
Di denotes a reusable decision corresponding to some decision point i; Oi.j
refers to decision option j at decision point i.

2http://cruise.eecs.uottawa.ca/models2015/; last accessed: Feb 9,
2017.

3http://sosym.org/; last accessed: Feb 9, 2017

to improve a commercial software product. In contrast,
we defined a scientific DSML as a language that has been
developed as part of one or several predominantly research-
driven software-development projects which result in non-
commercial software artifacts (e.g. research prototypes,
experiment materials). In this context, a research-driven
software-development project aims at exploring, collect-
ing, systematizing, and validating knowledge on software
engineering, in general, and DSML engineering, in particu-
lar. The survey especially targeted practitioners developing
(UML-based) industry DSMLs. In case participants reported
experience with industry DSMLs, we specifically asked
them to answer additional questions referring to industry
DSMLs [5].

Demographics. We contacted 399 researchers and practi-
tioners and received 62 completed as well as 18 partially
filled-out questionnaires (sample size: n=80, including
partial answers); the participants resided in 22 different
countries (n=62, because some participants did not indicate
their country of origin). This results in a response rate
(Response Rate2; RR2 [46]) of 20.1%.4 Similar response
rates have been reported for related studies (see, e.g., [47]).

Regarding expertise, two thirds of the respondents
(53/80) have contributed to more than three DSML projects.
In UML-based projects, 40.5% (17/42) have contributed to
more than three DSMLs. This also reveals a considerable po-
tential for reuse of DSML design decisions from past projects.
75% of the respondents (52/70) have six or more years of
experience (up to 29 years). Moreover, our participants
gained experience in diverse roles (multiple answers were
allowed): 86.1% of the respondents worked in a non-profit
organization (e.g. publicly funded university), 36.1% in a
for-profit organization (e.g. private company), and 5.6% as
freelancer/independent contractor (other employer: 4.2%).
The job description for 76.4% of the participants included
research aspects (e.g. research associate), tertiary education
(e.g. university lecturer) for 37.5%, and software develop-
ment (e.g. software architect, developer, tester) for 31.9%
(other description: 5.6%). When the job description in-
cluded software development, most of the participants filled
one or more of the following roles in software-development
projects involving DSMLs (in descending order): software
architect/designer (87%), software developer/implementer
(70%), project manager (56.5%), system analyst/require-
ments specifier (34.8%).

General Findings. In total, our survey participants con-
tributed to 365 industry (per-participant mean: 4.6, sd:
15.7) and to 390 scientific (4.9/ 11.6) DSMLs (time frame:
1987–2015). Out of these, 67 (0.8/ 1.3) and 101 (1.3/ 2.1),
respectively, were based on the UML. Note that these are
only coarse aggregates across the participants which do not
consider if different participants have been working on the

4For the definition of partial answers as well as more details on the out-
come rates (e.g. response rate), please consult the survey report [5].

5

http://cruise.eecs.uottawa.ca/models2015/
http://sosym.org/

same DSML projects – 52.5% of the respondents (42/80)
have contributed to at least one UML-based DSML, 40%
(32/80) developed at least one UML-based DSML in an
industrial setting.

The DSMLs created by our participants target diverse do-
mains, such as software development techniques (reported
by 44.3% of the participants; n=70), embedded systems
(38.6%), model verification and validation (30%), or web
applications (27.1%). Most of the participants used Ecore
(a technology projection of the EMOF [4]) as metamodel-
ing language to develop DSMLs (62.9%); followed by the
MOF in versions 2.x (27.1%) and 1.4 (15.7%), respectively
(n=70). These figures correspond to the result that 65.7%
of the participants (n=70) employed an Eclipse-based MDD
tool chain to integrate their DSMLs. All participants who
developed UML-based DSMLs (n=42) used UML in version
2.x [3]; for example, 33.3% of the participants adopted UML
in version 2.0 and 23.8% in version 2.4.1.

The majority of our participants (72.1%, sample size:
n=68, due to partial answers) also believe that it is (ex-
tremely) important to use DR as part of DSML design
documentation (a finding that is confirmed by related stud-
ies; see, e.g., [47]). Almost all survey participants (93.4%,
n=61) (re)used DR available from arbitrary sources and
documented in arbitrary formats (e.g. books, scientific pub-
lications, case-study reports) for making design decisions
on at least one of their DSMLs. However, the participants
also reported a limited usage of DR that has been explicitly
documented in a generic and reusable form (e.g. pattern
collections, design decisions).5 For instance, only 59% of the
participants (sample size: n=61) (re)used DR documented
as design decisions (e.g. available from former projects),
although 75% of them rated documented design decisions
as being moderately to extremely useful (n=36). The above
reasons serve as a strong motivation for compiling a catalog
of generic, reusable design decisions.

2.2. Structure of Reusable Design Decisions
A reusable design decision documents two or more proven

solutions, i.e. solutions that have been successfully applied
to a generic and recurring problem in DSML development.
Moreover, the problem described by a reusable decision must
not only recur, i.e. be observable for many DSML develop-
ment projects, but it must also have the quality of explicitly
requiring a design-decision. However, no generally accepted
format and notation for reusable design decisions exist [48].
Thus, the format we use in our work is based on existing pro-
posals and represents a simplified and common core for doc-
umenting reusable design decisions, which can be extended
to include additional documentation elements if required.

To systematically arrive at a suitable documentation for-
mat, we performed three steps: 1) we drafted a documen-
tation format based on the state of the art in (architectural)

5For a discussion on the relation between architectural patterns and
design-decision documentation for the process of software engineering
see [27].

design-decision documentation [48, 49] and based on our
DSML documentation needs [38].6 2) based on the DR data
obtained from a prior systematic literature review (see Sec-
tion 2.3), we verified whether we could collect and distill
actual decision data to populate all decision details. For ex-
ample, stakeholder roles and decision-based actions cannot
be extracted using a literature review alone. 3) in order to
include an external assessment, we collected expert opinions
on decision details deemed relevant for UML-based DSMLs
([5]; see also Section 2.1).

The survey data was used to confirm the importance of
the content elements included in reusable design decisions.
For example, we excluded the three elements that have been
rated the least important ones in our survey: viewpoints
(rated important to extremely important by 52.7%, sam-
ple size: n=55), stakeholders (47.2%, n=53), and status
(32.1%, n=53). This way, we arrived at the format depicted
on the left-hand side of Figure 2. This overview also high-
lights the ratings on each of the selected content elements,
collected during step three (collection of expert opinions,
see above).

The resulting documentation format for reusable deci-
sions is divided into seven sections: Point, Problem, Driver,
Consequence, Option, Application, and Sketch (see Fig-
ure 2). In the following, we introduce each section by
referring to examples taken from an actual reusable design
decision contained in our decision catalog (see Section 4.4
for the details).

A reusable design decision first describes a recurring
design-decision problem that has been repeatedly observed
for several DSML development projects. Our survey con-
firmed the importance of a problem section as 69.6% of
the participants (56/80) rated it as (extremely) important.
An exemplary problem statement frequently observed when
deciding on the concrete-syntax style for a DSML is: “In
which representation should the domain modeler create
models using the DSML?”.

This problem applies to a specific decision context. The
decision context is, for example, established by one of the
decision points characteristic for DSML development (e.g.,
decision making on language model, concrete syntax, and
tooling). At each decision point, a particular DSML design
concern (e.g., language-model definition, concrete-syntax
styles) must be tackled. The majority of our survey par-
ticipants rated an explicit context section as important to
extremely important (56.4%). Decision points (concerns)
can be addressed in varying order, with different typical or-
ders denoting different DSML development styles used and
the intention behind developing the DSML [20]. Besides, a
particular metamodeling toolkit (e.g. MOF [4]), the appli-
cation domain modeled by a DSML, and the corresponding
software platform can contribute to establishing the decision
context.

6See Section 3 for an example of a decision instance and how decision
instances can reference reusable design decisions from the catalog.

6

Point

RecordDriver
1..*

Context

1..1

1..1 applies to
a recurring

documents

states a
recurring

Problem

Consequence

Application

Sketch

Option

0..*

associated
with

1..1

has

exempli�es

1..1

1..1

1..1

3..*

lists

1..1

1..1

gives

1..*

1..1

1..*

0..* 1..* 0..*1..1

69.6%, n=56

56.6%, n=53

64.2%, n=53

64.3%, n=56

75.4%, n=57

53.7%, n=54

56.4%, n=55

1..1

1..*

0..*

0..*

arguments in favor/against

Define language
model (D1-D3)

Define concrete
syntax (D4)

Define behavior
(D5)

Integrate with
platform (D6, D7)

Figure 2: The left-hand side shows overview of the nine key concepts, their relationships, and their relative importance as rated by the survey participants
(important to extremely important) [5]. The right-hand side depicts a typical flow in design-decision making in a “language-model-driven” DSML development
style [20].

The main part of a reusable design decision is list of
decision options (rated important to extremely important by
53.7% (n=54) of the respondents). Decision options de-
scribe proven solutions to the respective decision problem.
For choosing a concrete-syntax, an exemplary option is model
annotation (O4.1 in Section 4.4), which is about realizing
a tailored concrete syntax by means of model annotations
(e.g., via UML tags and structured comments). Furthermore,
a reusable decision includes arguments in favor or against
selecting a particular option (or a combination of options)
in terms of decision drivers. Documenting drivers was con-
sidered important to extremely important by 56.6% of the
respondents. An exemplary driver relevant for adopting the
model annotation option is the cognitive expressiveness of
the respective UML diagram elements. Drivers like these
are likely to steer the DSML designer towards a particular
option or combination of options. Moreover, the respective
selection affects the solution space of subsequent decisions.
For example, they can set a new decision context.

To scaffold follow-up decision making, a reusable de-
cision makes the DSML designer aware of decision conse-
quences. Documenting such recurring consequences was
deemed important to extremely important by 64.2% of the
survey respondents. Decision consequences can include
the need to evaluate other decision options within the
same reusable decision or in related reusable decisions, for
example. However, consequences can also point to follow-
up decision problems not covered by the design-decisions
catalog alone.

To provide evidence that the different decision options
are taken from observed practice, each reusable decision

refers to example projects that implemented the respective
option or option combination. This element of description
was supported by 64.3% of the survey participants as im-
portant to extremely important. Each reusable decision is
completed by replicating a concrete realization sketch of one
decision option taken from an actual DSML project. Such
sketches were rated important to extremely important by
75.4% of the participants.

The documentation format described above is capable of
describing recurring associations between decision options
in several ways (e.g., as decision drivers and decision con-
sequences). Association types documented in the literature
are, for example, different types of causal sequences between
decisions [50]. A causal sequence groups decisions (resp.
decision options) which are linked pairwise by depends-on,
is-excluded-by, and/or relationships. Other relevant associa-
tion types are: influences, refinedBy, decomposesInto, forces,
isIncompatibleWith, isCompatibleWith, and triggers [28].

2.3. Material Corpus for Recovering DSML Design Rationale

In our previous work [21, 41, 51], we performed a sys-
tematic literature review (SLR) to collect and systematize a
corpus of scientific publications on UML-based DSMLs and
their companion material. This corpus contains 84 publi-
cations documenting 80 unique DSML designs, published in
major MDD outlets (e.g. SoSyM, MoDELS). In addition, the
SLR found 25 secondary studies on UML-based DSML devel-
opment (e.g. [52, 53, 54]). To compile the catalog of design
decisions (see Section 4), we performed a rigorous content
analysis on the corresponding papers. This way, we identi-
fied and documented 35 reusable decision options for seven

7

decision points (D1–D7) (see Section 2.2).7 In addition, the
80 DSMLs entered the catalog in terms of applications and
solution sketches. This paper provides the first report on the
resulting catalog of reusable design decisions (publicly avail-
able from [42]).8

2.4. Empirical Evidence on DR Reuse

Prior empirical research on DR reuse, involving software
patterns and reusable design decisions [55, 56], has reported
first evidence that it is possible to achieve the double objec-
tive of limiting the effort for documenting design decisions
and of increasing documentation quality at the same time.

In two controlled experiments involving 171 software-
architecture undergraduates, Lytra et al. [55] reported both
an increase in effectiveness and in efficiency of design-
decision making on two software architectures. In these
experiments, the participants made and documented
architecture-level decisions on predefined functional re-
quirements for two software systems (an order-management
system and a learning-management system) based on a
design-documentation tool (CoCoADvISE) and collections
of architectural patterns (16 and 40 pattern descriptions,
respectively). The experiment groups were additionally
equipped with five reusable architectural design-decision
models which provided scaffolding for decision making and
pre-structured references to the software-pattern descrip-
tions. The experiment groups took less working time and
documented more decisions than the control groups. Their
decisions were also judged as being of higher quality by
software-architecture experts.

In a project including one experiment and its replication,
Heesch et al. [56] investigated the effect of software-pattern
collections as reference material for recovering design deci-
sions from a software architecture (JBoss J2EE application
server). The experiments involved 34 participants of mixed
proficiency in software patterns, with the experiment group
being equipped with a pattern catalog (on remoting pat-
terns such as BROKER). The participants documented the
recovered decisions based on a predefined documentation
template. Heesch et al. collected data on the number and the
quality of recovered decisions, with quality being measured
by ratings of independent software-architecture experts.
Their findings indicate that the quality ratings obtained
by the experiment groups (who have been working with
the pattern catalog) were higher than those of the control
groups. There was no significant increase in the number of
recovered decisions though. However, the participants ref-
erencing the pattern catalog were more homogeneous with
respect to the number of recovered decisions per participant.

7Note that there are actually 40 decision codes/numbers. Five of those
codes/numbers serve for coding pseudo-decision options; e.g., not taking
any decision. Depending on the analysis requirements, they are either ig-
nored or included as dedicated no-option codes.

8With the SLR being prior work, full details on the process of conducting
the SLR are provided in earlier and companion publications (see [21, 41,
42]).

Nevertheless, these findings do not originate from the
field of UML-based DSML development and they suffer from
a couple of limitations (e.g., missing third-party replications,
emphasis on student or novice subjects). Nevertheless, such
first evidence provides support for the basic claims regarding
DR reuse (effort reduction, quality increase). In addition, the
reusable DR material used in these experiments is compara-
ble to our design-decision catalog. Therefore, these empirical
studies strongly motivated our work.

3. Motivating Example: DSML Design-Process Documen-
tation

Our catalog of reusable design decisions aims at col-
lecting, systematizing, and documenting DSML design
processes, comparable to the role of software patterns in
documenting architectural design decisions [27]. The pro-
cess of making design decisions is typically documented
using structured text documents following an agreed upon
format (document templates; see [48] for an overview).
These structured text documents on design decisions and
their details (alternatives, arguments) allow for referencing
a collection of reusable and recurring design decisions. The
objective is to reduce the time spent on these documentation
tasks, by avoiding repetition. Consider an example taken
from documenting PRDM [123, 124]—a DSML developed
in support of model-driven role engineering in a business
process context. By following a design-decision excerpt from
this DSML, we show an example for design-decision making
by using the decision catalog.

Select Development Style. At the beginning of a DSL project,
we have to decide on the development style for this project
[20]. A (tailored) development style can accommodate do-
main requirements (e.g. direct access to domain experts) and
requirements of the overall software-development project
(e.g. a software framework accessible via a DSML). For
PRDM, a language-model-driven development style [20]
was selected (see Figure 2, right-hand side). In this style, the
(core) language model drives the subsequent activities in the
sense that a draft model is defined and implemented early.
Subsequently, it is continuously refined over a number of
iterations. Once selected, the development style determines
the order of subsequent decisions at specific decision points.

Identify Domain-specific Prototype Designs. Our design-
decisions catalog documents different application areas of
the collected DSMLs, based on the 2012 ACM Computing
Classification System (CCS)9. Each DSML is assigned to one
or several application areas (ACM CCS codes). The most fre-
quently assigned CCS codes in our catalog, and relevant for
PRDM, include security engineering (11), business-process
modeling (10), and access control (7) [42]. Based on these
categories, design-decision makers can approach the catalog

9http://www.acm.org/about/class; last accessed: Feb 9, 2017.

8

http://www.acm.org/about/class

content in two ways: a) by reviewing prior DSML projects
assigned to one or more relevant categories and/or b) by
identifying so-called DSML prototype designs for the respec-
tive categories: Because reviewing prior DSMLs might incur
substantial overhead in early iterations (for PRDM, this
would have meant reviewing potentially 28 prior DSMLs),
the catalog offers frequently recurring combinations of
decisions, so called prototype designs [57]. At the time of
writing, the catalog contained seven prototype designs. Each
prototype design is characteristic for a significant subgroup
(consisting of at least three DSMLs10) of the 80 DSMLs we
examined in detail. Every prototype design includes the
most frequently adopted design decisions (decision com-
binations) for these representative subgroups. Each of the
seven prototype designs is also linked to the corresponding
ACM CCS codes. This way, decision makers can consider
a prototype design for given application areas, rather than
having to review prior DSMLs. For PRDM, the corresponding
prototype design is the combination of the following decision
options: INFORMAL TEXTUAL DESCRIPTION (O1.1), PROFILE

(RE-)/DEFINITION (O2.2), CONSTRAINT-LANGUAGE EXPRES-
SION (O3.1), MODEL ANNOTATION (O4.1), and DIAGRAM

SYMBOL REUSE (O4.6; see Table 1 for a brief description).
This combination of decisions was documented for 26 out of
80 DSMLs in the catalog.

Navigate Decision Associations. Starting from a prototype
design, additional decisions will follow from the project-
specific context and from unique project requirements. As
for PRDM, for example, an earlier decision was to imple-
ment the DSML by extending the existing BusinessActivities
framework [59] and the corresponding metamodel (see
the decision reference ExtendBusinessActivitiesFrame-
work in Table 2). This prompted PRDM to be realized as a
metamodel extension (O2.3) combined with a metamodel
modification (O2.4), adding to the UML profile (O2.2).
Based on adopted decision options (either inspired by the
prototype design or by project-specific factors), the DSML
developer can study typical associations between decision
options. For instance, for PRDM decision option PROFILE

(RE-)/DEFINITION (O2.2), decision makers will find the asso-
ciation “constrained UML profiles” in our decision catalog.11

This association provides rationale for capturing additional
language-model constraints using OCL expressions (O3.1).

Document Design Decisions with Reuse. Table 2 shows an
example of a structured document used to capture one
particular decision on PRDM. The corresponding template
[49] structures the document into predefined sections (e.g.
name, status, problem statement, arguments leading to

10Here, we adopt a commonly followed rule of thumb from the software-
pattern community. This rule mandates that a software-pattern description
must provide at least three known uses of the pattern in existing software
systems (see, e.g., [58]).

11The complete reusable decision on language-model formalization (D2)
from [42], pp. 16–19, containing O2.2–O2.4 is available as an appendix to
this paper.

a decision). In order to annotate decision details within
unstructured text fragments, dedicated mark-up elements
(«...») are provided. This way, the decision document and
text elements in the document can be tagged to indicate a
particular iteration in the decision-making process, the state
of the decision, or stakeholder roles, for example.

Empirical work on generic design knowledge suggests
that the effort of specifying such a decision document can
be reduced by referencing reusable and generic decisions
(see Section 2.4). In particular, such references allow for
focusing on describing additional, DSML-specific decision
knowledge only, rather than repeating what is described in
the decisions catalog. A complete process documentation of
a DSML design consists of a collection of such decision doc-
uments, which are interconnected by different relationship
types (e.g. «caused by»).

4. A Catalog of Design Decisions for UML-based DSMLs

As mentioned above, we identified, described, and col-
lected data on 35 decision options at seven different design-
decision points (D1–D7, hereafter, see Figure 3). In this sec-
tion, we present an overview of these reusable design deci-
sions. Further details are provided in the publicly available
decision catalog [42]. Note that the following overview is
limited to decision options, decision drivers, and decision as-
sociations that we found for at least one DSML and that are
also found in secondary studies on systematic DSML devel-
opment. Decision details such as context, consequences, and
applications are not reproduced in a structured manner (as
in the catalog), but they are blended with the overview sec-
tions.

4.1. Language-Model Definition (D1)

One recurring design decision is whether or not one
should define a platform-independent language model [20].
In general, a language model (also: abstract syntax) acts as
a structured description of the captured domain (or domain
fragments) and provides a domain definition, the domain
vocabulary, as well as a catalog of domain abstractions and
abstraction relations. It is platform independent in the sense
of being independent from a particular implementation tech-
nique or software platform. In certain development styles,
this can be the first decision point (see [20]). A prerequisite
for defining a generic language model is a systematic analysis
of the target domain. The process of analyzing the target do-
main includes collecting and evaluating relevant information
(e.g., based on literature reviews, expert interviews, scenario
descriptions, existing software systems) which provide input
to generate a structured and technology-neutral description
of the domain. The main challenge is how to document and
how to organize the identified domain abstractions in order
to arrive at a comprehensive and comprehensible language
model. Figure 4 summarizes the key details of this decision
point (D1).

9

Table 1: Thumbnail descriptions of selected (7 out of 35 total) decision options relevant for the discussion in Sections 2 and 3. See Section 4 for complete
and comprehensive descriptions (incl. option details, decision drivers, and consequences).

Problem statement Options (selected)

D1
How should the domain
(or domain fragment) be
described?

O1.1 INFORMAL TEXTUAL DESCRIPTION

Use informal text to identify and to describe domain abstractions and their relationships
(e.g. domain-vision statements, domain-distillation lists).

D2
In which UML-compliant
way should the domain
concepts be formalized?

O2.2 PROFILE RE-/DEFINITION

Implement the language model by creating (or by adapting existing) UML profiles (i.e. «profile»
packages containing stereotype definitions).

O2.3 METAMODEL EXTENSION

Implement the language model by creating one or several metamodel extensions
(i.e. «metamodel» packages containing new metaclasses and associations).

O2.4 METAMODEL MODIFICATION

Implement the language model by creating one or several metamodel extensions
(i.e. «metamodel» packages containing redefining metaclasses and associations).

D3

Do we have to define con-
straints over the language
model(s)? If so, how
should these constraints
be expressed?

O3.1 CONSTRAINT-LANGUAGE EXPRESSION

Make language-model constraints explicit using a constraint-expression language (e.g. OCL,
EVL).

D4

In which representation
should the domain mod-
eler create models using
the DSML?

O4.1 MODEL ANNOTATION

Attach UML comments as concrete-syntax cues to a UML model, containing complementary do-
main information such as keywords and narrative statements.

O4.6 DIAGRAM SYMBOL REUSE

Reuse built-in UML diagram symbols without modification.

4.1.1. Options
Domain abstractions are the basic building blocks of a lan-

guage model and can be described using narrative as well as
textual or diagrammatic specification formalisms.

Informal textual descriptions (O1.1) are primarily textual
artifacts used to identify/define domain abstractions in an in-
formal way; e.g., domain-vision (scoping) statements in nar-
rative prose text, domain-distillation documents containing
lists of core domain-abstractions and/or domain-definition
and feature tables [60].

Formal textual models (O1.2) use textual formalism to
identify and to unambiguously define domain abstractions
and their relationships; e.g., mathematical expressions (e.g.
universal algebra [2]) or formal grammars (e.g. extended
BNF [61]).

Informal diagrammatic models (O1.3) are ad hoc diagram-
matic representations not compliant to any standardized soft-
ware modeling language and corresponding diagrammatic
production rules; e.g., forms of visual concept modeling (e.g.
early feature diagrams [60]) or pseudo UML diagrams (e.g.
class diagram notations being used as re-composable draw-
ing shapes).

Formal diagrammatic models (O1.4) are diagrams defined
by a (formally) specified/standardized modeling language
(e.g. MOF, UML, ER, STATEMATE) which adopt a graphical
representation (e.g. UML class models, UML activity mod-
els, STATEMATE statecharts) to identify and to describe do-
main abstractions and their relationships. A combination of
options may be beneficial, e.g., to facilitate communication
about concepts. Diagrammatic models (O1.3, O1.4) can be

used in support of a predominantly informal textual descrip-
tion (O1.1; see also related association O1.1↔O1.4 below).
For explanatory purposes, normative and formal textual def-
initions (O1.2) are commonly supported by non-normative
and informal textual descriptions (O1.1).

4.1.2. Drivers
Availability of existing diagrammatic domain descriptions:

If either formal or informal diagrammatic descriptions are
available (e.g. a UML M1 class model), a domain descrip-
tion could be devised as a refinement (see also association
O1.4 ↔ D2 below); for example, by perfective refinement
(e.g. turning an informal into a formally correct diagram;
O1.4). In general, the language-model definition is used as a
communication vehicle for both, the domain experts and the
DSML engineers.

Domain-expert audience: Different views and notations
must be considered depending on the domain-expert audi-
ence. For example, in case of a DSML targeting software en-
gineers (e.g. a DSML for defining software tests), the UML
can be used to define the language model (O1.4). If the do-
main is described in a generic manner by adopting a formal
notation (O1.2, O1.4), it needs to be transformed into a for-
mal UML-compliant implementation model (see D2 in Sec-
tion 4.2).

Consistency preservation effort: Considering a combina-
tion of different options introduces the challenge of preserv-
ing the consistency between different domain-description ar-
tifacts (e.g. diagrams and textual descriptions). The negative
effects of introducing inconsistencies, for instance, between

10

Table 2: An exemplary documented design decision named UMLIntegration for the DSML PRDM [123, 124] based on the document template from [49].
Decision options of the catalog (i.e. O2.2, O2.3, and O2.4) are referred to using the «see» tag in the Decision and the Alternatives sections. Drivers and
consequences available from the catalog are referenced using «see» in the Arguments section.

Name UMLIntegration

Current version 3 (MS2 «Snapshot»)
Current state «Approved»
Decision group None
Problem/issue In which UML-compliant way should the domain concepts be formalized?
Decision We opt for a combined strategy: First, a UML/BusinessActivities metamodel extension («see» O2.3) is created. The reuse of

UML-based structural and behavioral features (duty associations to UML operations and properties) makes a slight modification
of the UML metamodel necessary («see» O2.4). To bind standard UML metamodel elements (e.g. actions) to the extended
duty-aware metamodel (e.g. as compensation actions), an auxiliary UML profile providing stereotypes to UML metaclasses is
defined («see» O2.2).

Alternatives Use either a UML profile («see» O2.2) or a UML metamodel extension/modification («see» O2.3 and «see» O2.4) alone.
Arguments There is a limited overlap between the constructed language model (i.e. the domain concepts) and existing, standard UML

metamodel elements («see» Domain space). While, for example, concepts such as roles, subjects, and duties under different
views (e.g. transition system for duty states, duty hierarchies) are not directly reflected in the UML metamodel, compensation
actions for neglected duties can be modeled using standard UML actions. In addition, the BusinessActivities framework, as the
basis for the DSML, deploys a UML metamodel extension. Compliance with the framework and its UML compatibility levels is
a firm requirement. The integration into standard UML modeling tools is not a critical factor («see» Tool integration).

Related decisions • This decision is «caused by» DomainModel

• This decision is «caused by» ExtendBusinessActivitiesFramework
Related requirements Portability, MultipleViews, ProcessFlowMetaphor
Related artifacts [42]
History

Stakeholder Action Status Iteration

S. Schefer-Wenzl
«Developer» «Propose» «Tentative» MS1
S. Schefer-Wenzl
«Developer» «Validate» «Decided» MS1
M. Strembeck
«Domain expert» «Confirm» «Approved» MS2

a diagram and its textual description, can be mitigated by
declaring either representation to be the normative one.

Cognitive effectiveness of a representation format: Another
important driver is the cognitive load incurred by a repre-
sentation choice, especially for formal textual (O1.2) or for-
mal diagrammatic notations (O1.4). Irrespective of the tar-
get domain, diagrammatic representations benefit from their
capacity to spatially group information bits that are spread
in their textual form. Moreover, improved visual perception
and visual reasoning facilitate processing and communicat-
ing domain abstractions (see [62] for an overview). At the
same time, there is a major tension between cognitive effec-
tiveness of diagrams and the complexity of the perception
task. This complexity is determined by the level of diagram-
matic detail (e.g. in a formal notation) and the multiplicity
of diagrams and views covered. Depending on the domain
requirements (e.g., extensiveness of a domain, the domain
experts’ technical skills and preferences), textual (in support
of visualizations) or graphical representations can be consid-
ered more or less adequate. For feature and variability mod-
eling, both graphical, textual, and mixed concrete syntaxes
are available, for example. Depending on the context (e.g.,
novices vs. experts) and different quality attributes (e.g., cog-
nitive effectiveness, working time), each syntax style per-
forms differently (see, e.g., [63, 64]). However, given the
intentionally focused and thereby limited expressiveness of
DSMLs (in terms of concepts covered), diagrammatic repre-

sentations at the level of a generic domain description are
suitable; especially when supported by (formal) textual de-
scriptions to cover certain details. Besides, the perceptional
bias of a target audience of domain experts (i.e., established
legacy notations) might affect the cognitive effectiveness of
the adopted representation type.

4.1.3. Associations12

A decision option chosen at one decision point may influ-
ence options at the same or at subsequent decision points (for
example, a choice can favor, determine, or exclude following
options). We denote each association by a pairing of affected
decision options and/or decision points (e.g. O1.2↔O3.1 or
O1.4↔ D2). An association between an option and a deci-
sion point shows a pairing between the option and all options
of the corresponding decision point (e.g. O1.4↔ D2 which
is equivalent to O1.4↔ O2.1 – O2.4 which is a short form
of O1.4↔ O2.1 ∨ O2.2 ∨ O2.3 ∨ O2.4).

At decision point D1, diagrammatic models complying to
a formal specification (O1.4; e.g. the MOF) may not be suf-
ficient to describe a DSML’s language model unambiguously

12Filtered for and ordered by their relative support. Please note that some
pairs of affected D1-related decision options (e.g. O6.2 ↔ O1.4 ∧ O2.2)
are described at other design decision points (i.e. in other sections of this
paper; e.g. in Section 4.6) and are not re-iterated here. The same applies to
association descriptions at other design decision points.

11

D7D6D5D4D3D2D1

Language-model
formalization

Language-model
de nition

Language-model
constraints

Concrete-syntax
de nition

Behavior
speci cation

Platform
integration

Development-tool
support

DSML design
decisions

How should the domain (or domain
fragment) be described?

In which UML--
compliant way should
the domain concepts

be formalized?

Do we have to de�ne
constraints over the lan-

guage model(s)? If so,
how should these con-
straints be expressed?

In which representa-
tion should the domain
modeler create models

using the DSML?

Which tools should be adopted to support
the development of DSML artifacts?

Do we have to de�ne
(additional) behavioral
semantics for the DSML?
If so, how should the addi-
tional behavior of DSML
elements be de�ned?

How should the DSML
artifacts be mapped to
(and/or integrated with)
a software platform?

Freq. of options

No. of DSMLs

4 111 80

No. of option codes

4 85 80 4 66 48 6 150 73 4 4 3 5 37 26 8 151 56

Figure 3: The problem statements leading to the seven DSML design-decisions we identified (D1–D7). The circles attached to each decision document the
number of decision-options (without pseudo options), the number of occurrences of these options in the reviewed 80 DSML designs (absolute frequency),
and the number of DSMLs choosing at least one of these options.

without further explanations (e.g. textually accompanied
formal models; O1.1 ↔ O1.4; see, e.g., [20, 42]). Tex-
tual descriptions (O1.1) were found for all of the DSML
projects [42], particularly explaining the semantics of ac-
companying language models and rationale for design
decisions (e.g., arguments on model and package designs,
explanation of model elements, attributes, and associations).

If the domain description includes MOF or UML dia-
grams, a stepwise transition into a UML-based core language
model (D2) is facilitated (i.e. refined language-model formal-
ization). In particular, an association between options O1.4
and O2.2 (O1.4 ↔ D2) is a candidate (see Section 4.2).
Nevertheless, in some DSML projects found by our SLR, the
definition of a MOF-based or modeling-language indepen-
dent metamodel and the corresponding mapping to a UML
profile was not explicitly documented. This lack of explicit
documentation is problematic, because it is implicitly as-
sumed that the modeling-language independent metamodel
and the UML profile share underlying semantics, which is
not necessarily the case though.

4.2. Language-Model Formalization (D2)

A formal language model (also: abstract syntax, core
language model, or metamodel [20]) is an implementation
of the language model using a well-defined metamodeling
language such as the MOF. A metamodeling language is itself
based on a well-defined and well-documented language
model (CMOF for the UML metamodel [4]) and provides
at least one well-defined and well-documented concrete
syntax to define an own language model (e.g. the CMOF
diagram syntax to specify a UML metamodel extension).

Here, formalization requires to make a decision on differ-
ent UML/MOF implementation choices. Depending on the
development style, this is typically performed after decision
making at D1 (see Section 4.1). The card of this reusable
design decision is depicted in Figure 5.

4.2.1. Options
M1 structural models (O2.1) implement the core language

model using structural UML models at the M1 modeling level
(e.g. via UML class diagrams [125]) rather than MOF ex-
pressed in class-diagram notation. In a class model, for in-
stance, domain abstractions can be expressed as classes and
their relationships via associations. Other examples are com-
posite structure, component, and package diagrams.

Profile (re-)definitions (O2.2) implement the core lan-
guage model by creating (or by adapting existing) UML
profiles [3, 65]. A profile consists of a set of stereotypes
which define how an existing UML metaclass may be ex-
tended.

Metamodel extensions (O2.3) implement the core lan-
guage model by creating one or several extensions to an
existing metamodel. A metamodel extension introduces new
metaclasses and/or new associations between metaclasses
to the UML metamodel or to other, pre-existing metamodel
extensions [3, 4, 65]. The extension elements are typi-
cally organized into dedicated «metamodel» packages. The
structure and semantics of existing elements of the UML
metamodel are preserved.

Metamodel modifications (O2.4) implement the language
model by creating one or several MOF-based metamodel ex-
tensions which modify existing metaclasses; for example, by
changing the type of a class property or by redefining existing

12

Language-model de nition

D1

Problem statement

How should the domain (or domain fragment) be

described?

Options (rel. support)

- O1.1 (100%): Informal textual description*

- O1.2 (6.3%): Formal textual description*

- O1.3 (4%): Informal diagrammatic model*

- O1.4 (28.8%): Formal diagrammatic model*

Drivers

- Availability of existing diagrammatic domain

 descriptions*

- Domain-expert audience*

- Correspondence mismatches with UML semantics

- Consistency preservation effort*

- Cognitive effectiveness of a representational format*

Consequences

- Output artifacts

- Mapping to metamodeling infrastructure

Figure 4: Design-decision card for D1: Defining a DSML’s platform-independent language model. Associations are ordered by their support in the 80 reviewed
DSMLs (relative occurrences). Details in italics and marked by an asterisk (*) are presented as part of the overview in this paper; the remainder is described
in [42].

associations [3, 4, 65]. The extension elements are typically
organized into dedicated «metamodel» packages.

A combination of options may include the definition
of a metamodel extension as well as an equivalent profile
definition. Similarly, stereotype definitions can be provided
to accompany a metamodel extension/modification (see,
e.g., [126]).

4.2.2. Drivers
Degree of DSML expressiveness: The expressiveness

of a DSML is a major force in DSML development (see,
e.g., [10, 36, 66]). A UML profile (O2.2) can only customize
a metamodel in such a way that the profile semantics do not
conflict with the semantics of the referenced metamodel. In
particular, UML profiles cannot add new metaclasses to the
UML metaclass hierarchy or modify constraints that apply to
the extended metaclasses (see, e.g., [10]). Therefore, profile
constraints may only define well-formed rules that are more
constraining (but consistent with) those specified by the
metamodel [3] (see also association O2.2↔ O3.1 ∨ O3.4).
In contrast, a metamodel extension/modification (O2.3,
O2.4) is only limited by the constraints imposed by the
MOF metamodel (i.e. the abstract syntax of the UML can
be extended via new metaclasses and associations between
metaclasses; see also association O2.2 – O2.4↔ D4).

Portability and evolution requirements: A newly created
metamodel (O2.3, O2.4) is an extension of a certain version
of the UML specification. Thus, the domain-specific meta-
model extension possibly needs to be adapted to conform
with newly released OMG specifications [65]. Re-usability
of a UML extension is also affected by the extension’s level of
compliance with the UML standard (e.g. O2.2, O2.3) or not
(e.g. O2.4).

Compatibility with existing artifacts: Pre-existing DSMLs,

software systems, and tool support have a direct impact on
the design process of a DSML with respect to its compatibility
and integration possibilities with other software artifacts (see
also associations O4.6 ↔ O2.2 and O6.2 ↔ O1.4 ∧ O2.2
in Sections 4.4 and 4.6, respectively). For instance, the UML
specification defines a standardized way to use icons and dis-
play options for profiles (O2.2). Tool support for authoring
UML models and profiles (O2.1, O2.2) is widely available
(see, e.g., [10] and also Section 4.7).

4.2.3. Associations
A UML profile definition (O2.2) for the language-model

formalization is typically observed in combination with
a concrete syntax specification via annotating model el-
ements (O4.1) and reusing diagram symbols (O4.6; see,
e.g., [127, 128]). This association (O2.2 ↔ O4.1 ∧ O4.6)
can be explained by the native stereotype definition of the
UML specification: “A Stereotype uses the same notation as
a Class, with the addition that the keyword «stereotype» is
shown before or above the name of the Class” [3]. Hence,
a reused symbol (from Class; O4.6) is annotated with the
keyword «stereotype» (O4.1). Please note that this associ-
ation does not cover icons graphically attached to the model
elements extended by the stereotype (O4.2).

Constrained UML profiles (O2.2 ↔ O3.1 ∨ O3.4): The
specification of a UML profile (O2.2) was found accompanied
by either formal (O3.1; see Section 4.3) or informal textual
(O3.4) constraint definitions (or both; see, e.g., [129, 130]).
The profile-specific part represents an extension to associa-
tion O3.1↔ O3.4 described in Section 4.3 and may indicate
a demand for the definition of dedicated constraints besides
native UML profile semantics.

Extending the UML metamodel (O2.3) without an ex-
plicit concrete syntax definition (O4.6)—even without anno-

13

Language-model formalization

D2

Problem statement

In which UML-compliant way should the domain

concepts be formalized?

Options (rel. support)

- O2.1 (5%): M1 structural model*

- O2.2 (77.5%): Pro�le (re-)de�nition*

- O2.3 (21.3%): Metamodel extension*

- O2.4 (2.5%): Metamodel modi�cation*

Drivers

- Overlap of DSML and UML domain spaces

- Degree of DSML expressiveness*

- Portability and evolution requirements*

- Compatibility with existing artifacts*

Consequences

- Formalization style dependencies

- Language-model ambiguities

Associations (rel. support)

- O2.2 � O4.1 � O4.6 (77.5%), e.g.: Native stereotype

 speci�cation*

- O2.2 � O3.1 � O3.4 (37.5%), e.g.: Constrained UML

 pro�les*

- O2.3 � O4.6 � ¬O4.1 (8.8%), e.g.: Underspeci�ed

 concrete syntax de�nition*

Figure 5: Design-decision card for D2: UML compliant formalization of a DSML’s language model. Associations are ordered by their support in the 80
reviewed DSMLs (relative occurrences). Details in italics and marked by an asterisk (*) are presented as part of the overview in this paper; the remainder is
described in [42].

tating model elements (O4.1)—was an observed association
(O2.3↔ O4.6 ∧ ¬O4.1; see, e.g., [131, 132]). The authors
of such DSMLs implicitly assume that symbols defined for
UML metaclasses (in the UML specification [3]) are inherited
by the DSML-specific extensions (e.g. via a generalization re-
lationship). However, this is in contrast to the practice ap-
plied in the UML specification itself (see O4.6 in Section 4.4)
and results in an underspecified concrete syntax definition.

4.3. Language-Model Constraints (D3)

The language model (also: core language model or
abstract syntax) has been implemented using either a UML
metamodel extension/modification, a UML profile, or a
UML class model. Depending on the requirements of the
language-model definition and the capabilities of the mod-
eling language, the language-model implementation might
not capture all structural and behavioral semantics. For
example, a structural UML model cannot (or only insuffi-
ciently) capture certain categories of constraints on domain
abstractions, such as invariants for domain abstractions,
pre-/post-conditions, or guards. As a result, the (graphical)
metamodel alone could be incomplete or ambiguous. Thus,
there might be the need for specifying additional model
constraints (see also association O2.2 ↔ O3.1 ∨ O3.4 in
Section 4.2). 60% of the reviewed DSMLs specify additional
constraints (O3.5). See Figure 6 for the corresponding
design-decision card.

4.3.1. Options
Constraint-language expressions (O3.1) make language-

model constraints explicit via a constraint-expression
language, for example the Object Constraint Language
(OCL [67]) or the Epsilon Validation Language (EVL [68]).

Informal textual annotations (O3.4) use informal and
unstructured text annotations to capture constraint descrip-
tions in the core language model (e.g. prose text in UML
comments). Certain constraints (e.g. temporal bindings)
elicited from the target domain cannot be captured suffi-
ciently via evaluable expressions (i.e. constraint-language
expressions or code annotations) and/or the constraints are
intended to serve a documentary purpose (esp. annotations
for domain experts). Regarding the combination of options,
textual annotations (prose text) can be used in addition to
constraint-language expressions in order to provide natural-
language constraint descriptions for readers not familiar with
a specific constraint language, for example (see association
O3.1↔ O3.4).

4.3.2. Drivers
Constraint-formalization requirements: One decision

driver steering a DSML designer towards an option are
requirements on the formalization style of constraints (see,
e.g., [20, 42, 69]). In early iterations (e.g. DSML prototyp-
ing), constraints might not be expressed via well-formed,
syntactically valid constraint-language expressions, but
rather as pseudo-expressions or unstructured text (O3.4).
When the language model is maturing due to subsequent
iterations, these annotations can be changed into evaluable
expressions (O3.1–O3.3; see, e.g., [70]).

Language-model checking time: If tool integration for
constraint checking on models is a requirement, we have
to choose one or more of the options O3.1–O3.3 (see also
associations O3.4↔ O3.1 – O3.3 and O3.2↔ O6.6 as well
as, e.g., [51]). A driver towards either option is the intended
time of language-model checking. Relevant points in time
follow from the model formalization option adopted (e.g.
class model vs. metamodel-based) and the platform support

14

Language-model constraints

D3

Problem statement

Do we have to de�ne constraints over the language model(s)?

If so, how should these constraints be expressed?

Options (rel. support)

- O3.1 (43.8%): Constraint-language expression*

- O3.2 (0%): Code annotation

- O3.3 (0%): Constraining M2M/M2T transformation

- O3.4 (38.8%): Informal textual annotation*

- O3.5 (40%): None/Not speci�ed

Drivers

- Constraint-formalization requirements*

- Language-model checking time*

- Integrated language-model constraint requirements*

- Maintainability e�ort*

- Portability requirements*

- Conformance between language model and constraints*

Consequences

- Output artifacts

- Tool support

Associations (rel. support)

- O3.1 � O3.4 (22.5%), e.g.: Textually accompanied

 constraint-language expressions*

- O3.1 � O3.4 � O4.7 (2.5%), e.g.: Tailoring semantics only*

- O1.2 � O3.1 (1.3%), e.g.: Shared expression foundations*

- O2.1 � O3.4 (1.3%), e.g.: Constraint limitations for structural

 models*

Figure 6: Design-decision card for D3: Defining constraints for a DSML’s language-model. Associations are ordered by their support in the 80 reviewed
DSMLs (relative occurrences). Details in italics and marked by an asterisk (*) are presented as part of the overview in this paper; the remainder is described
in [42].

(model-level or instance-level checks; see, e.g., [71]).
Integrated language-model constraint requirements:

Constraint-language expressions (O3.1) are developed
with the purpose of integrating the constraints with the
(meta)model representations (see, e.g., [72]). Examples are
standard-compliant or vendor-specific OCL expressions for
the UML. Models and constraints can also be integrated, for
instance, via programming-language-based expressions, for
example via natural-language UML comments (O3.4). Note,
however, that O3.4 lacks support for automatic evaluation
(constraint definitions would need to be transformed into
evaluable expressions; see, e.g., [70]).

Maintainability effort: Explicitly defined model con-
straints (O3.1–O3.3) create structured text artifacts which
must be maintained along with the model artifacts (e.g.
a corresponding XMI representation [73]). Toolkits and
their model representations offer different strategies for this
purpose, for example embedding constraints into model
elements (i.e. model annotations, such as UML comments),
maintaining constraint collections as external resources (e.g.
separate text files), or editor integration (see, e.g., [72]).
Each strategy affects the artifact complexity and the effort
needed to keep the constraints and the models synchronized.
See [74] for an approach to assist in constraint adaptation
during metamodel evolution.

Portability requirements: If constraints should be portable
between different MDD toolkits—such as, Eclipse Model De-
velopment Tools (MDT), IBM Rational Software Architect,
No Magic MagicDraw—, platform-dependent options (e.g.,
code annotations) become infeasible. However, due to
version incompatibilities and vendor-specific constraint-
language dialects (e.g. Eclipse MDT OCL), even O3.1 cannot
guarantee basic portability for the ambiguously specified
sections of the UML/OCL specifications (esp. for semantic

variation points such as navigating stereotypes in model
instances or for transitive quantifiers such as closure; see,
e.g., [75]).

Conformance between language model and constraints:
When language models and their implementations evolve,
constraints of each form must be adapted to match meta-
model changes, such as OCL navigation expressions under
O3.1 (see, e.g., [76]).

4.3.3. Associations
Similarly to the association O1.1 ↔ O1.4 (see Sec-

tion 4.1), constraint-language expressions are also found often
annotated textually (e.g., an OCL statement is addition-
ally explained in natural language; see, e.g., [133, 134]).
However, this is merely done to increase the readability of
constraints as the reader may not be familiar with a cer-
tain constraint language (e.g., the OCL). This association
(O3.1 ↔ O3.4) emerges also from the fact that not every
language-model constraint can formally be described with a
constraint language. Some constraints cannot be captured
by the means of constraint languages and the underlying
language models, code annotations, or model transforma-
tion templates (see, e.g., [3]). Such constraints have to be
provided as text annotations in natural language.

Customizing the UML or any extensions of it (e.g.,
SoaML [77], SysML [78]) via explicit constraint expressions
(O3.1, O3.4) without a concrete syntax definition (O4.7;
see Section 4.4) to specify a DSML was another observed
association (see, e.g., [134, 135]). This association (tailoring
semantics only; O3.1 ∧ O3.4 ↔ O4.7) bears the risk that
while the formal semantics of DSML elements may be well-
defined, they cannot be distinguished from non-constrained
UML elements (see also associations O2.3↔ O4.6 ∧ ¬O4.1
and O4.6 ↔ O2.2 in Sections 4.2 and 4.4, respectively).

15

Thus, a corresponding DSML should only be used in isola-
tion, without mixing concrete syntaxes of tailored and UML
model elements.

Shared expression foundations: Adopting certain formal
textual (e.g. set-theoretical) models affect the choice of a
language (e.g. OCL [67]) for defining constraints over the
core language model (O1.2↔ O3.1). If there is a common
(formal) foundation of both languages, a transformation is
facilitated. For example, as basic OCL semantics have been
defined in terms of a set-theoretical model (see, e.g., [79]),
set theory and set algebras are a natural choice to define a
generic language model.

Given a language model implemented at M1 (e.g. a class
model), the language model is defined at the UML instance
level (i.e. at the M1 layer [4]). This means, no metamodel is
employed to reflect the domain space and, therefore, domain
abstractions can neither be instantiated nor explicitly con-
strained for their usage as modeling constructs (contradicting
the meta-layer architecture of MDD). Thus, restrictions can
only be defined in terms of text annotations attached to the
language model (constraint limitations for structural models;
O2.1↔ O3.4).

4.4. Concrete-Syntax Definition (D4)

The concrete syntax of a UML-based DSML serves as its
user interface and can be defined in several ways. Multi-
ple concrete-syntax styles are available and a DSML can be
equipped with one or more concrete syntaxes. Different syn-
tax types can be defined and tailored to the needs of the mod-
eler (e.g., chosen depending on the modeler’s domain and/or
software-technical proficiency). A clear majority of DSMLs
include a concrete-syntax decision, only a minority leave the
concrete syntax undefined (none/not specified; O4.7). See
Figure 7 for the corresponding design-decision card.

4.4.1. Options
Model annotations (O4.1) attach UML comments as

concrete-syntax cues to a UML model, containing comple-
mentary domain information such as keywords, narrative
statements, or formal definitions (see, e.g., [136]). The
expressions can be predefined at the level of the language-
model definition or they are tailored for each instance. In
addition, the UML specification describes the use of keywords
and maintains a list of predefined keywords [3].

Diagrammatic syntax extensions (O4.2) extend one or
multiple UML diagram types by creating novel symbols in
addition to the basic UML symbol set. The new symbols
can be derived from existing shapes. The DSML is to be
used primarily in a diagrammatic manner adopting these
extended UML diagram types. In principle, the design space
for the new symbols is unlimited but has to be aligned with
the requirements of the target domain. However, existing
guidelines for designing UML symbols should be considered
(e.g. avoidance of synographs; see, e.g., [80]). A notable
example of a diagrammatic extension is the option to equip
UML stereotype elements with dedicated icons which appear

in addition to the standard notions of stereotyped elements
(e.g. tags or nested icons in classifier rectangles [3]).

A mixed syntax (foreign syntax) (O4.3) creates a DSML’s
concrete syntax as either a non-diagrammatic syntax (tex-
tual, tree-based, or tabular) or as a diagrammatic syntax that
is not integrated with the native UML syntax. Thus, in con-
trast to O4.2, this option would define a new and domain-
specific diagram type. Hence, the DSML concrete syntax is
independent of and thereby foreign to the basic UML symbol
set. For example, model specifications in the foreign syn-
tax are managed and stored separately from the UML dia-
grams. The UML base syntax is not extended, the symbols
of the refined or modified metaclasses are reused (see O4.6).
The extension syntax maps only to the DSML abstract syn-
tax, no UML metamodel element is covered. The foreign syn-
tax is used exclusively to model the domain-specific parts of
an extended UML model. For instance, a non-diagrammatic
foreign syntax can be embedded into the primary, diagram-
matic UML syntax (e.g. via UML comments or expression ele-
ments). Important candidates for non-diagrammatic foreign
syntaxes are textual, tree-structured, and tabular notations
(see, e.g., [32]).

A textual concrete syntax expresses DSML models in a
text-based format [81]. Typically, textual grammars are used
to define a textual concrete syntax (e.g. via the extended
BNF [61]). Based on such a grammar, a parser infrastruc-
ture is build (in some cases the parser can even be generated
automatically). A tree-structured concrete syntax is a graph-
ical, but non-diagrammatic representation. It represents a
MOF or an UML model as a nested, collapsible structure with
composite and leaf elements having text labels and/or sym-
bols (for example, the default UML editor provided by the
Eclipse MDT uses a tree structure). A tabular and form-based
concrete syntax organizes DSML elements in a table-like lay-
out. Textual labels and corresponding input fields populate
a structure of table rows and columns (such a syntax is sim-
ilar to the user interface of language workbenches [82]). In
the resulting mixed syntax, there is a hierarchical relation be-
tween the basic UML diagram notation and the nested foreign
notation. To fully capture a DSML model, the two syntaxes
are mutually dependent. The unextended UML base syntax
cannot capture DSML specifics (unambiguously), the foreign
syntax cannot represent basic UML concepts.

Diagram symbol reuse (O4.6) is a commonly applied op-
tion and means that no custom, DSML-specific extension to
the standard UML symbol vocabulary is created. The UML
has a concrete syntax that provides a visual notation, with its
symbol set being organized into 14 diagram types [3]. The
number of distinct graphical symbols applicable in these dia-
gram types ranges from eight (in communication diagrams)
to 60 (e.g. in class diagrams) [80]. With the UML specifi-
cation [3] not being explicit about the case of undeclared
notations (i.e. missing “Notation” sub clauses), the reuse of
symbols that are defined for native UML metaclasses which
are refined by the DSML must be stated explicitly (see also
association O2.3↔ O4.6 ∧ ¬O4.1 in Section 4.2). This re-
sembles the practice applied in the UML specification itself

16

Concrete-syntax de nition

D4

Problem statement

In which representation should the domain modeler

create models using the DSML?

Options (rel. support)

- O4.1 (77.5%): Model annotation*

- O4.2 (17.5%): Diagrammatic syntax extension*

- O4.3 (3.8%): Mixed syntax (foreign syntax)*

- O4.4 (1.3%): Frontend-syntax extension (hybrid syntax)

- O4.5 (1.3%): Alternative syntax

- O4.6 (86.3%): Diagram symbol reuse*

- O4.7 (8.8%): None/Not speci�ed

Drivers

- Non-diagrammatic UML notation requirements

- Degree of cognitive expressiveness*

- Disruptiveness*

- Degree of required modeling-tool support*

Consequences

- Usability evaluation

- Output artifacts

Associations (rel. support)

- O4.6 � O2.2 (77.5%), e.g.: Symbol ambiguity in

 diagrams*

Figure 7: Design-decision card for D4: Defining a DSML’s concrete syntax. Associations are ordered by their support in the 80 reviewed DSMLs (relative
occurrences). Details in italics and marked by an asterisk (*) are presented as part of the overview in this paper; the remainder is described in [42].

(e.g. “A Class is shown using the Classifier symbol” [3]).

4.4.2. Drivers
Degree of cognitive expressiveness: UML stereotypes have a

limited visual expressiveness, in contrast to tailored model el-
ements (O4.2) which are not restricted with respect to their
visual representation. A textual representation can have a
steeper learning curve but might be used to define models
in a shorter period of time (for advanced users). Neverthe-
less, it is often not the best way to get an overview (i.e. not
well-suited for large models). A tree-based syntax fits a hi-
erarchically structured DSML, but falls short in an adequate
representation of process-flow constructs such as loops and
sequences, for example.

Disruptiveness: The UML includes symbolic (e.g., class,
state, association, generalization) as well as iconic signs
(e.g., actor, component, fork and join nodes) for its graph-
ical notation (concrete syntax) [3]. The perception of
symbolic and iconic signs differ and is influenced by the
intended application domain as well as the professional
background and individual preferences of model users. A
corresponding set of experiments [17] provides evidence
that UML models (class and collaboration diagrams) mostly
consisting of iconic signs (in the form of stereotype icons)
improve comprehension compared to models mostly consist-
ing of symbolic signs (annotated non-stereotyped elements).
These findings are supported by results of another study
which says that “iconic UML graphical notations are more
accurately interpreted by subjects and that the number of
connotations is lower for iconic UML graphical notations
than for symbolic UML graphical notations” [18]. While
a DSML designer must keep this information in mind, the
concrete syntax must also be developed to fit its purpose
(i.e. conform to domain requirements, integrate with other
DSMLs etc.). For example, when the domain’s graphical

notation has a long history of symbolic signs, a change may
cause confusion and comprehension problems which may
again lead to a decrease of DSML users’ efficiency.

Degree of required modeling-tool support: A textual con-
crete syntax (O4.3) can be processed by a parser and (most
often) does not need specific editor tools (in contrast to a
graphical/diagrammatic syntax). It can be integrated with
existing developer tools, such as version management sys-
tems or diff and merge tools (an advantage for joint modeling
as well as model evolution). Due to its hierarchical form, a
tree-based syntax can be serialized as or created from XML-
based textual representations (e.g. XMI). Modeling support
for UML stereotypes (O4.1/O4.6) as well as for tree-based
syntaxes exists in standard tools, but must be explicitly inte-
grated for new graphical elements (O4.2).

4.4.3. Associations
When reusing existing UML symbols, the resulting “ex-

tended” diagrams risk becoming ambiguous. In particular,
using the same symbol for two or more different con-
cepts means that refining concepts cannot be distinguished
from the refined ones (symbol ambiguity in diagrams; see
O4.6 ↔ O2.2 and also, e.g., [65, 83]). To introduce a
simplistic discriminator without creating new symbols, one
can provide a UML profile to define a series of stereotype
tags which can then be attached to the reused symbols
in order to denote the DSML-specific refinements. In this
case, UML profiles serve primarily for clarifying the concrete
syntax elements used for a DSML. This resembles the usage
of standard profiles as defined by the UML [3], however,
without adding to the abstract syntax and semantics of the
language model.

17

4.5. Behavior Specification (D5)
The behavioral specification of a DSML (also: dynamic

semantics) defines the behavioral effects that result from us-
ing one or more DSML language element(s). It determines
how the language elements of the DSML interact to produce
the behavior intended by the DSML engineer. Moreover, the
behavior specification defines how the DSML language ele-
ments can interact at runtime [20]. Behavioral relationships
may emerge from the language-model formalization (D2; see
Section 4.2) or the language-model constraints (D3; see Sec-
tion 4.3). Explicitly specified behavior allows for a correct
mapping of the (platform-independent) DSML specifications
to a certain software platform (see Section 4.6). If no behav-
ioral specification exists (which is the case for nearly all of the
80 DSMLS investigated; see O5.5 in Figure 8), the DSML’s
runtime behavior is implicitly defined via the DSML’s plat-
form integration (e.g. via chains of method calls in a source-
code implementation). See Figure 8 for the design-decision
card.

4.5.1. Options
M1 behavioral models (O5.1) specify additional behavior

of language-model elements using UML behavioral models
at the M1 level (e.g. state machines, interaction diagrams, or
activity diagrams). For instance, in the UML a classifier can
reference “owned behavior” specifications. Behavior is then
executed in the context of the directly owning classifier [3].

Formal textual specifications (O5.2) specify the additional
DSML behavior using a textual formalism (e.g. algebraic ex-
pressions). In this context, a formal textual specification is a
set of expressions in a formal language at some level of ab-
straction with the purpose that its correctness can be checked
(e.g. by using the Z notation [84]).

Informal textual specifications (O5.3) are used to infor-
mally specify the behavior of a DSML, for example via narra-
tive prose text.

With regard to the combination of options, textual com-
ments (O5.3) may be used to annotate models (O5.1) or to
clarify formal specifications (O5.2), for example. Such com-
bined uses were not found documented in the 80 DSMLs,
though.

4.5.2. Drivers
Model consistency preservation: UML behavioral models

(O5.1) allow for a native integration of behavioral semantics
into UML-based DSMLs (see also association O5.1↔ O3.1).
For example, the behavior of a DSML element can be defined
via an owned behavior specification [3]. This facilitates sup-
port for integrated modeling tools as well as execution en-
gines (O5.4). Nevertheless, some semantics elements may be
left unconstrained in the specifications to defer behavioral in-
terpretations to the platform integration phase (which could
slightly differ from one software platform to the other; e.g.
the semantics of concurrency or event dispatch scheduling in
the fUML [85]).

Limited expressiveness: If it is not feasible or even im-
possible for some behavioral expressions to be sufficiently

expressed via graphical models (O5.1) or formal (textual)
statements (O5.2), informal textual specifications are an op-
tion (O5.3). For instance, the specification of the fUML ex-
ecution model incorporates a degree of generality for the
semantics of inter-object communication mechanisms [85].
The respective execution model is specified as if all commu-
nications were perfectly reliable and deterministic (e.g. it is
assumed that signals and messages are never lost or dupli-
cated), which is not realistic, of course. As raising exceptions
and exception handling are excluded from the fUML specifi-
cation, an informal and descriptive addition (O5.3) may be
useful.

Behavior verification requirements: Depending on the lan-
guage and/or formalism that is used to specify a particular
behavior, the correctness of formal specifications (O5.2) and
executable (i.e. well-formed) models (O5.4) can be (auto-
matically) checked (see, e.g., [134] and [84, 86]). If the
objective is to verify all artifacts in a DSML (such as, lan-
guage model, language-model constraints, behavior specifi-
cation, platform-specific artifacts), O5.2 is an option. This is
in contrast to non-executable behavioral models (O5.1) and
informal textual specifications (O5.3) for which behavioral
semantics may remain underspecified. The benefit of prov-
ing the correct behavior of a DSML may come with the ad-
ditional effort of a precise specification and the development
(or, at least, employment) of adequate verification methods
and tools.

Visualization preferences: Behavior specifications may
be aligned with other visualization options. For example,
if all DSML artifacts (such as, language-model definition,
language-model constraints, concrete syntax, platform-
specific artifacts) are text-based, a textual behavior specifica-
tion may satisfy the respective user requirements best (O5.2,
O5.3). For instance, in case of the fUML, UML models can be
represented using the action language ALF [87]. ALF acts as
a textual surface representation for UML modeling elements
that can be used to specify executable behavior.

4.5.3. Associations
UML M1 models can be attached to metamodel elements

for behavioral specifications (e.g. via the ownedBehavior re-
lation of a BehavioredClassifier [3]). In doing so, they are
constraining/defining the behavior of metamodel elements
(M1 behavioral models as constraints; O5.1↔ O3.1). For ex-
ample, in [123, 124] the authors make use of a UML state
machine to define states (e.g. passive, pending, discharged)
and transition options between those states for DSML ele-
ments.

4.6. Platform Integration (D6)

At this stage, decisions must be made on how to produce
platform-specific executable models (esp. source code) by
mapping DSML models (or an executable subset of the mod-
els) to a software platform (e.g. programming languages,
frameworks, components, service applications). This plat-
form integration is achieved via different types of model

18

Behavior speci cation

D5

Problem statement

Do we have to de�ne (additional) behavioral semantics for the DSML?

If so, how should the additional behavior of DSML elements be de�ned?

Options (rel. support)

- O5.1 (1.3%): M1 behavioral model*

- O5.2 (1.3%): Formal textual speci�cation*

- O5.3 (2.5%): Informal textual speci�cation*

- O5.4 (0%): Constraining model execution

- O5.5 (96.3%): None/Not speci�ed

Drivers

- Model consistency preservation*

- Behavioral de�nition requirements

- Limited expressiveness*

- Behavior verication requirements

- Visualization preferences*

Consequences

- Semantic variation points

- Platform-speci�c behavior speci�cation

- Different behavior enforcement points

Associations (rel. support)

- O5.1 ↔ O3.1 (1.3%), e.g.: M1 behavioral models

 as constraints*

*

Figure 8: Design-decision card for D5: Specifying a DSML’s behavior. Associations are ordered by their support in the 80 reviewed DSMLs (relative occur-
rences). Details in italics and marked by an asterisk (*) are presented as part of the overview in this paper; the remainder is described in [42].

transformations (see, e.g., [88, 89]) that convert a model
into another platform-specific model (also: model-to-model
transformation, M2M) or into textual/executable software
artifacts (also: model-to-text transformation, M2T; see also
association O6.2 ↔ O6.5). Alternatively, DSML models
can also be evaluated and executed without intermediate
transformations. To be more precise, DSML models are then
directly transformed into executable machine code via a cor-
responding DSML interpreter [42]. Not that performing no
platform integration at all is also a viable option (none/not
specified; O6.6), for example, when the DSML should only
serve for documentation purposes, for sketching a software
design, or for analyzing requirements. Two thirds of the
80 reviewed DSMLs do not document or contain platform-
integration decisions. The design-decision card is shown in
Figure 9.

4.6.1. Options
Intermediate model representations (O6.1) provide for

generating a second and intermediate model (i.e. the target
model) based on a DSML model (i.e. the source model)
using so-called model-to-model transformations. This in-
termediate model can be described via an own (separate)
metamodel. The source and target models are also separate
model entities. From the intermediate model, platform-
specific artifacts/models can be created (e.g. using M2T
transformations). This intermediate structure can be used
to optimize the source model (e.g. model canonization
and compression) and to attach debugging metadata (see,
e.g., [90]).

Generator templates (O6.2) create transformation tem-
plates which turn DSML models into platform-specific
execution specifications (e.g. markup documents) and/or
source code in the host programming language. Templates
access input model data via metamodel-based selections and

extraction expressions (e.g. OCL or XPath) and integrate
the extracted model data into opaque output strings that
represent code fragments. Examples are the Eclipse-based
Xpand or EGL generator-template languages.

API-based generators (O6.3) realize the platform-specific
model transformation (e.g. code generation) by instrument-
ing a programmatic representation of DSML models. The
DSML core language model and thereby each DSML model
(i.e. each instance of the core language model) are internally
represented as a collaboration of programmatic entities (e.g.
objects). Based on a dedicated API for traversing this inter-
nal representation (e.g. a visitor-based API [90] or a mixin-
based API [91]), model transformation is achieved by instru-
menting this API (e.g. implementing visitors or mixins) to
travel the object-based DSML model representation and, for
example, to serialize the model data to an output string (see,
e.g., [92]). The resulting platform-specific artifacts are inde-
pendent of the generator language or the generator imple-
mentation.

Model-to-model (M2M) transformations (O6.5) perform
platform integration via (multiple) endogenous M2M trans-
formations specified via M2M transformation languages (e.g.
ATL [93], ETL [68]). The source and target models share the
same metamodel infrastructure on the M3 level (e.g. several
refined platform-specific UML profiles). This is in contrast
to O6.1 which describes platform-specific model chains not
necessarily sharing the same metamodel (e.g. a transforma-
tion between a UML-based model and an intermediate Java
object model). Target models can either be executed directly
(O6.4) or they need further processing, for instance, via sub-
sequent model-to-text (M2T) transformations (O6.2, O6.3).

Template-based (O6.2), generator-driven (O6.3), and
model-interpreting (O6.4) platform integration can be com-
bined with intermediate structures (O6.1) to benefit from the
advantages of an intermediate representation [90]. In this

19

Platform integration

D6

Problem statement

How should the DSML artifacts be mapped to (and/or

integrated with) a software platform?

Options (rel. support)

- O6.1 (5%): Intermediate model representation*

- O6.2 (20%): Generator template*

- O6.3 (8.8%): API-based generator*

- O6.4 (1.3%): (Direct) model execution

- O6.5 (11.3%): M2M transformation*

- O6.6 (67.5%): None/Not speci�ed

Drivers

- Targeting multiple platforms*

- Maintainability e�ort of static code fragments*

- Non-executable models*

Consequences

- Constraint inconsistencies

- Di�erent constraint-enforcement points

Associations (rel. support)

- O6.2 � O3.5 (7.5%), e.g.: Platform-speci�c constraint

 enforcement*

- O6.2 � O1.4 ∧ O2.2 (5%), e.g.: Existing toolchain

 support*

- O6.2 ↔ O6.5 (3.8%), e.g.: Model transformation

 chains*

Figure 9: Design-decision card for D6: Defining a DSML’s platform integration. Associations are ordered by their support in the 80 reviewed DSMLs (relative
occurrences). Details in italics and marked by an asterisk (*) are presented as part of the overview in this paper; the remainder is described in [42].

way, transformation templates can operate on compressed
and canonicalized DSML models (see, e.g., [90]), generators
run against decorator models providing generation-specific
metadata (e.g. an EMF generator model [72]), and a model
interpreter finds a prefabricated and execution-oriented
model representation (e.g. an unfolded control flow).

4.6.2. Drivers
Targeting multiple platforms: An intermediate model

(O6.1) can act as a common, canonicalizing representation
that can be mapped to multiple software platforms which
have similar platform-specific abstractions (e.g. a family of
process-engine execution specification languages such as
BPEL4WS and WS-BPEL). If the constructs of the modeling
language differ significantly from their intended platform
integration, an intermediary representation can increase the
efficiency of subsequent M2T transformations.

Maintainability effort of static-code fragments: With an
API-based generator (O6.3), the code independent from the
DSML model must be integrated with the generator imple-
mentation (e.g. a custom visitor). When using generation
templates (O6.2), non-changeable and non-parametric code
fragments can be clearly separated from generator state-
ments in templates [92]. Depending on the relative amount
of static code fragments, an API-based generator involves
extra maintenance efforts for managing the interwoven
fragments of generative code and static code.

Non-executable models: If the DSML should only serve for
modeling purposes, for example via the definition of a UML
profile and the utilization of a standard modeling editor, no
explicit platform integration might be needed (O6.6). In this
case, the DSML is not meant to be executed on a software
platform (see also association O3.3↔ O6.6 in Section 4.3)
and might primarily serve as a communication vehicle be-
tween domain experts and software engineers.

4.6.3. Associations
The observed association O6.2 ↔ O3.5 (platform-

specific constraint enforcement) is characterized by a late
and platform-specific constraint enforcement point. Corre-
sponding DSMLs do not define explicitly constraints for the
language model (O3.5; see Section 4.3), but integrate them
into (templates of) code generators (see, e.g., [137, 138]).
As generation templates (O6.2) are applied to instances of
the language model, constraints can basically be enforced.
However, constraints are checked late in the DSML devel-
opment process; i.e. at the time of executing model-to-text
(M2T) transformations. Until platform integration is per-
formed, the conformance of models to their corresponding
constraints is not validated. Furthermore, constraints need
to be duplicated for different generator engines and for the
support of multiple platforms. In addition, a DSML designer
has to keep in mind that—independent of an existing or
lacking definition of language model constraints—no con-
straints are enforced on the generated code (i.e. the output
of an M2T transformation is not interpreted by its generator
component).

Existing toolchain support (O6.2↔ O1.4 ∧ O2.2): Tools
for editing UML models, including the definition and appli-
cation of profiles (see O2.2 in Section 4.2), are nowadays
frequently available (e.g. No Magic MagicDraw, Eclipse
Papyrus, IBM Rational Software Architect). In addition,
template-based M2T transformations (O6.2) are a widely
supported platform-integration technique in contemporary
MDD tool chains, and a variety of template-language im-
plementations exist, such as, Eclipse Xpand, EGL, JET, or
Acceleo (see, e.g., [88, 94]). Several UML model editors
provide combined tool support for M2T transformations
in an MDD-based way, as well – for example based on
EMF-compliant models in the Eclipse toolchain. Thus, the
observed association is characterized by a high availability of

20

modeling tools and generator engines (see, e.g., [139, 140]).
Nevertheless, a formal diagrammatic model not compliant
with the UML specification (e.g., an ER model; see O1.4
in Section 4.1) must be mapped to native UML constructs
first (i.e. a profile definition) to benefit from standard tool
support. Alternatively, the EMF-based technical projection of
the EMOF [4] (i.e. an Ecore model; O1.4) is also a candidate
option to facilitate toolchain support as automatic transfor-
mations into and from UML class models exist. Moreover,
a partially tool-supported approach for the semi-automatic
transformation of MOF-based models into UML profiles
is presented in [95] (see also association O1.4 ↔ D2 in
Section 4.1). Further tooling decisions related to the de-
velopment of DSMLs are discussed in Section 4.7 (decision
point D7).

Model transformation chains (O6.2↔ O6.5) are charac-
terized by endogenous M2M transformations (O6.5) prior
to the code generation step (O6.2; see, e.g., [141, 142]).
In these M2M transformations, source and target models
share the same metamodel infrastructure on the M3 level
(e.g. the MOF). For example, we found this association
being employed for analyzing models [142] as well as for
generating test cases [141]. On the one hand, [142] pro-
vides an approach for analyzing OCL-constrained UML class
models for inconsistencies via Alloy [96]. A UML class
model is transformed into an instance model of the Alloy
metamodel (both instantiating the MOF; O6.2). From the
Alloy model, an M2T transformation generates a textual
representation (O6.5) which serves as input to the Alloy
analyzer. Located conflicts can then be traced back to the
original model elements in the UML class diagram. On the
other hand, [141] uses M2M transformations to generate
platform-independent and platform-specific test models
(e.g., UML sequence diagrams) from the actual application
models (O6.2). Via M2T transformations application code
and corresponding test cases are generated (O6.5). In both
examples, the Alloy model [142] and the platform-specific
application and test models [141] all serve as intermediate
representations (O6.1) for the creation of textual artifacts.

4.7. Development-Tool Support (D7)
DSML tool support requires important design decisions

and, in turn, affects decision making on other DSML con-
cerns (decision points). In MDD, the objective is to assist en-
gineers in the creation of DSML language models as well as
to automate the evaluation of language-model constraints,
the transformation of models to platform-specific software
artifacts (e.g. source code), and so forth. For instance, the
generative nature of MDD makes model-transformation en-
gines a key building block of most DSML approaches (see,
e.g., [97, 98, 99]). At the same time, the choice of a particular
MDD tool chain may affects other DSML design decisions be-
cause not all decision options (e.g. concrete-syntax options)
might be supported by a given toolkit (see, e.g., [42, 100]).
However, the variety of available MDD tools (e.g. IBM Ratio-
nal Software Architect, Sparx Systems Enterprise Architect)
makes the corresponding decision challenging. Researchers

have discussed MDD tooling as a key barrier to MDD adop-
tion (see [101] for a recent overview). The design-decision
card is shown in Figure 10.

4.7.1. Options
Language-model editors (O7.1) are used to create, edit,

and maintain the language model of the DSML. The editor
can support the development of the language-model dia-
grammatically (e.g. Eclipse EcoreTools) or textually (e.g.
Eclipse Emfatic).

Constraint evaluators (O7.2) are used to automatically
analyze and validate conformance criteria for models. For
example, language-model constraints defined as dedicated
constraint-language expressions (e.g. OCL invariants evalu-
ated via the OCL engine of the Eclipse MDT).

Generating diagrammatic-syntax editors (O7.3) support
the representation of a DSML’s graphical concrete syntax.
Corresponding tools allow for creating, editing, and main-
taining tailored editors for the domain-specific models in
a given graphical concrete syntax (e.g. Eclipse Graphical
Modeling Framework, GMF).

Generators for textual-syntax editors (O7.4) support the
representation of a DSML’s textual concrete syntax. Corre-
sponding tools (e.g. Eclipse Xtext) allow for creating, edit-
ing, and maintaining tailored editors for the domain-specific
models textually (i.e. textual DSLs).

Model-execution engines (O7.5) are used to interpret mod-
els directly without the need of additional transformation
steps (e.g. the Moka module for Eclipse Papyrus includes an
execution engine complying with fUML [85]).

M2M transformation engines (O7.6) take one or multiple
models as input and generate one or multiple models as out-
put. An editor supports creating, editing, and maintaining
transformation specifications in a dedicated transformation
language (e.g. ETL [68]).

M2T transformation engines (O7.7) take one or multiple
models as input and generate one or multiple textual arti-
facts as output. An editor supports creating, editing, and
maintaining transformation expressions in a dedicated trans-
formation language (e.g. EGL [68]).

Orchestration engines (O7.8): As a DSML may consist
of several tool-supported artifacts (e.g. language-model
constraints, M2M/M2T transformation expressions etc.) for
which the order of execution is important, orchestration en-
gines (O7.8) can be used to coordinate the execution process
as well as data input/output requirements of these artifacts
providing an MDD-based tool chain for DSML development
(e.g. Eclipse Modeling Workflow Engine, MWE).

4.7.2. Drivers
Availability of existing tools: One of the drivers towards

adopting a specific toolkit or toolchain is the availability of
existing tools and their suitability to support DSML devel-
opment (e.g. to serve as an editor for the language model;
O7.1). Porting existing (legacy) tools to fulfill requirements
of a new DSML may be more efficient than adopting (and pos-
sibly adapting) a completely new tool set. However, whether

21

Associations (rel. support)

- O7.1 � O7.2 � D1 (21.3%), e.g.: Providing D1 tool

 support*

- O7.5 – O7.7 � O6.1 – O6.5 (18.8%), e.g.:

 Tool-enforced DSML semantics*

- D7 � O2.3 � O2.4 (1.3%), e.g.: Adoptability of

 standard tooling*

Development-tool support

D7

Problem statement

Which tools should be adopted to support the

development of DSML artifacts?

Options (rel. support)

- O7.1 (57.5%): Language-model editor*

- O7.2 (25%): Constraint evaluator*

- O7.3 (48.8%): Generating diagrammatic-syntax editor*

- O7.4 (2.5%): Generator for textual-syntax editor*

- O7.5 (1.3%): Model-execution engine*

- O7.6 (18.8%): M2M transformation engine*

- O7.7 (25%): M2T transformation engine*

- O7.8 (2.5%): Orchestration engine*

- O7.9 (35%): None/Not speci�ed

Drivers

- Availability of existing tools*

- Purpose of the DSML*

- Integrated development-tool environment*

Consequences

- DSML reusability and composability

- Implementation complexity

- Tooling lock-in effects

Figure 10: Design-decision card for D7: Tools supporting the development of a DSML. Associations are ordered by their support in the 80 reviewed DSMLs
(relative occurrences). Details in italics and marked by an asterisk (*) are presented as part of the overview in this paper; the remainder is described in [42].

existing tools qualify for supporting the development of a
DSML is dependent on a multitude of factors, for example,
the capability of developing a DSML with existing software
artifacts, the compatibility of different tooling license models,
the maturity of available tools, or the portability, evolution,
and maintainability effort needed in comparison to adopting
a completely new tool set [21].

Purpose of the DSML: The adopted tools must also match
the DSML’s purpose, of course. For example, constraints de-
fined in a format that cannot be validated automatically (e.g.
O3.4) may make constraint evaluators (O7.2) useless. In the
same way, models directly interpreted via a model-execution
engine (O6.4, O7.5) may render any M2M/M2T transforma-
tion engines (O7.6, O7.7) unnecessary. In contrast, transfor-
mation engines may be essential when following a generative
approach (see, e.g., [60]) to create (executable) platform-
specific artifacts (e.g. source code).

Integrated development-tool environment (IDE): As a
DSML consists of multiple, complex, and interrelated arti-
facts (models, model transformations etc.), the availability
of an IDE becomes crucial (e.g. to fulfill compatibility and
traceability requirements). Thus, DSML development tools
must also be assessed regarding their ability to interoper-
ate (e.g. to enable an orchestration engine to coordinate
the execution order of interdependent tools; O7.8). For
example, interoperability between different Eclipse-based
software tools is facilitated through utilizing standardized in-
terfaces (e.g. export/import of XMI serialized models [73])
allowing, for instance, that model transformation chains
(see, e.g., [102]) can be developed by cascading multiple
M2M/M2T transformation engines (O7.6, O7.7).

4.7.3. Associations
All of the decision points involved in the DSML devel-

opment process (D1–D6) may be supported by tools (e.g.
a language-model editor or an M2T transformation engine;
see the D7-related options above). Thus, the decision point
on development-tool support (D7) is likely to have interde-
pendencies with each of the other six decision points. The
effort of providing D1 tool support (O7.1 ∧ O7.2 ↔ D1) for
the initial definition of a generic DSML language-model (e.g.
language-model editors) depends on the chosen represen-
tation option. An informal textual description (O1.1) may
not need a DSML-specific tool support. For formal textual
and diagrammatic models (O1.2, O1.4)—when based on
well-defined and/or standardized specifications—it is likely
that some sort of (reusable) development-tool support exists
already (e.g. mathematical formula or UML diagram edi-
tors, model validators). In contrast, informal diagrammatic
models (O1.3) may lack any tool support (e.g. an underspec-
ification of the semantics of ad hoc modeling languages may
render constraint evaluation impossible). The degree of tool
support at decision point D1 also influences the effort needed
to (automatically) refactor language-model concepts into a
UML-compliant format (D2). For example, it may be easier
to define reusable mappings for a formally specified model
(O1.2, O1.4) than for an informal diagrammatic model
(O1.3) where the semantics of the modeling constructs are
not clearly specified.

The definition of tool-enforced DSML semantics (O7.5 –
O7.7↔ O6.1 – O6.5) for the phase of platform integration
can be distinguished into interpretative semantics (O7.5 for
O6.4), which directly execute a model representation, and
translational semantics, which compile a model into a mod-
el/program expressed in another language (O7.6, O7.7 for

22

O6.1–O6.3, O6.5) [103]. When transforming models, keep-
ing track of a model’s origin enables linking elements of the
transformation result back to the original input model. Such
traceability capabilities of tools are particularly important for
debugging activities. Furthermore, to better understand the
behavior of a model, it can be useful to have a view of the
code the model compiles to. For this, tooling features that
can display the model and the generated code side by side
are beneficial [103].

In this context, the extent of UML compliance of a DSML’s
language-model formalization influences the adoptability of
standard tools (D7 ↔ O2.3 ∧ O2.4). For example, if the
DSML’s language model is formalized via an extension to
the UML metamodel (O2.3; e.g. via the introduction of new
datatypes), standard language-model editors (O7.1) may not
be able to handle the new modeling constructs or it may be
difficult for standard generators of diagrammatic-syntax edi-
tors (O7.3) to visually integrate new syntax elements within
the native UML syntax set.

5. Limitations

Design-Decisions Catalog. The catalog of reusable design de-
cisions was deliberately narrowed down to DSMLs embedded
into UML 2.x. We excluded DSMLs from the catalog that are
based on UML 1.x and metamodeling infrastructures such
as Kermeta, Ecore, XMF. While this appears, at first glance,
as a barrier to generalizing the reusable design decisions,
the focus on UML 2.x was necessary because important deci-
sions taken for the UML 2.x are substantially different from
those for UML 1.x, not to mention from other infrastructures.
Moreover, there are important lines separating the UML 2.x
and UML 1.x regarding their language architectures and the
foundational semantics of the available extension techniques
(e.g. profiles, package merge; see [16, 104, 105]). The sur-
vey also supported the relative importance of the UML 2.x
as opposed to its predecessors: More than 50% of the re-
spondents (42/80) indicated having adopted UML 2.x (ver-
sions 2.0 through 2.5) for their DSML projects. Note, how-
ever, that many reusable decisions can still be adopted in a
broader sense to be compatible with DSMLs based on other
metamodeling infrastructures and DSLs (e.g. concrete-syntax
decisions).

Survey. The design of our questionnaire included four ques-
tion types. Crucial questions were used to identify break-
off, partial, and complete questionnaires. All crucial ques-
tions were also mandatory questions. A mandatory question,
when presented to the participant, had to be answered in or-
der to continue the questionnaire. However, note that not
all mandatory questions needed to be presented to a partic-
ipant because of filter questions. A filter question controlled
the succession of the questions in our questionnaire (e.g. de-
pending on an answer, a subsequent question was presented
or not). An optional question could be left out by the partic-
ipant. Regarding the outcome rates of the survey, we con-
sidered an attempt a break-off if the respective participant

answered less than 50% of the crucial questions. If a partici-
pant answered 50% or more of the crucial questions but less
than 100% of the mandatory questions, this was considered
a partial response. If a participant answered 100% of both,
the crucial and the mandatory questions, this was considered
a complete response (for further details see [5]).

Closely following the guidelines from [106], we care-
fully designed the questionnaire to minimize any negative
influence on participants and their replies. For example, we
paid specific attention to develop value-free, non-suggestive
wordings for the questions and items. Moreover, the ques-
tions have been devised in an exhaustive, unbiased manner
providing mutually exclusive response categories. The ques-
tionnaire was pre-tested in two iterations. In the first itera-
tion, four co-researchers with a general software-engineering
background were asked to complete the questionnaire to
provide feedback on the comprehensibility of the questions
and to measure the time required to answer all questions.
Second, and based on a revised version of the questionnaire,
we invited another three participants to run another pre-test.
This second iteration included two experts, one on design-
decision documentation (Uwe van Heesch; see, e.g., [49])
and one on UML-based DSML designs (Sigrid Schefer-Wenzl;
see, e.g., [123, 124])—the third again having a general
software-engineer background. Finally, we consulted the
WU Competence Center for Empirical Research Methods to
review the survey’s design and questionnaire.

Nevertheless, personal bias cannot be ruled out com-
pletely. For instance, certain answer options may have been
interpreted differently by the respondents. As an example,
the answer option “extremely important” [5] could mean
different things to different subjects. The comparatively
high effort per participant to complete the questionnaire
(i.e. 15–20 minutes), and the expected substantial barriers
to motivating invited researchers and practitioners to ac-
tually participate, did not allow us to provide for repeated
measurement. Therefore, we have no means to quantify the
internal consistency (reliability) of the responses (e.g., by
having each participant complete the survey twice after some
cool-down phase). As, to the best of our knowledge, there
is no alternative or complementary data set on UML-based
DSML design decisions available (i.e. a second measurement
instrument), we could also not quantify the validity of the
survey responses.

We asked MDD researchers and practitioners identified
via carefully selected scientific venues to take part in the sur-
vey. Although the venues included premier outlets for re-
searchers and practitioners in the field of MDD and DSMLs,
our selection strategy (convenience sampling [45]) may have
missed further peers who are professionally designing and
developing DSMLs. Furthermore, non-response errors may
have been introduced because some members of the sample
did not respond to our invitation for taking part in the survey
(although we sent out reminders). Thus, there is a possibility
that those who do not believe in the benefits of documenting
DR may have opted not to respond which would bias our re-
sults. Hence, and because of the non-probabilistic sampling

23

method [45], it is difficult to assess the representativeness of
the sample.

The majority of our respondents indicated that their
DSMLs are based on Ecore, MOF, and/or UML (see Sec-
tion 2.1). However, our survey, the questions, and the data
reporting in this paper are not specific to any infrastructure,
modeling language, or MDD tool chain. This was mainly be-
cause we aimed at maximizing participation and responses.
In most sections of the questionnaire, we explicitly asked
participants to answer the questions based on their general
experience with their DSMLs (whether UML-based or not)
[5]. Given these generic, non-UML-specific questions, we
would expect widely consistent responses when re-running
the survey explicitly setting the context to UML-based DSMLs
(i.e. we expect a good alternative-form reliability [45]).

Literature Review. Despite being prior work, because the
documented design decisions are based on papers identified
by our literature review, the work reported in this paper
inherits some limitations of the original review. We closely
followed established guidelines on designing and conducting
SLRs available from research on evidence-based software
engineering to avoid any pitfalls [41]. The DSML papers
were subjected to a documentation analysis to extract design
decisions from scientific publications and their companion
material. We considered supporting material if reported
by and available from the publication authors. A docu-
mentation analysis represents an indirect data-collection
technique [107]. Therefore, information on the ordering
of design decisions over time (decision sequences) often
remained implicit and, therefore, unrecoverable for us. Even
if documented, any indirectly observed order of decision op-
tions adopted by DSML engineers might have also followed
from the presentation requirements of a scientific publication
(i.e. the one reporting on a DSML); an order which does not
necessarily correspond to the original one during decision
making. Therefore, in our research setting, we could only
study option sets in terms of decision associations. For the
same reason, we focused on one process style of DSML de-
velopment only (i.e. language-model-driven development).
Thus, we might have neglected design-decisions details (e.g.,
associations) characteristic for other development styles (e.g.
mockup-driven DSML development [20]).

There is a bias inherent to the SLR design in that by
relying on scientific publications only, the reusable decisions
on DSMLs could be specific to DSMLs developed as research-
driven prototypes and proof-of-concept implementations.
While there is an important scientific audience, with approx.
48% of the survey respondents (38/80) having contributed
to at least one UML-based scientific DSML, design decisions
during DSML development in the software industry might
not necessarily be covered by the catalog. For example, we
established a clear preponderance of UML profiles in 80% of
the reviewed DSMLs. Whether this characteristic also holds
for DSMLs reported in other, predominantly non-scientific
venues cannot be answered at this point. However, we find it
difficult to assess the severity of this bias. To begin with, the

primary studies reviewed in our SLR did not disclose their
industrial background. Similarly, while related empirical
studies on UML usage certainly document the existence of
UML extensions and UML-based DSML designs (see, e.g.,
[6, 7]), they do not discriminate between industry-driven
and research-driven projects. Our survey also documents
that it is likely that DSML developers have contributed to
both scientific and industry projects over time, so that their
design expertise (although documented in scientific publica-
tions) reflects industrial practices: Approx. a quarter of the
total respondents (19/80) have contributed to both scientific
and industry UML-based DSMLs. For all DSMLs, this share
increases even to 57.5% (46/80).

6. Discussion

In our survey [5], we collected expert opinions from
DSML researchers and practitioners on different aspects of
documenting and using DR when developing DSMLs (see
also Section 2.1). As for documenting DR, we asked the
participants to indicate whether they performed certain
documentation activities (known from DR literature) for at
least one DSML, and, if the answer was yes, how they rate
the usefulness of DR. Figure 11 shows that 92.6% of the
respondents (sample size: n=68) documented DR in written
form. Written documentation artifacts include source-code
comments and changelog files, for example. This activity is
followed by meeting protocols (83.8%; e.g. brainstorming
sessions, focus groups) and conceptual diagrams (69.1%;
e.g. decision-flow modeling). These three DR documenta-
tion activities were also the ones the participants perceived
most useful with 73% (useful to extremely useful; n=63),
71.9% (n=57), and 72.3% (n=47), respectively.

The combined levels of high usage and high perceived
usefulness of written DR documentation, as part of more gen-
eral documentation artifacts, can be explained straightfor-
wardly since such practices (code commenting, source-code
and model-management systems) are among the most estab-
lished ones in software-development projects. This also holds
for meeting protocols, which are often seen as central doc-
umentation artifacts in collaborative software development
and project management. The importance of diagrams as
form of decision documentation, whether ad hoc or based on
a dedicated modeling language, has been stated before (e.g.,
QOC diagrams [108], UML activity diagrams for tailored de-
velopment processes [20]) and is confirmed by our survey
results. In Section 3, we showcase how the catalog can sup-
port written DR documentation in general as well as meet-
ing documentation by referencing elements from the catalog.
The use of the catalog for QOC diagramming is exemplified
in [41].

It is noteworthy that some participants commented (via
freetext comments in the questionnaire) that they have per-
formed some of these activities before, but did not explic-
itly or systematically documented them (e.g. because of cus-
tomers not wanting to become recorded) or they documented
not the complete rationale leading to a design decision, but

24

13% 14% 38% 35%

4% 4% 19% 38% 34%

4% 12% 12% 35% 37%

21% 6% 18% 44% 12%

3% 15% 33% 31% 18%

12% 15% 32% 24% 18%

23% 8% 31% 31% 8%Work diaries
P: 38% / DK: 4% / NA: 0%

Participant observations
P: 50% / DK: 1% / NA: 1%

Interview protocols, questionnaires
P: 57% / DK: 1% / NA: 0%

Think-aloud-session protocols
P: 50% / DK: 3% / NA: 0%

Meeting protocols
P: 84% / DK: 1% / NA: 0%

Conceptual diagrams
P: 69% / DK: 1% / NA: 0%

Written documentation
P: 93% / DK: 0% / NA: 1%

0% 25% 50% 75% 100%

Not at all useful

Extremely useful

Figure 11: Number of respondents having performed selected activities (performed at least once) and perceived usefulness of the performed DR documen-
tation activities (n=68), ordered by decreasing combined levels 4 and 5 support (useful to extremely useful). P = Performed; DK = don’t know; NA = not
answered.

the decision (solution) only. However, being aware of such
undocumented activities is important because they exhibit
potential to introduce routine documentation practices and
they can be influential in the overall decision-making pro-
cess (e.g. because they contribute to eliciting requirements;
see [5]).

Based on the opinions of participating MDD researchers
and practitioners, we derived a documentation format (de-
cision records) for our setting (UML-based DSMLs). In
Section 3, a structured document to capture one project-
specific decision (referencing the catalog) is introduced by
example. Looking at the actual practice of documenting DR
(i.e., without any document templates as a scaffold), the
survey participants indicated that they have documented
the following details for at least one DSML (in descending
order of respondent counts): issues (76.9%, sample size:
n=65), alternatives (69.2%), criteria (67.7%), project con-
text (64.6%), decision-making context (58.5%), and activity
context (46.2%; see Figure 12). The frequency of docu-
menting these details is widely mirrored by their perceived
usefulness: criteria (81.8%, n=44), issues (78%, n=50), al-
ternatives (64.4%, n=45), decision-making context (55.2%,
n=38), project context (54.8%, n=42), and activity context
(53.3%, n=30). To the extent these details are relevant
for the description of a reusable design decision, the top-
ranked items are reflected by the current documentation
format (criteria: driver, consequences; alternatives: options;
see Section 2.2). Issues, which are specific to a particular
decision-making step, are out of the scope for reusable
decisions.

The overall picture is that major problems, listing alter-
native solutions, and reasons for/against a solution are most
often documented and perceived as most useful. Contextual
information appears less frequently documented and consid-
ered comparatively less useful. In this context, the partici-
pants’ comments can shed light on the corresponding figures:
Some survey participants articulated that contextual details
“are useful, but in practice the results are used only rarely”,
that “the industry projects did not really document design de-

cisions”, and that “these things were documented in research
papers, but more as a result of the dissemination obligation,
not so much to support the development/design process” [5].

Finally, our survey covered the participants’ opinions on
selected forces (e.g., time and budget constraints) in their
DSML development projects which they encountered at least
once, and whether these forces constituted actual barriers
to DR documentation (i.e. their criticality; see Figure 13).
Candidate barriers we proposed to the participants reflect
the state of research on the DR capture problem [22, 23].
Four-fifth of the participants encountered (at least one of)
the candidate barriers, in decreasing order by frequency: ab-
sence of tool support to document decisions (80.6%, sample
size: n=62), time/budget constraints (79%), lack of stan-
dards/requirements to document design decisions (79%),
and missing justification for extra work of documenting
design decisions (79%). These forces were also perceived as
being actual and the most critical barriers. Less frequently
encountered barriers were the absence of prior, reusable de-
cisions (72.6%), an uncertainty of what to document exactly
(66.1%), missing benefits of reusing documented design
decisions (66.1%), the disruption of the decision-making
process (62.9%), and the risk of seeing decisions challenged
at a later point in time (59.7%). While observed by compar-
atively many respondents (clearly more than the half), these
forces were deemed less critical barriers.

Our quantitative results, which highlight the role of orga-
nizational and contextual barriers to DR documentation (e.g.
time/budget constraints, extra work not justified) are also
supported by comments of the participants. Examples are
that “spending time on documenting design decisions rather
than user documentation was not appreciated” and that
there existed “deadlines to deliver products not docs” [5].
Furthermore, the absence of organization/project-wide stan-
dards (e.g. which DR documentation activities to perform,
which details to document; see also Figures 11 and 12) as
well as the lack of adequate tool support (for capturing,
organizing, and retrieving design decisions; see also [109])
impede the systematic collection of DR in a reusable format.

25

2% 16% 61% 20%

2% 20% 52% 26%

2% 33% 42% 22%

16% 29% 50% 5%

2%5% 38% 48% 7%

23% 23% 43% 10%Activity context
D: 46% / DK: 0% / NA: 0%

Project context
D: 65% / DK: 2% / NA: 0%

Decision-making context
D: 58% / DK: 0% / NA: 0%

Alternatives
D: 69% / DK: 0% / NA: 0%

Issues
D: 77% / DK: 0% / NA: 0%

Criteria
D: 68% / DK: 0% / NA: 0%

0% 25% 50% 75% 100%

Not at all useful

Extremely useful

Figure 12: Number of respondents having authored selected DR documentation details (documented at least once) and the perceived usefulness of the
documented details (n=65), ordered by decreasing combined levels 4 and 5 support (useful to extremely useful). D = Documented; DK = don’t know; NA
= not answered.

6% 14% 24% 33% 22%

20% 20% 10% 36% 14%

24% 16% 14% 39% 6%

14% 20% 27% 29% 10%

18% 27% 18% 29% 9%

24% 15% 32% 29%

10% 34% 27% 24% 5%

18% 23% 33% 15% 10%

24% 27% 30% 11% 8%Possibility to challenge decisions
E: 60% / DK: 11% / NA: 0%

Disruption of decision-making process
E: 63% / DK: 8% / NA: 0%

Unclear what to document
E: 66% / DK: 6% / NA: 0%

No benefit from (re)use
E: 66% / DK: 11% / NA: 0%

No prior design decisions available
E: 73% / DK: 8% / NA: 0%

Extra work not justified
E: 79% / DK: 8% / NA: 0%

No standards or requirements
E: 79% / DK: 5% / NA: 0%

Tool support was absent
E: 81% / DK: 6% / NA: 0%

Time and budget constraints
E: 79% / DK: 5% / NA: 0%

0% 25% 50% 75% 100%

Not a barrier at all

Extreme barrier

Figure 13: Number of respondents having encountered selected forces (at lease once) and the criticality of these encountered forces as perceived barrier to
documenting DR (n=62), ordered by decreasing combined levels 4 and 5 support (barrier to extreme barrier). E = Encountered; DK = don’t know; NA =
not answered.

However, it is also obvious that DR can only pay off when it
becomes available (i.e. explicitly documented) to be reused
in later development projects (e.g. by saving time deciding
on the best design variant). Our decision catalog is intended
to serve as a reference source to be used when creating
and maintaining project-specific DR. Moreover, it assists
engineers by pre-structuring the design-decision space for
a systematic exploration in the context of an actual DSML
project (see Section 3).

7. Related Work

The related work in the fields of DR documentation and of
reusable (architectural) design decisions has been elaborated
on in Sections 1 and 2. In addition, our effort relates closely
to a body of research describing systematic procedures for
developing DSLs. Each of these approaches is based on expe-
riences drawn from actual DSL engineering projects and pro-
vides insights into the DSL development process, into certain
aspects of DSL design, or into DSL-related design decisions.

For example, in [20], different DSL development activities
are discussed and it is described how these activities can be
combined to tailor a DSL engineering process.

In a complementary contribution, Zdun and Strem-
beck [32] document three main decisions to be made when
applying the DSL development process from [20]. These
decisions relate to the choices of a specific type of DSL
development process, of a concrete syntax style, and of
developing an external vs. an embedded DSL. To render
these decision descriptions reusable, a pattern-like format is
applied [32]. In software engineering, a pattern is a time-
proven solution to a recurring design problem. A pattern
description includes (at least) a “problem description”, a
description of the “context” in which the respective problem
occurs, and one or more (alternative) “solutions”. Typically,
pattern descriptions also include different “forces” that may
influence the choice of a certain solution, “consequences”
that arise from a solution, as well as “known uses” of a
particular solution. In this way, the description format we
chose for the reusable design decisions resembles a pattern

26

format to a certain degree. However, reusable decisions are
not identical to or variants of software patterns, since, for
example, they list multiple solution propositions (decision
options) rather than one.

While prior work on patterns for DSL development [20,
32] aims at describing generic procedures and decisions for
DSL development projects, our contribution in this paper pro-
vides detailed insights into design decisions for UML-based
DSLs. In this way, our work complements [20, 32], as well as
other DSL development approaches such as [92, 110]. This
is because our work provides a systematic and in-depth docu-
mentation of the follow-up decisions that DSL engineers face
after they decided to develop a UML-based DSL.13

A number of other patterns and pattern languages ex-
ist that can be applied in DSL development and are thereby
complementary to our work. This includes patterns for the
design and implementation of DSLs [33], patterns for evolv-
ing frameworks into DSLs [111], and approaches for pattern-
based DSL development [34]. Often, DSL-related patterns do
not only describe how a DSL is developed, but also why it is
developed in a specific way. In addition, pattern languages
also describe potential sequences in which the patterns can
be applied [58]. Pattern sequences compare with our notion
of sets of co-adopted decision options in the sense that (or-
dered) option sets can represent sequences of adopted deci-
sion options.

In [36], Mernik et al. used the patterns from [33] to con-
duct a survey on decision factors affecting the analysis, de-
sign, and implementation phases of DSL development. These
decision factors can be considered during DSL development.
For example, the decision factor Notation deals with the con-
sideration whether the DSL should provide a new or an ex-
isting domain notation. For a few decision factors, Mernik
et al. suggest implementation guidelines. The work of [36]
is complementary to ours as it focuses on general issues of
design-decision making and implementation, rather than on
design decisions for a specific (host) language environment
such as the UML.

Another group of related work reports observations from
developing DSLs in (industrial) practice. For example, Lu-
oma et al. [37] conducted a study including 23 industrial
projects for the definition of DSMLs. Similar to our approach,
a number of DSLs are systematically compared. However, in
contrast to our paper, Luoma et al. provide a high-level de-
scription only and do not describe specific DSL design deci-
sions or decision-option sets in detail. Similar to patterns,
lessons learned have been used as a vehicle to preserve best
practices of DSL development. For example, Wile [112] re-
ports on twelve lessons learned from three DSL experiments.
For each lesson, he introduces a respective rule of thumb and
gives an overview of the experiences that are the origin of the
corresponding rule. Despite Wile’s lessons learned being de-
scribed at a comparatively high level of abstraction, they can,

13Remember that each UML-based DSL is an embedded DSL and that
UML-based DSLs usually have a graphical concrete syntax or a mixture of
graphical and textual concrete syntaxes.

in general, also be observed in our work and are hence re-
flected in parts of the design-decisions catalog. Kelly and Po-
hjonen [100] present a report on worst practices found by re-
viewing 76 DSL development projects, and Karsai et al. [83]
proposes 26 general guidelines for DSL development derived
from their own experiences.

A UML-based DSL uses UML as its host language and ex-
tends the UML with domain-specific language elements and,
therefore, qualifies as an embedded DSL (also: internal DSL).
Related work on developing embedded DSLs includes the
contributions by Günther et al. which describe a process and
corresponding patterns for the development of internal DSLs
on top of dynamic programming languages, such as Ruby or
Python [44, 113]. Other related contributions describe how
to develop DSLs from component building blocks that can
be incrementally designed and composed (see, e.g., [114]).
This idea originates from approaches such as keyword-based
programming [115], in which so called “keywords” serve as
building blocks for DSLs. In particular, a number of (univer-
sal) keywords are suggested which are then glued together to
compose DSLs. This approach was first envisioned in [116]
and is akin to building embedded DSLs in dynamic languages
(such as Ruby, Perl, Python, or Tcl for example).

In the UML context, some authors propose approaches
that define domain-specific UML extensions via UML profiles
(see, e.g., [52, 53, 54]). While each of these approaches
is related to our work, none of them documents reusable
decisions for UML-based DSLs. The authors of [117] give
an overview of standard compliant ways to define domain-
specific UML extensions, while Atkinson and Kühne [118]
discuss potential issues with UML profiles and suggest a
solution to address these problems. Bruck and Hussey [65]
present different techniques for tailoring the UML (e.g.
lightweight profile or middleweight metamodel extension).
In particular, Bruck and Hussey define a catalog of options
and characterize different extension mechanisms accord-
ingly. The authors also discuss pros and cons of using one
approach or the other. However, Bruck and Hussey focus on
UML customization techniques in general and do not inte-
grate design decisions in the process of DSML development
(e.g. no development phases are distinguished, language-
model constraints as well as platform integration are not
considered).

In addition, knowledge on DSL design decisions can also
be gained from analyzing toolkits for DSL development. For
example, Tolvanen and Kelly [119] present a tool for the def-
inition and usage of integrated DSMLs. Similarly, Zdun [91]
presents a tool suite for textual DSL-based software and pro-
vides a discussion of architectural decisions for DSL develop-
ment. However, most existing contributions have a strong fo-
cus on textual domain-specific programming languages. To
the best of our knowledge, there is no report reflecting on
design decisions embodied in toolkits for UML-based DSML
development.

In summary, the related work on patterns, best practices,
and lessons learned in DSL development has in common with
our approach that all are based on experiences from actual

27

DSL projects and contain some information on DSL design
decisions and DR. Our work provides a systematic and de-
tailed description of decision options for building UML-based
DSLs. In this way, our contribution is complementary to those
other approaches and can be combined with them.

8. Conclusion

In this paper, we adopt a decision-centric perspective on
UML-based domain-specific modeling languages (DSMLs).
Our focus was on providing a tailorable documentation [25]
of generic and reusable design decisions [27]. Our work is
based on a long-term research effort and complements other
approaches for systematizing DSML development [20, 43],
which put forth a development-process perspective.

Using a Web-based survey among MDD researchers and
practitioners [5], we collected 80 expert opinions on the
current practice of documenting and (re)using design ratio-
nale (DR) on UML-based DSMLs. Among others, the survey
helped us to validate the description format that we used
for our design-decision catalog. In particular, the design-
decision catalog for UML-based DSMLs [21, 42] includes 35
decision options for seven decision points, covering design
aspects from UML-based language-model specification to
development-tool support. The reusable decisions include
descriptions of positive and negative assessments of the
considered options (decision drivers) as well as positive
and negative effects on subsequent design decisions when
adopting one or several options (decision consequences).
The catalog was compiled from secondary studies as well
as 80 unique DSML designs. To the best of our knowl-
edge, our work is the first attempt to document DR on
UML-based DSML development on a broad empirical ba-
sis. Thus, the catalog complements existing contributions
via an evidence-based source of documented DR. As such,
the design rationale documented in the catalog becomes
available for reuse in new DSML projects. For example, our
catalog offers a building block for documentation guidelines
on extending the UML and can be used when documenting
a DSML design in a systematic manner.

In our future work, we will incorporate further design ra-
tionale found on additional DSMLs. Moreover, we will pro-
ceed in engaging more MDD researchers and practitioners to
collect further qualitative evidence on design-decision mak-
ing (e.g., on the order of decisions) as well as to allow for a
validation of documented drivers and consequences by per-
forming interviews and participant observations based on our
catalog. To this end, we will investigate ways of incorporat-
ing the reusable design decisions into design-support soft-
ware. This includes design-knowledge management [120]
for UML-based DSML development using DR-aware design-
support tools (e.g., MetaEdit++ plus Debate Browser and
Link Ability [121], Collaboro [122]).

Acknowledgement

This work was partly funded by the Austrian research
funding association (FFG) under the scope of the DLUX
project within the funding programme ICT of the Future (4th
call 2015) of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), contract # 855465.

References

[1] C. Atkinson, T. Kühne, A Tour of Language Customization Concepts,
Adv. Comput. 70 (2007) 105–161.

[2] E. Jackson, J. Sztipanovits, Formalizing the structural semantics
of domain-specific modeling languages, Softw. Syst. Model. 8 (4)
(2009) 451–478.

[3] Object Management Group, OMG Unified Modeling Language (OMG
UML), available at: http://www.omg.org/spec/UML, version 2.5,
formal/2015-03-01, 2015.

[4] Object Management Group, OMG Meta Object Facility (MOF) Core
Specification, available at: http://www.omg.org/spec/MOF, version
2.5, formal/2015-06-05, 2015.

[5] B. Hoisl, S. Sobernig, A Survey on Documenting and Using Design Ra-
tionale when Developing Domain-specific Modeling Languages, Tech.
Rep. 2016/01, WU Vienna, available at: http://epub.wu.ac.at/
4920/, 2016.

[6] J. Hutchinson, J. Whittle, M. Rouncefield, Model-driven engineer-
ing practices in industry: Social, organizational and managerial fac-
tors that lead to success or failure, Sci. Comput. Program. 89, Part B
(2014) 144–161.

[7] L. Nascimento, D. L. Viana, P. A. M. S. Neto, D. A. O. Martins, V. C. Gar-
cia, S. R. L. Meira, A Systematic Mapping Study on Domain-Specific
Languages, in: Proc. 7th Int. Conf. Softw. Eng. Adv., IARIA XPS Press,
179–187, 2012.

[8] J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical
Assessment of MDE in Industry, in: Proc. 33rd Int. Conf. Softw. Eng.,
ACM, 471–480, 2011.

[9] J. Pardillo, C. Cachero, Domain-specific language modelling with
UML profiles by decoupling abstract and concrete syntaxes, J. Syst.
Softw. 83 (12) (2010) 2591–2606.

[10] M. Staron, C. Wohlin, An Industrial Case Study on the Choice Be-
tween Language Customization Mechanisms, in: Proc. 7th Int. Conf.
Product-Focused Softw. Process Improv., vol. 4034 of LNCS, Springer,
177–191, 2006.

[11] B. Selic, What will it take? A view on adoption of model-based meth-
ods in practice, Softw. Syst. Model. 11 (4) (2012) 513–526.

[12] G. Giachetti, B. Marín, O. Pastor, Using UML as a Domain-Specific
Modeling Language: A Proposal for Automatic Generation of UML
Profiles, in: Proc. 21st Int. Conf. Adv. Inform. Syst. Eng., vol. 5565 of
LNCS, Springer, 110–124, 2009.

[13] S. Sen, N. Moha, B. Baudry, J.-M. Jézéquel, Meta-model Pruning,
in: Proc. 12th Int. Conf. Model Driven Eng. Lang. Syst., vol. 5795 of
LNCS, Springer, 32–46, 2009.

[14] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux, Kompren: Model-
ing and Generating Model Slicers, Softw. Syst. Model. 14 (1) (2015)
321–337.

[15] X. Burgués, X. Franch, J. M. Ribó, Improving the accuracy of UML
metamodel extensions by introducing induced associations, Softw.
Syst. Model. 7 (3) (2008) 361–379.

[16] J. Dingel, Z. Diskin, A. Zito, Understanding and improving UML pack-
age merge, Softw. Syst. Model. 7 (4) (2008) 443–467.

[17] M. Staron, L. Kuzniarz, C. Wohlin, Empirical assessment of using
stereotypes to improve comprehension of UML models: A set of ex-
periments, J. Syst. Softw. 79 (5) (2006) 727–742.

[18] K. Siau, Y. Tian, A semiotic analysis of unified modeling language
graphical notations, Requir. Eng. 14 (1) (2009) 15–26.

[19] J. Pardillo, A Systematic Review on the Definition of UML Profiles,
in: Proc. 13th Int. Conf. Model Driven Eng. Lang. Syst., vol. 6394 of
LNCS, Springer, 407–422, 2010.

28

https://dlux.wu.ac.at/
https://dlux.wu.ac.at/
http://www.omg.org/spec/UML
http://www.omg.org/spec/MOF
http://epub.wu.ac.at/4920/
http://epub.wu.ac.at/4920/

[20] M. Strembeck, U. Zdun, An Approach for the Systematic Develop-
ment of Domain-Specific Languages, Softw. Pract. Exper. 39 (15)
(2009) 1253–1292.

[21] B. Hoisl, S. Sobernig, Open-Source Development Tools for Domain-
Specific Modeling: Results from a Systematic Literature Review, in:
Proc. 49th Hawaii Int. Conf. Syst. Sciences, IEEE, 5001–5010, 2016.

[22] J. E. Burge, J. M. Carroll, R. McCall, I. Mistrík, Rationale-Based Soft-
ware Engineering, Springer, 2008.

[23] A. H. Dutoit, R. McCall, I. Mistrík, B. Paech, Rationale Management
in Software Engineering: Concepts and Techniques, in: Rationale
Manag. in Softw. Eng., chap. 1, Springer, 1–48, 2006.

[24] R. Capilla, F. Nava, C. Carrillo, Effort Estimation in Capturing Archi-
tectural Knowledge, in: Proc. 26th IEEE/ACM Int. Conf. Automat.
Softw. Eng., IEEE CS, 208–217, 2008.

[25] D. Falessi, L. C. Briand, G. Cantone, R. Capilla, P. Kruchten, The Value
of Design Rationale Information, ACM Trans. Softw. Eng. Methodol.
22 (3) (2013) 21:1–21:32.

[26] J. Horner, M. Atwood, Effective Design Rationale: Understanding the
Barriers, in: Rationale Manag. in Softw. Eng., chap. 3, Springer, 73–
90, 2006.

[27] N. Harrison, P. Avgeriou, U. Zdun, Using Patterns to Capture Archi-
tectural Decisions, IEEE Softw. 24 (4) (2007) 38–45.

[28] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, N. Schuster, Man-
aging architectural decision models with dependency relations, in-
tegrity constraints, and production rules, J. Syst. Softw. 82 (8) (2009)
1249–1267.

[29] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann, Combining Pat-
tern Languages and Reusable Architectural Decision Models into a
Comprehensive and Comprehensible Design Method, in: Proc. 7th
Working IEEE/IFIP Conf. Softw. Archit., IEEE, 157–166, 2008.

[30] I. Lytra, S. Sobernig, U. Zdun, Architectural Decision Making for
Service-Based Platform Integration: A Qualitative Multi-Method
Study, in: Joint Proc. 10th Working IEEE/IFIP Conf. Softw. Archit.
& 6th Europ. Conf. Softw. Archit., IEEE, 111–120, 2012.

[31] I. Lytra, H. Tran, U. Zdun, Supporting Consistency Between Archi-
tectural Design Decisions and Component Models Through Reusable
Architectural Knowledge Transformations, in: Proc. 7th Europ. Conf.
Softw. Archit., vol. 7957 of LNCS, Springer, 224–239, 2013.

[32] U. Zdun, M. Strembeck, Reusable Architectural Decisions for DSL De-
sign: Foundational Decisions in DSL Development, in: Proc. 14th
Europ. Conf. Patt. Lang. Prog., ACM, 1–37, 2009.

[33] D. Spinellis, Notable Design Patterns for Domain-specific Languages,
J. Syst. Softw. 56 (1) (2001) 91–99.

[34] C. Schäfern, T. Kuhn, M. Trapp, A Pattern-based Approach to DSL De-
velopment, in: Worksh. Proc. of Conf. Syst., Prog., and Appl.: Softw.
for Hum., ACM, 39–46, 2011.

[35] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, R. Pretorius,
Empirical Evidence about the UML: A Systematic Literature Review,
Softw. Pract. Exper. 41 (4) (2011) 363–392.

[36] M. Mernik, J. Heering, A. Sloane, When and How to Develop Domain-
specific Languages, ACM Comput. Surv. 37 (4) (2005) 316–344.

[37] J. Luoma, S. Kelly, J. Tolvanen, Defining Domain-Specific Modeling
Languages: Collected Experiences, in: Proc. 4th OOPSLA Worksh.
Domain-Specific Model., no. TR-33 in Computer Science and Infor-
mation System Reports, University of Jyväskylä, 1–10, 2004.

[38] B. Hoisl, S. Sobernig, S. Schefer-Wenzl, M. Strembeck, A. Baumgrass,
Design Decisions for UML and MOF based Domain-specific Language
Models: Some Lessons Learned, in: Proc. 2nd Worksh. Process-based
Appr. for Model-Driven Eng., 303–314, 2012.

[39] E. Filtz, Systematic Literature Review and Evaluation of DSML-
Design Decisions, Bachelor Thesis, WU Vienna, 2013.

[40] B. Hoisl, S. Sobernig, S. Schefer-Wenzl, M. Strembeck, A. Baum-
grass, A Catalog of Reusable Design Decisions for Developing UML-
and MOF-based Domain-Specific Modeling Languages, available at:
http://epub.wu.ac.at/3578/, 2012.

[41] S. Sobernig, B. Hoisl, M. Strembeck, Extracting reusable design de-
cisions for UML-based domain-specific languages: A multi-method
study, J. Syst. Softw. 113 (2016) 140–172.

[42] B. Hoisl, S. Sobernig, M. Strembeck, A Catalog of Reusable Design
Decisions for Developing UML/MOF-based Domain-specific Model-
ing Languages, Tech. Rep. 2014/03, WU Vienna, available at: http:

//epub.wu.ac.at/4815/, 2016.
[43] F. Lagarde, E. Huáscar, F. Terrier, C. André, S. Gérard, Leveraging

Patterns on Domain Models to Improve UML Profile Definition, in:
Proc. 11th Int. Conf. Fund. Appr. to Softw. Eng., vol. 4961 of LNCS,
Springer, 116–130, 2008.

[44] S. Günther, Development of Internal Domain-specific Languages: De-
sign Principles and Design Patterns, in: Proc. 18th Conf. Patt. Lang.
of Prog., ACM, 1:1–1:25, 2011.

[45] B. Kitchenham, S. L. Pfleeger, Principles of Survey Research – Part 5:
Populations and Samples, SIGSOFT Softw. Eng. Notes 27 (5) (2002)
17–20, ISSN 0163-5948.

[46] The American Association for Public Opinion Research, Standard Def-
initions: Final Dispositions of Case Codes and Outcome Rates for
Surveys, AAPOR, 7th edn., 2011.

[47] A. Tang, M. A. Babar, I. Gorton, J. Han, A survey of architecture de-
sign rationale, J. Syst. Softw. 79 (12) (2006) 1792–1804, ISSN 0164-
1212.

[48] M. Shahin, P. Liang, M. R. Khayyambashi, Architectural design de-
cision: Existing models and tools, in: Joint Proc. 3rd Europ. Conf.
Softw. Archit. and 8th Working IEEE/IFIP Conf. Softw. Archit., IEEE,
293–296, 2009.

[49] U. Heesch, P. Avgeriou, R. Hilliard, A documentation framework for
architecture decisions, J. Syst. Softw. 85 (4) (2012) 795–820.

[50] P. Kruchten, P. Lago, H. van Vliet, Building Up and Reasoning About
Architectural Knowledge, in: Proc. 2nd Int. Conf. Quality Softw. Ar-
chit., vol. 4214 of LNCS, Springer, 43–58, 2006.

[51] B. Hoisl, S. Sobernig, Consistency Rules for UML-based Domain-
specific Language Models: A Literature Review, in: Proc. 1st Int.
Worksh. UML Consistency Rules, vol. 1508 of CEUR Worksh. Proc.,
CEUR-WS.org, 29–36, 2015.

[52] R. Paige, J. Ostroff, P. Brooke, Principles for Modeling Language De-
sign, Inform. Softw. Tech. 42 (10) (2000) 665–675.

[53] S. Robert, S. Gérard, F. Terrier, F. Lagarde, A Lightweight Approach
for Domain-Specific Modeling Languages Design, in: Proc. 35th EU-
ROMICRO Conf. Softw. Eng. and Adv. Appl., IEEE, 155–161, 2009.

[54] B. Selic, A Systematic Approach to Domain-Specific Language Design
Using UML, in: Proc. 10th IEEE Int. Sym. Object-Oriented Real-Time
Distrib. Comput., IEEE, 2–9, 2007.

[55] I. Lytra, P. Gaubatz, U. Zdun, Two controlled experiments on model-
based architectural decision making, Inform. Softw. Tech. 63 (2015)
58–75.

[56] U. van Heesch, P. Avgeriou, U. Zdun, N. Harrison, The supportive
effect of patterns in architecture decision recovery: A controlled ex-
periment, Sci. Comput. Program. 77 (5) (2012) 551–576.

[57] S. Sobernig, U. Zdun, Distilling Architectural Design Decisions and
their Relationships using Frequent Item-Sets, in: Proc. 13th Working
IEEE/IFIP Conf. Softw. Archit., IEEE, 61–70, 2016.

[58] F. Buschmann, K. Henney, D. C. Schmidt, Pattern-oriented Software
Architecture – On Patterns and Pattern Languages, John Wiley &
Sons, 2007.

[59] M. Strembeck, J. Mendling, Modeling Process-related RBAC Mod-
els with Extended UML Activity Models, Inform. Softw. Tech. 53 (5)
(2011) 456–483.

[60] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications, Addison-Wesley, 2000.

[61] International Organization for Standardization, Information Tech-
nology – Syntactic Metalanguage – Extended BNF (ISO/IEC
14977), available at: http://standards.iso.org/ittf/
PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E)
.zip, 1996.

[62] B. C. Hungerford, A. R. Hevner, R. W. Collins, Reviewing Software
Diagrams: A Cognitive Study, IEEE T. Softw. Eng. 30 (2004) 82–96.

[63] A. Jakšić, R. B. France, P. Collet, S. Ghosh, Evaluating the Usability
of a Visual Feature Modeling Notation, in: Proc. 7th Int. Conf. Softw.
Lang. Eng., no. 8706 in LNCS, Springer, 122–140, 2014.

[64] A. Classen, Q. Boucher, P. Heymans, A Text-based Approach to Fea-
ture Modelling: Syntax and Semantics of TVL, Sci. Comput. Program.
76 (12) (2011) 1130–1143.

[65] J. Bruck, K. Hussey, Customizing UML: Which Technique is Right for
You?, available at: http://www.eclipse.org/modeling/mdt/uml2/
docs/articles/Customizing_UML2_Which_Technique_is_Right_

29

http://epub.wu.ac.at/3578/
http://epub.wu.ac.at/4815/
http://epub.wu.ac.at/4815/
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html

For_You/article.html. Last accessed: Feb 9, 2017., IBM, 2008.
[66] G. Kahraman, S. Bilgen, A framework for qualitative assessment of

domain-specific languages, Softw. Syst. Model. 14 (4) (2015) 1505–
1526, ISSN 1619-1374.

[67] Object Management Group, Object Constraint Language, available
at: http://www.omg.org/spec/OCL, version 2.4, formal/2014-02-
03, 2014.

[68] D. Kolovos, L. Rose, A. García-Domínguez, R. Paige, The Epsilon
Book, available at: http://www.eclipse.org/epsilon/doc/book/,
2017.

[69] A. Demuth, R. E. Lopez-Herrejon, A. Egyed, Supporting the Co-
evolution of Metamodels and Constraints through Incremental Con-
straint Management, in: Proc. 16th Int. Conf. Model Driven Eng.
Lang. Syst., vol. 8107 of LNCS, Springer, 287–303, 2013.

[70] B. Hoisl, S. Sobernig, M. Strembeck, Natural-language Scenario De-
scriptions for Testing Core Language Models of Domain-Specific Lan-
guages, in: Proc. 2nd Int. Conf. Model-Driven Eng. Softw. Dev.,
SciTePress, 356–367, 2014.

[71] D. S. Kolovos, R. F. Paige, F. A. Polack, Aligning OCL with Domain-
Specific Languages to Support Instance-Level Model Queries, Elec-
tron. Commun. EASST 5.

[72] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse
Modeling Framework, Addison-Wesley, 2nd edn., 2008.

[73] Object Management Group, XML Metadata Interchange (XMI) Speci-
fication, available at: http://www.omg.org/spec/XMI, version 2.5.1,
formal/2015-06-07, 2015.

[74] K. Hassam, S. Sadou, V. L. Gloahec, R. Fleurquin, Assistance Sys-
tem for OCL Constraints Adaptation during Metamodel Evolution,
in: Proc. 15th Europ. Conf. Softw. Maint. and ReEng., IEEE, ISSN
1534-5351, 151–160, 2011.

[75] D. Chiorean, V. Petraşcu, D. Petraşcu, How My Favorite Tool Support-
ing OCL Must Look Like, Electron. Commun. EASST 15.

[76] A. Kusel, J. Etzlstorfer, E. Kapsammer, W. Retschitzegger, J. Schoen-
boeck, W. Schwinger, M. Wimmer, Systematic Co-Evolution of OCL
Expressions, in: Proc. 11th Asia-Pacific Conf. Conceptual Model., vol.
165, ACS, 33–42, 2015.

[77] Object Management Group, Service oriented architecture Model-
ing Language (SoaML) Specification, available at: http://www.omg.
org/spec/SoaML, version 1.0.1, formal/2012-05-10, 2012.

[78] Object Management Group, OMG Systems Modeling Language
(OMG SysML), available at: http://www.omg.org/spec/SysML, ver-
sion 1.4, formal/2015-06-03, 2015.

[79] M. Richters, M. Gogolla, OCL: Syntax, Semantics, and Tools, in: Ob-
ject Model. with the OCL, vol. 2263 of LNCS, Springer, 447–450,
2002.

[80] D. Moody, J. van Hillegersberg, Evaluating the Visual Syntax of UML:
An Analysis of the Cognitive Effectiveness of the UML Family of Di-
agrams, in: Softw. Lang. Eng., vol. 5452 of LNCS, Springer, 16–34,
2009.

[81] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, S. Völkel, Text-based
Modeling, CoRR abs/1409.6623.

[82] M. Fowler, Language Workbenches: The Killer-App for Domain
Specific Languages?, available at: http://martinfowler.com/
articles/languageWorkbench.html, last accessed: Feb 9, 2017,
2005.

[83] G. Karsai, H. K. C. Pinkernell, B. Rumpe, M. Schindler, S. Völkel, De-
sign Guidelines for Domain Specific Languages, in: Proc. 9th OOP-
SLA Worksh. Domain-Specific Model., 7–13, 2009.

[84] International Organization for Standardization, Information Tech-
nology – Z Formal Specification Notation – Syntax, Type System
and Semantics, available at: http://www.iso.org/iso/catalogue_
detail?csnumber=21573. Last accessed: Feb 9, 2017, iSO/IEC
13568:2002, 2002.

[85] Object Management Group, Semantics of a Foundational Subset for
Executable UML Models (fUML), available at: http://www.omg.org/
spec/FUML, version 1.2.1, formal/2016-01-05, 2016.

[86] International Organization for Standardization, Information Tech-
nology – Z Formal Specification Notation – Syntax, Type System
and Semantics – Technical Corrigendum 1, available at: http:
//www.iso.org/iso/catalogue_detail?csnumber=46112. Last ac-
cessed: Feb 9, 2017, iSO/IEC 13568:2002/Cor 1:2007, 2007.

[87] Object Management Group, Action Language for Foundational UML
(ALF): Concrete Syntax for a UML Action Language, available at:
http://www.omg.org/spec/ALF, version 1.0.1, formal/2013-09-01,
2013.

[88] K. Czarnecki, S. Helsen, Feature-based Survey of Model Transforma-
tion Approaches, IBM Syst. J. 45 (3) (2006) 621–645.

[89] T. Mens, P. v. Gorp, A Taxonomy of Model Transformation, Electron.
Notes Theor. Comput. Sci. 152 (2006) 125–142.

[90] K. Czarnecki, S. Helsen, Classification of Model Transformation Ap-
proaches, in: Proc. 2nd OOPSLA Worksh. Genera. Tech. in the Con-
text of Model Driven Archit., 2003.

[91] U. Zdun, A DSL Toolkit for Deferring Architectural Decisions in DSL-
based Software Design, Inform. Softw. Tech. 52 (9) (2010) 733–748.

[92] T. Stahl, M. Völter, Model-Driven Software Development: Technology,
Engineering, Management, John Wiley & Sons, 2006.

[93] J. Bézivin, G. Dupé, F. Jouault, G. Pitette, J. E. Rougui, First Experi-
ments with the ATL Model Transformation Language: Transforming
XSLT into XQuery, in: Proc. 2nd OOPSLA Worksh. Genera. Tech. in
the Context of Model Driven Archit., 2003.

[94] L. M. Rose, N. Matragkas, D. S. Kolovos, R. F. Paige, A Feature
Model for Model-to-Text Transformation Languages, in: Proc. 4th Int.
Worksh. Model. in Softw. Eng., IEEE, 57–63, 2012.

[95] F. Lagarde, H. Espinoza, F. Terrier, S. Gérard, Improving UML Profile
Design Practices by Leveraging Conceptual Domain Models, in: Proc.
22nd IEEE/ACM Int. Conf. Autom. Softw. Eng., ACM, 445–448, 2007.

[96] D. Jackson, Software Abstractions: Logic, Language, and Analysis,
MIT Press, 2012.

[97] P. Mohagheghi, V. Dehlen, Where Is the Proof? – A Review of Ex-
periences from Applying MDE in Industry, in: Proc. 4th Europ. Conf.
Model Driven Archit. – Found. and Appl., vol. 5095 of LNCS, Springer,
432–443, 2008.

[98] A. Khalaoui, A. Abran, E. Lefebvre, DSML Success Factors and their
Assessment Criteria, Metrics News 13 (1) (2008) 43–51.

[99] R. Schaefer, A Survey on Transformation Tools for Model Based User
Interface Development, in: Human-Comput. Interact. Interact. Des.
Usability, vol. 4550 of LNCS, Springer, 1178–1187, 2007.

[100] S. Kelly, R. Pohjonen, Worst Practices for Domain-Specific Modeling,
IEEE Softw. 26 (4) (2009) 22–29.

[101] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, R. Heldal,
A taxonomy of tool-related issues affecting the adoption of model-
driven engineering, Softw. Syst. Model. 16 (2) (2017) 313–331.

[102] A. Yie, R. Casallas, D. Deridder, D. Wagelaar, Realizing Model Trans-
formation Chain Interoperability, Softw. Syst. Model. 11 (1) (2012)
55–75.

[103] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J.
Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, J. van der Woning,
Evaluating and comparing language workbenches: Existing results
and benchmarks for the future, Comput. Lang. Syst. Str. 44, Part A
(2015) 24–47, ISSN 1477-8424.

[104] S. Cook, Looking back at UML, Softw. Syst. Model. 11 (4) (2012)
471–480.

[105] B. Henderson-Sellers, C. Gonzalez-Perez, Uses and Abuses of the
Stereotype Mechanism in UML 1.x and 2.0, in: Proc. 9th Int. Conf.
Model Driven Eng. Lang. Syst., vol. 4199 of LNCS, Springer, 16–26,
2006.

[106] B. Kitchenham, S. L. Pfleeger, Principles of Survey Research – Part 4:
Questionnaire Evaluation, SIGSOFT Softw. Eng. Notes 27 (3) (2002)
20–23, ISSN 0163-5948.

[107] J. Singer, S. E. Sim, T. C. Lethbridge, Software Engineering Data
Collection for Field Studies, in: Guide to Adv. Empir. Softw. Eng.,
Springer, 9–34, 2008.

[108] A. MacLean, R. M. Young, V. M. E. Bellotti, T. P. Moran, Questions,
Options, and Criteria: Elements of Design Space Analysis, in: De-
sign Rationale: Concepts, Techniques, and Use, chap. 3, Lawrence
Erlbaum Associates, 53–106, 1996.

[109] W. C. Regli, X. Hu, M. Atwood, W. Sun, A Survey of Design Rationale
Systems: Approaches, Representation, Capture and Retrieval, Eng.
Comput. 16 (3) (2000) 209–235.

[110] M. Völter, DSL Engineering – Designing, Implementing, and Using

30

http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html
http://www.omg.org/spec/OCL
http://www.eclipse.org/epsilon/doc/book/
http://www.omg.org/spec/XMI
http://www.omg.org/spec/SoaML
http://www.omg.org/spec/SoaML
http://www.omg.org/spec/SysML
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://www.iso.org/iso/catalogue_detail?csnumber=21573
http://www.iso.org/iso/catalogue_detail?csnumber=21573
http://www.omg.org/spec/FUML
http://www.omg.org/spec/FUML
http://www.iso.org/iso/catalogue_detail?csnumber=46112
http://www.iso.org/iso/catalogue_detail?csnumber=46112
http://www.omg.org/spec/ALF

Domain-Specific Languages, Amazon Distribution, 2013.
[111] D. Roberts, R. Johnson, Patterns for Evolving Frameworks, in: Patt.

Lang. of Program Design 3, Addison-Wesley, 471–486, 1997.
[112] D. Wile, Lessons learned from real DSL experiments, Sci. Comput.

Program. 51 (3) (2004) 265–290.
[113] S. Günther, M. Haupt, M. Splieth, Agile Engineering of Internal

Domain-Specific Languages with Dynamic Programming Languages,
in: Proc. 5th Int. Conf. Softw. Eng. Adv., IEEE, 162–168, 2010.

[114] N. Allen, C. Shaffer, L. Watson, Building Modeling Tools that Support
Verification, Validation, and Testing for the Domain Expert, in: Proc.
37th Winter Simul. Conf., IEEE, 419–426, 2005.

[115] T. Cleenewerck, Component-based DSL Development, in: Proc. 2nd
Int. Conf. Genera. Prog. and Compon. Eng., Springer, 245–264, 2003.

[116] P. Landin, The Next 700 Programming Languages, Commun. ACM
9 (3) (1966) 157–166.

[117] I. Weisemöller, A. Schürr, A Comparison of Standard Compliant Ways
to Define Domain Specific Languages, in: Worksh. Proc. 10th Int.
Conf. Model Driven Eng. Lang. Syst., vol. 5002 of LNCS, Springer,
47–58, 2008.

[118] C. Atkinson, T. Kühne, Profiles in a strict metamodeling framework,
Sci. Comput. Program. 44 (1) (2002) 5–22.

[119] J.-P. Tolvanen, S. Kelly, MetaEdit+: Defining and using integrated
domain-specific modeling languages, in: Proc. 24th ACM SIGPLAN
Conf. Companion on Object Oriented Prog. Syst. Lang. Appl., ACM,
819–820, 2009.

[120] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. A. Babar, A comparative
study of architecture knowledge management tools, J. Syst. Softw.
83 (3) (2010) 352–370.

[121] H. Oinas-Kukkonen, Method rationale in method engineering and
use, in: S. Brinkkemper, K. Lyytinen, R. J. Welke (Eds.), Method
Engineering: Principles of method construction and tool support,
Springer, Boston, MA, 87–93, 1996.

[122] J. L. C. Izquierdo, J. Cabot, J. J. López-Fernández, J. S. Cuadrado,
E. Guerra, J. de Lara, Engaging End-Users in the Collaborative De-
velopment of Domain-Specific Modelling Languages, in: Proc. 10th
Int. Conf. Cooperative Design Vis. Eng., vol. 8091 of LNCS, Springer,
101–110, 2013.

31

A. Excerpt from Decision Catalog

This is the actual reusable decision on implementation options for a language model based on
the UML (D2) as found in [42], pp. 16–19. The motivating example in Section 3 refers to the
details of this decision.

Problem statement. In which MOF/UML-compliant way should the domain concepts be formalized?

Decision context. After the identification of language-model concepts, the corresponding definitions serve as input for the
phase of formalizing the domain constructs into a MOF/UML compliant core language model.

Decision options. For UML-based DSMLs, the language model can be formalized via dedicated language extension constructs
(such as UML profiles) or by extending the modeling language to provide the required semantics (see, e.g., [65, 3]).

O2.1 M1 structural model: Implement the core language model using structural UML models at level M1. In a class model,
for instance, domain abstractions can be expressed as classes and their relationships as associations. Other examples are
composite structure, component diagrams, and package diagrams.

O2.2 Profile (re-)definition: Implement the core language model by creating (or by adapting existing) UML profiles. A
profile consists of a set of stereotypes which define how an existing UML metaclass may be extended.

O2.3 Metamodel extension: Implement the core language model by creating one or several metamodel extensions. A meta-
model extension introduces new metaclasses and/or new associations between metaclasses to the UML metamodel or to
other, pre-existing metamodel extensions [3, 4]. The extension elements are typically organized into dedicated «metamodel»
packages. The structure and semantics of existing elements of the UML metamodel are preserved.

O2.4 Metamodel modification: Implement the language model by creating one or several MOF-based metamodel exten-
sions which modify existing metaclasses; for example, by changing the type of a class property or by redefining existing
associations [3, 4]. The extension elements are typically organized into dedicated «metamodel» packages.

Combination of options: A combination may include the definition of a metamodel extension as well as an equivalent profile
definition (see, e.g., [143, 144]). Similarly, stereotype definitions can be provided to accompany a metamodel extension/-
modification (see, e.g., [126]).

Decision drivers. An overview of positive and negative links between decision drivers and available options is shown in
Table A.3.

Overlap of DSML and UML domain spaces: The degree of overlap between the domain space of the DSML concepts and
the general purpose language constructs (i.e., the UML specification) has, for instance, a direct impact on whether a profile
definition is sufficient (O2.2) or on whether a metamodel extension/modification is needed (O2.3, O2.4).

Degree of DSML expressiveness: A UML profile (O2.2) can only customize a metamodel in such a way that the profile seman-
tics do not conflict with the semantics of the referenced metamodel. In particular, UML profiles cannot add new metaclasses
to the UML metaclass hierarchy or modify constraints that apply to the extended metaclasses (see, e.g., [10]). Therefore,
profile constraints may only define well-formed rules that are more constraining (but consistent with) those specified by the
metamodel [3]. In contrast, a metamodel extension/modification (O2.3, O2.4) is only limited by the constraints imposed
by the MOF metamodel (i.e. the abstract syntax of the UML can be extended via new metaclasses and associations between
metaclasses).

Portability and evolution requirements: A newly created metamodel (O2.3, O2.4) is an extension of a certain version of
the UML specification. Thus, the domain-specific metamodel extension possibly needs to be adapted to conform with newly
released OMG specifications. Re-usability of a UML extension is also affected by being either compliant with the UML standard
(e.g. O2.2 or O2.3) or not (e.g. O2.4).

Compatibility with existing artifacts: Pre-existing DSMLs, software systems, and tool support have a direct impact on
the design process of a DSML in terms of compatibility requirements and integration possibilities. For instance, the UML
specification defines a standardized way to use icons and display options for profiles (O2.2). Tool support for authoring UML
models and profiles (O2.1 and O2.2) is widely available (see, e.g., [10]).

Table A.3: Positive/negative links between drivers and options.

Driver/Option O2.1 O2.2 O2.3 O2.4

Overlap of DSML and UML domain spaces +/− +/− +/− +/−
Degree of DSML expressiveness −− − + ++
Portability and evolution requirements + + − −−
Compatibility with existing artifacts ++ ++ − −

32

Decision consequences. Formalization style dependencies: Certain dependencies can result from combined language-model
formalizations (e.g. O2.2 and O2.3). For instance, profiles are dependent on the corresponding metamodel (i.e., the UML). If
a profile is combined with a metamodel modification (O2.4), changes to the metamodel can affect the respective stereotypes
(e.g. if a stereotype-extended metaclass is modified).

Language-model ambiguities: If no further constraints to the language model are specified (see Decision D3), the language
model must be fully and unambiguously defined using the chosen formalization option and implicitly enforced restrictions
(e.g. by using profiles and thus inheriting all semantics from the UML metamodel; O2.2).

Application. In all our DSML projects, we formalized the language models as metamodel extensions (O2.3). Additionally,
profiles (O2.2) were employed in [145, 123, 124, 143, 144, 126, 146]. Therefore, we effectively adopted combined strategies.
In related approaches, we also found the application of M1 structural models (O2.1, e.g., in [147]) and the modification of the
UML metamodel (O2.4, e.g., in [148]) for the formalization of the language model. As an example for O2.4, [148] documents
a UML metamodel modification by adding new attributes to existing UML classes (e.g. to classes Class and Property). This is
in contrast to several other approaches which employ metamodel extensions (O2.3), but do not explicitly document whether
they perform modifications to the UML metamodel (O2.4), as well. For instance, in [149], existing classes from the UML
metamodel (e.g. UseCase) are associated with newly defined classes (e.g. UseCaseDescription). The metamodel definition
in [149] remains uncertain regarding the ownership of association ends: (1) Both ends could be owned by the association
(O2.3); (2) one end could be owned by the association, one by a class (O2.3 or O2.4, depending if the owning class is coming
from the UML metamodel); or (3) both ends could be owned by their corresponding classes (O2.4). To avoid such ambiguities,
association end ownership can be made explicit with the dot-notation [3]. Furthermore, accompanying textual annotations
can provide clarifying details.

Sketch. Figure A.14 depicts an excerpt from a UML extension (taken from [143, 144]). On the left hand side, it shows a
UML package definition called SecureObjectFlows::Services as an example of a metamodel extension (O2.3) and, on the
right hand side, a UML profile specification named SOF::Services (O2.2). Mappings between these two language-model
representations are provided as M2M transformations. Both UML customizations provide the same modeling capabilities for
using one of our UML security extensions (for details see [143, 150, 144]) with the SoaML specification [77].

<<metamodel>>

SecureObjectFlows::Services

<<metaclass>>

ServiceInterface
(from SoaML::Services)

+ isStrict:Boolean = false

<<metaclass>>

SecureInterface

<<metaclass>>

SecureActivityParameterNode

<<metaclass>>

SecurePin

<<metaclass>>

SecureDataStoreNode

<<profile>>

SOF::Services

<<metaclass>>

Class
(from Kernel)

+ isStrict:Boolean = false

<<stereotype>>

SecureInterface

<<stereotype>>

secure

<<stereotype>>

ServiceInterface
(from SoaML)

Figure A.14: Exemplary UML metamodel extension and profile definition [143].

B. DSML Papers

This is the subset of publications which were reviewed for documenting the reusable design decisions and which are referenced
in this paper. The complete list is provided in a companion to this paper [42].
[123] S. Schefer-Wenzl, M. Strembeck, Modeling process-related duties with extended UML activity and interaction diagrams, Electron. Commun. EASST

37.
[124] S. Schefer-Wenzl, M. Strembeck, An approach for consistent delegation in process-aware information systems, in: Proc. 15th Int. Conf. Bus. Inform.

Syst., Vol. 117 of LNBIP, Springer, 2012, pp. 60–71.
[125] M. Alam, R. Breu, M. Hafner, Model-driven security engineering for trust management in SECTET, J. Softw. 2 (1) (2007) 47–59.
[126] B. Hoisl, M. Strembeck, A UML extension for the model-driven specification of audit rules, in: Proc. 2nd Int. Worksh. Inform. Syst. Secur. Eng., Vol.

112 of LNBIP, Springer, 2012, pp. 16–30.

33

[127] J. E. Pérez-Martínez, A. Sierra-Alonso, From analysis model to software architecture: A PIM2PIM mapping, in: Proc. 2nd Europ. Conf. Model Driven
Archit. – Found. and Appl., Vol. 4066 of LNCS, Springer, 2006, pp. 25–39.

[128] F. Aoussat, M. Oussalah, M. Nacer, SPEM extension with software process architectural concepts, in: Proc. 35th Annu. IEEE Int. Conf. Comp. Softw.
and Appl., IEEE, 2011, pp. 215–223.

[129] U. Zdun, P. Avgeriou, Modeling architectural patterns using architectural primitives, in: Proc. 20th Annu. ACM SIGPLAN Conf. Object-oriented Prog.,
Syst., Lang., Appl., ACM, 2005, pp. 133–146.

[130] I. Ivkovic, K. Kontogiannis, A framework for software architecture refactoring using model transformations and semantic annotations, in: Proc. 10th
Europ. Conf. Softw. Maint. and ReEng., IEEE, 2006, pp. 135–144.

[131] R. Bendraou, M.-P. Gervais, X. Blanc, UML4SPM: A UML2.0-based metamodel for software process modelling, in: Proc. 8th Int. Conf. Model Driven
Eng. Lang. Syst., Vol. 3713 of LNCS, Springer, 2005, pp. 17–38.

[132] A. Cicchetti, D. D. Ruscio, A. Pierantonio, A metamodel independent approach to difference representation, J. Object Technol. 6 (9) (2007) 165–185.
[133] K. Berkenkötter, U. Hannemann, Modeling the railway control domain rigorously with a UML 2.0 profile, in: Proc. 25th Int. Conf. Comput. Safety,

Reliab., Secur., Vol. 4166 of LNCS, Springer, 2006, pp. 398–411.
[134] E. Cariou, C. Ballagny, A. Feugas, F. Barbier, Contracts for model execution verification, in: Proc. 7th Europ. Conf. Model Driven Archit. – Found. and

Appl., Vol. 6698 of LNCS, Springer, 2011, pp. 3–18.
[135] A. Queralt, E. Teniente, A platform independent model for the electronic marketplace domain, Softw. Syst. Model. 7 (2) (2008) 219–235.
[136] J. Jürjens, Secure Systems Development with UML, Springer, 2005.
[137] I.-C. Hsu, Extending UML to model Web 2.0-based context-aware applications, Softw. Pract. Exper. 42 (10) (2012) 1211–1227.
[138] G. M. Kapitsaki, D. A. Kateros, G. N. Prezerakos, I. S. Venieris, Model-driven development of composite context-aware web applications, Inform. Softw.

Tech. 51 (8) (2009) 1244–1260.
[139] S. Ali, L. C. Briand, H. Hemmati, Modeling robustness behavior using aspect-oriented modeling to support robustness testing of industrial systems,

Softw. Syst. Model. 11 (4) (2012) 633–670.
[140] G. N. Rodrigues, D. S. Rosenblum, S. Uchitel, Reliability prediction in model-driven development, in: Proc. 8th Int. Conf. Model Driven Eng. Lang.

Syst., Vol. 3713 of LNCS, Springer, 2005, pp. 339–354.
[141] E. L. Alves, P. D. Machado, F. Ramalho, Automatic generation of built-in contract test drivers, Softw. Syst. Model. 13 (3) (2012) 1141–1165.
[142] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On challenges of model transformation from UML to Alloy, Softw. Syst. Model. 9 (1) (2010) 69–86.
[143] B. Hoisl, S. Sobernig, Integrity and confidentiality annotations for service interfaces in SoaML models, in: Proc. Int. Worksh. Secur. Aspects of Process-

aware Inform. Syst., IEEE, 2011, pp. 673–679.
[144] B. Hoisl, S. Sobernig, M. Strembeck, Modeling and enforcing secure object flows in process-driven SOAs: An integrated model-driven approach, Softw.

Syst. Model. 13 (2) (2014) 513–548.
[145] M. Strembeck, U. Zdun, Modeling interdependent concern behavior using extended activity models, J. Object Technol. 7 (6) (2008) 143–166.
[146] U. Zdun, M. Strembeck, Modeling composition in dynamic programming environments with model transformations, in: Proc. 5th Int. Sym. Softw.

Compos., Vol. 4089 of LNCS, Springer, 2006, pp. 178–193.
[147] C. Song, E. Cho, C. Kim, An integrated GUI-business component modeling method for the MDD- and MVC-based hierarchical designs, Int. J. Softw.

Eng. Know. 21 (3) (2011) 447–490.
[148] A. M. R. da Cruz, J. a. P. Faria, A metamodel-based approach for automatic user interface generation, in: Proc. 13th Int. Conf. Model Driven Eng. Lang.

Syst., Vol. 6394 of LNCS, Springer, 2010, pp. 256–270.
[149] S. S. Somé, A meta-model for textual use case description, J. Object Technol. 8 (7) (2009) 87–106.
[150] B. Hoisl, M. Strembeck, Modeling support for confidentiality and integrity of object flows in activity models, in: Proc. 14th Int. Conf. Bus. Inform.

Syst., Vol. 97 of LNBIP, Springer, 2011, pp. 278–289.

34

	Introduction
	Background and Preliminaries
	Documenting Design Rationale on DSMLs
	Structure of Reusable Design Decisions
	Material Corpus for Recovering DSML Design Rationale
	Empirical Evidence on DR Reuse

	Motivating Example: DSML Design-Process Documentation
	A Catalog of Design Decisions for UML-based DSMLs
	Language-Model Definition
	Options
	Drivers
	Associations

	Language-Model Formalization
	Options
	Drivers
	Associations

	Language-Model Constraints
	Options
	Drivers
	Associations

	Concrete-Syntax Definition
	Options
	Drivers
	Associations

	Behavior Specification
	Options
	Drivers
	Associations

	Platform Integration
	Options
	Drivers
	Associations

	Development-Tool Support
	Options
	Drivers
	Associations

	Limitations
	Discussion
	Related Work
	Conclusion
	Excerpt from Decision Catalog
	DSML Papers

