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ABSTRACT

CHAIN OF BUILDERS is a language-implementation pattern at the
centre of realising variable textual syntaxes for internal domain-
specific languages (DSL). An internal DSL is built on top of a general-
purpose software language (GPL; Java) and uses the GPL infrastruc-
ture for processing and for enacting DSL scripts. A DSL is said to be
variable when it allows for deriving a family of DSL variants (a.k.a.
a language-product line), varying at the levels of abstract syntax,
concrete syntax, semantics, and execution (e.g., interpretation or
generation). CHAIN OF BUILDERS combines the CHAIN OF RESPONSI-
BILITY and EXPRESSION BUILDER patterns. With this, the paper adds
to known pattern languages for DSL development (e.g., Fowler’s).
Its known use has been in development systems for internal DSLs
such as DjDSL, but also applies to applications processing mixed
syntaxes (XML and JSON).

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Software design techniques.

KEYWORDS

domain-specific language, internal DSL, concrete syntax, variability,
language-product line, language family, Java

ACM Reference Format:

Stefan Sobernig. 2019. Chain of Builders: A Pattern of Variable Syntax Pro-
cessing for Internal DSLs. In 24th European Conference on Pattern Languages
of Programs (EuroPLoP ’19), July 3-7, 2019, Irsee, Germany. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3361149.3361179

1 INTRODUCTION

A domain-specific software language (DSL) is a software language
that is tailored for describing, prescribing, or implementing soft-
ware systems in a selected domain [10, 11, 21]. As a software lan-
guage, a DSL comprises an abstract syntax, one or more concrete
syntaxes, structural and behavioural context conditions, semantics
definitions, and behavioural definitions based on a target platform.
The concrete syntax refers to the well-defined representation of a
DSL script (model) as text or visual. The abstract syntax means a
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well-defined representation of a DSL script (model) that abstracts
from details specific to the textual or visual representation, to better
serve some post-processing task on the DSL script (model). When
a DSL is developed as an extension of a general-purpose software
language (GPL) and when the DSL uses the GPL infrastructure for
processing and for enacting DSL scripts, the DSL is an internal DSL
and the GPL becomes the DSL’s host language [6, 8, 13].

Software patterns play an important role as implementation tech-
niques for internal DSLs, including the implementation of variable
DSLs. A variable (incl. extensible ) DSL has the ability to vary at
the levels of abstract syntax, concrete syntaxes, semantics, and
enactment in a systematic and efficient manner. Developing vari-
able DSL shifts emphasis from developing and analysing a single
DSL to developing and analysing reusable development artefacts
for a family of DSL. Patterns describe proven practises and tech-
niques to design and to implement variability for a DSL. This is
mainly because patterns are readily applicable to implementations
in (object-oriented) host languages and because they genuinely
document ways of implementing runtime variability using proven
solutions [4]. The latter is key when implementing internal DSL
that can be composed with the host language, other DSLs, or DSL
extensions in a disciplined manner. Relevant software patterns and
pattern languages describe recurring problems and solutions for
architecting a DSL (architectural patterns), for designing the main
DSL components and their interactions (language and DSL pat-
terns), and for implementing the internals of the DSL components
(design patterns and idioms).

Pattern-based approaches apply to and are equally relevant to
developing external DSL [6] and their internals. However, their
role for developing internal DSL based on and embedding with
a host language, render them more prominent in design-decision
making for internal DSL. The following patterns are relevant for
architecting, designing, and implementing composable internal DSL
for different language-composition scenarios: extension, unification,
extension composition, and self-extension [5]. In addition, a pattern-
based approach paves the way to developing and to maintaining
a hybrid DSL. A hybrid DSL combines the characteristics of an
internal and an external DSL, e.g., an internal and external concrete
syntax on top of a shared abstract syntax.

The contribution of this paper is to document an additional
pattern of advanced syntax processing: CHAIN OF BUILDERS. This
pattern is related to existing patterns and design decisions on
engineering DSLs. The concerns of syntax processing in DSL re-
late to patterns from different pattern collections and pattern lan-
guages [2]. These include architectural design patterns (e.g., EX-
PLICIT INTERFACE), software-language design patterns (e.g., EXPRES-
SION BUILDER [6] and MESSAGE REDIRECTOR [22]), general OO design
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patterns (e.g., CHAIN OF RESPONSIBILITY [7]), and implementation-
level ones (e.g., abstract-syntax representation patterns [14]).

With this, this paper primarily addresses software developers
who want to create a DSL. I imagine the readers of the actual
pattern description in Section 3 to be familiar with the basic tenets
of developing a DSL [6]. The surrounding text should also be useful
to developers wondering what a DSL actually is and why patterns
of syntax processing are worth considering beyond their narrow
use to implement a DSL. The running examples and code listings
are available from a supplemental Web site.!

2 BACKGROUND

The concrete syntax refers to the representation of a script, program,
or model as text or visual. Syntax processing means processing such
a script, program, or model according to a well-defined syntax defini-
tion into another representation. This other representation abstracts
from representation details as text or visual. This abstract-syntax
representation is to better serve a certain processing or tooling step
on the script, program, or model. Syntax processing and parsing
are very important for applications other than software-language
engineering, including application generators, data processing, and
application-level network and serialisation protocols.

To accomplish syntax-processing tasks in these fields, it is not
necessary to learn and to master methods, techniques, and tools
for external-syntax processing (e.g., grammar-based parsing); at
least not early in your project. Processing internal syntaxes is about
working in your regular, general-purpose language environment
(Java) for this purpose.

one or both
can be used

Dynamic
Reception

Semantic
Model

implemented via implemented via

Message
Redirector

Expression
Builder

instantiates

redirect DSL invocations
to host-language
invocations

Figure 1: An overview of the pattern relationships specific to
the EXPRESSION BUILDER pattern. See Table 1 for brief pat-
tern descriptions.

2.1 Syntax Processing: A Pattern Point of View

Fowler [6] documents established and proven practises of process-
ing DSL scripts, written using an internal syntax, into internal
representations (abstract-syntax graphs, model instances) in terms
of special-purpose BUILDERS [7, p. 97], e.g., an EXPRESSION BUILDER
(see Figure 1). A BUILDER separates the logic to build a complex
of objects from the objects themselves. This is particularly needed

Ihttps://github.com/mrcalvin/cob-ansible
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Table 1: Thumbnail descriptions of relevant patterns for syn-
tax processing for internal DSL syntaxes. See Figure 1 for an
overview of their relationships.

Pattern

Problem

Solution

BUILDER [7, p. 97]

EXPRESSION
BUILDER  [6, pp.
343]

SEMANTIC MODEL [6,
pp. 159], ak.a. lan-
guage model, domain
model

DYNAMIC RECEP-

TION [6, pp. 427]

MESSAGE
TOR [22]

REDIREC-

PROXY [7, pp. 207]

Building a structure from dif-
ferent parts (objects) by con-
necting them is not trivial
(e.g., it depends on the data
types of the various parts). In
addition, different structures
(e.g., representation) should
be built from the same set of
parts.

The behaviour to instantiate
a language model and to pro-
cess a DSL script are imple-
mented by the same (model)
classes.

A primary representation of
a DSL script is derived from
the concrete syntax (concrete-
syntax graph or tree), which
is not necessarily suited for
processing the DSL script.
The receiver of an invoca-
tion request (e.g., a specific
builder) does not provide a
method implementation to
process the DSL invocation

(DSL) Clients requesting a
certain behaviour (e.g., by
sending messages) and (host-
language) providers offer-
ing the behaviour implemen-
tation are not (meant to
be) known directly to each
other (e.g., to realise dynamic
method dispatch).

The receiver of a message
(e.g., a specific builder) does
not provide a method imple-
mentation to process the mes-
sage; or the actual provider is
not available in a given invo-
cation context.

Separate the building logic of
the structure (e.g., an object
graph) from the parts under
composition, into a dedicated
builder entity.

Separate instantiation and
DSL syntax processing into
separate, but closely linked
(builder vs. model) objects.

Provide an abstracted (in-
memory) representation of a
DSL script that is very close
to the purpose of processing
of the DSL script (its applica-
tion domain).

Trap and handle (DSL) in-
vocations to builder objects
without having defined cor-
responding methods using
built-in message interception
or redirection techniques.
Provide for redirecting (DSL)
invocations to host-language
objects implementing the in-
vocation behaviour.

Provide a placeholder object
for another one to manage ac-
cess to it.

when different variants of this building logic should be applica-
ble. In DSL syntax processing, different BUILDERs turn out useful:
EXPRESSION BUILDER and CONSTRUCTION BUILDER.

An EXPRESSION BUILDER separates syntax processing from in-

stantiating a language model (i.e., the primary abstract syntax of a
DSL). See Figure 3 for an exemplary language model. Using an Ex-
PRESSION BUILDER does not only separate the two concerns properly,
but also provides for providing alternative builders and, hence, al-
ternative syntaxes in front of one abstract syntax (language model).
Alternatively, an EXPRESSION BUILDER allows for providing differ-
ent language-model backends (incl. variants of a language model,
or different language-model implementations) for one frontend
syntax.

In what follows, the example of Ansible playbooks is adopted (see
Figure 3). In Ansible, a playbook represents a deployment and main-
tenance descriptor (script) for orchestrating Ansible (distributed)
system inventories. A playbook consists of one or several plays,
each linking a list of tasks to a group of inventoried systems or
system groups called hosts (“webservers”, “databases” in Listing 4).
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5

11 hosts databases
12 remote_user admin

13 task {

14 name "is postgresql at the latest
version?"

15 yum {

16 name postgresql

17 state latest}}}

2| play { play(

3 hosts webservers hosts("webservers"),

4 remote_user admin remote_user("admin"),

5 task { task(

6 name "is webserver running?" name("is webserver running?"),
7 service { service(

8 name http name("http"),

9 state started}}} state("started")))),

play { play(

hosts("databases"),
remote_user("admin"),
task(
name("is postgresql at the latest
version?"),
yum(
name("postgresql"),
state("latest")

PlaybookBuilder
.Playbook(/*... */)
play(/*... */)
.task("run some command")
.shell("/usr/bin/some")
.task("run another command")
.shell("/usr/bin/another"
Expect.Shell())
.response("0K")
.body("send_user done")
.response("NOTOK")
.body("send_user failed;
abort")
/¥ */

)))

Listing 2: Exemplary Ansible playbook syntax styles: using a LITERAL LIST on the left, using NESTED FUNCTIONS in the middle,

and (Java) METHOD CHAINING on the right.

package Ansible
+plays
Playbook 0 Play

+tasks|0..”
AN

+called

Figure 3: An exemplary language model (a.k.a. SsEmaNTIC
MoDEL) for Ansible playbooks.

A task itself defines a call to an Ansible module, such as service
to check the deployment status of a service application or yum, a
package manager, to update installations in a single batch on an
array of systems. Figure 3 exemplifies a shell module, which can be
used to manage and to script a shell session on a remote system.

There are two frequently adopted representation choices for DSL
scripts [8, pp. 318]:

e DSL scripts are represented as host-language collection data,
such as lists and maps. Listing 2 (left) gives the example of
an Ansible playbook represented as a list of lists.

e DSL scripts are represented as a host-language program.
Listing 2 (middle) shows a representation of the same Ansible
playbook as a host-language script using nested function
calls to model the relationships between playbook items.
Listing 2 (right) shows another common syntax flavour using
(Java) METHOD CHAINING.

Whatever the representation style chosen, the EXPRESSION BUILDER
itself must map DSL syntax elements or invocations to the host-
language invocations that instantiate the corresponding elements
from the underlying language model. For invocations, mappings
between different invocation abstractions may be applicable. In

public class PlaybookBuilder {
private Playbook book;

private Play currentPlay;

public static PlaybookBuilder Playbook() {

2

3

4

5 /* context variable */

6

7

8

9 return new PlaybookBuilder();

10 }

11

12 public PlaybookBuilder() {

13 /* eager construction */

14 book = new Playbook();

15 }

16

17 public PlaybookBuilder play() {
18 /* eager construction */

19 currentPlay = new Play();

20 book.add(currentPlay);

21 return this;

22 }

23

24 public PlaybookBuilder task(String name) {
25 if (currentPlay != null) {

26 currentPlay.add(new Task(name));
27 }

28 return this;

29 }

30

31 public PlaybookBuilder task() {
32 return task("");

33 }

34

35 public Playbook get() {

36 return book;

37 }

38| }

Listing 4: An exemplary (Java) implementation using a
single EXPRESSION BUILDER PlaybookBuilder and METHOD
CHAINING. The instantiation of the language model (from
Figure 3) is obtained eagerly (i.e., upon instantiation of the
builder or calling any chained method).

case of the internal DSL being realised based on messages (method
calls) exchanged between objects (around an object-oriented or
“fluent” API), a mapping is established between DSL messages and
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host-language messages as well as method implementations. Dif-
ferent invocation abstractions can also be supported depending on
the available host-language concepts. For example, intermediaries
such as commands in a COMMAND LANGUAGE [22] are well suited
as an abstraction.

A syntax definition can be embodied by a single BUILDER in
front of a single language model. For example, PlaybookBuilder
in Listing 4 implements all syntax-handling methods (play, task)
responsible for constructing all entities from the language model.
However, the responsibility of syntax processing for a single syntax
definition, in front of a given language model, can also be distributed
across and implemented by multiple orchestrated BUILDERS. This
serves for realising separation of concerns in syntax processing, but
also to provide for planned syntax extensions. Not every language-
model element, such as Module in Figure 3, is necessarily visible
at the concrete syntax-level. Therefore, there might not be a corre-
sponding BUILDER.

Separation and composition of syntax processing. When different
BUILDERS are provided to transform an input stream into differ-
ent parts of the language model (e.g., sub-trees or branches of a
syntax tree), these child BUILDERsS form a comPOSITE. For exam-
ple, the responsibilities of the single PlaybookBuilder in Listing 4
could be distributed among three distinct ones, each responsible
for one language-model entity: PlaybookBuilder for Playbook,
PlayBuilder for Play,TaskBuilder for Task, and so forth. Each
BUILDER then implements the syntax handlers (methods in METHOD
CHAINING) for its child BUILDERS.

The benefit is that the dependency between the BUILDERs are
aligned with the syntax dependencies [6, Sections 32.1 and 32.4].
More importantly, having separate builders allows for diverging
from the construction procedure as otherwise dictated by the input
stream (e.g., a sequence of DSL invocations). This can take the
form of re-arranging the order of retrieving the BUILDERS’ results;
or, by postponing construction (lazy vs. eager acquisition). In the
latter case, BUILDERS act as PLACEHOLDERS [17]. A PLACEHOLDER is
a kind of proxyY that indirects and defers messages sent to objects
under construction, e.g., to control for cyclic dependencies during
instantiation of cyclic object graphs.

The advantages of such a decomposition into distinct builders are
countered by the complexity of managing the relationships (part-
of, and call dependencies) between the builders. For example, in
METHOD CHAINING certain methods (play) must be implemented for
the scope of more than one BUILDER. This is because the sequence of
method calls (and the respective BUILDER objects returned from each
call) does not correspond to the intended hierarchy of the syntax
(e.g., a play consisting of tasks). A cOMPOSITE can help manage the
part-of relationships, and help propagate invocations between the
elements of a composite.

Preplanned and bound syntax extensions. In a such a WHOLE-
PART [16] structure of BUILDERS, a parent BUILDER can be made to
support alternative child BUILDERS in terms of a STRATEGY [7, pp.
315]. This way, depending on evaluating conditions in the client
or the parent BUILDER, at runtime, different alternative BUILDER
implementations become effectuated. Consider the playbook exam-
ple in Listing 2, on the right. The shell invocation can be made to
select from different shell implementations (e.g., Ansible built-in,
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an Expect shell) to execute the submitted commands. This choice
is made based on an extra argument to shell (Expect.Shell()),
or by its bare absence. This way, known syntax elements (e.g.,
chaining methods) can be bound to different processor implemen-
tations. Each alternative implementation can then interpret the
syntax stream, e.g., by instantiating the language model differently.
This way, preplanned extension points can be implanted into syntax
processing.

The downside is that these extension points (e.g., the overall
STRATEGY interface to be implemented by alternative child BUILDERS)
must be defined early in a DSL project. That is, in the playbook
example in Listing 2 (right), when the shell method is provided
(and the corresponding ShellBuilder), the available shell-specific
syntax (response, body) must be decided on. On the same page,
the one interface shared between builders prevents each alternative
from implementing a deviating (i.e., additional or fewer) syntax
fragments. This is prominently the case in host languages with
typing restrictions. As a consequence, any syntax extension using
STRATEGY is bound by a predefined interface.

2.2 DSL composition

Erdweg et al. [5] identify and describe four basic types of unantic-
ipated software-language composition, i.e., composition without
preplanning: language extension, language unification, extension
composition, and self-extension.

e Extension: Define and apply units of extensions to a base
DSL in an incremental and modular manner.

o Unification: Form a unified DSL out of two or more composed
DSL; in particular when the composed ones have not been
developed with composition in mind (no preplanning).

e Extension composition: The ability of a DSL development
system to, first, compose two or more DSL extensions before
enabling them for the base DSL.

o Self-extension: Extend a DSL by defining and by applying
extensions from within a DSL program or model itself, in an
embedded manner.

Patterns for designing and supporting variable syntax process-
ing are equally relevant for all four types of composition. Each
composition type, however, presents unique challenges to syntax
processing.

3 PATTERN DESCRIPTION: CHAIN OF
BUILDERS

You want your DSL to remain open for extending its basic syntax,
in an unforeseeable manner, along with an extensible language
model and an extensible language runtime (behind the scenes). Or,
your DSL implements an initial, minimal but viable language as
a first step towards a more complete language definition and im-
plementation to be continued over multiple iterations. That is, you
develop your DSL-based software system in a reactive (rather than
in a proactive) manner. You consider a design using multiple Ex-
PRESSION BUILDERS realising the internal DSL syntax. The separated
language model (SEMANTIC MODEL) is open for extension.
You considered using dynamic parametrisation [4] for your BUILDER

objects to encode different syntax variants. In dynamic parametri-
sation, per-object flags mark syntax increments to become enabled
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or to become disabled at construction time of the object (e.g., by
passing them as arguments to the constructor calls). When syntax
processing is implemented using METHOD CHAINING, the flags are
used at the sub-method level to implement a conditional control
flow. Each resulting control-flow walk realises one syntax variant.
Modifying an existing syntax variant, or adding a new one, requires
you to revisit and to modify the existing syntax-handling method
implementations (e.g., by adding a new branch to the control flow).
The changing (growing) space of syntax variants results in more
and more complex control-flow condition expressions, that are dif-
ficult to maintain. This is because the control-flow implementation
is scattered across multiple method implementations and across
multiple (partial) EXPRESSION BUILDERS.

The EXPRESSION BUILDER must be open to ex-
tension, in a stepwise manner and without the
need for preplanning. Client code to the DSL sub-
system, as well as the base EXPRESSION BUILDER
must not be affected by the unplanned syntax
extensions.

uses as part of implements
its implementation 0 propagation
Chain of using Message
Responsibility Redirector
g J
propagates
invocations forma
between
s 1)
Explici i
plieit = 1o I Builder
Interface contracts
invocations\ )
subjected
to chaining

Figure 5: Processing of an internal syntax can be rendered
extensible by a structure of BUILDERs that operate as a
CHAIN OF RESPONSIBILITY. Each BUILDER is responsible for
building up the different portions of the (now combined)
language model (sEMaNTIC MODEL). Refer to Table 2 for brief
pattern descriptions.

You face the challenge to add, to modify, or to remove syntax-
processing capabilities from an EXPRESSION BUILDER without re-
quiring modifications to interfaces or to implementations, both of
client code submitting DSL expressions (scripts) or of the existing
EXPRESSION BUILDER itself.

A solution must be applicable to different ways of representing
invocations (clauses) in the internal DSL syntax in terms of the
EXPRESSION BUILDER implementation. METHOD CHAINING directly
maps DSL invocations to method calls in the host language. NESTED
FUNCTIONS [6, pp. 357] assumes a procedure or function abstraction
in the host language; or methods. Collections like lists and maps
are another implementation device for internal DSL syntaxes to
be supported (LITERAL LIST, LITERAL MAP; [6, pp. 417]). This list of
implementation techniques can grow (closures, initialisers).

Besides, the internal syntax subject to extension can be imple-
mented using multiple, orchestrated EXPRESSION BUILDERS rather
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than a single one. This is to separate different syntax-processing con-
cerns into different builders. Such a distributed syntax implemen-
tation forms a WHOLE-PART structure [3]. A top-level EXPRESSION
BUILDER aggregates a number of lower-level EXPRESSION BUILDERS,
responsible for different syntax sections. Direct access to these con-
stituent builders is not possible. An unplanned syntax extension
then translates into extending such a WHOLE-PART structure of
several builders, without having full access to part builders, or their
internals.

To support different language-composition techniques (e.g., ex-
tension, unification, extension composition), a solution must be
able to activate (to deactivate) two or more syntax extensions at a
time. Each syntax extension must be given a chance to handle a DSL
invocation, or to pass it along, or to drop it, without being aware of
any other extensions being present or absent. This conflicts with
the requirement to establish basic guarantees that DSL invocations
actually become processed (by at least one syntax-processing ex-
tensions); or that there is no unintended passing-along or dropping.

Table 2: Thumbnail descriptions of relevant patterns for in-
ternal DSL extension. See also Figure 5.

Pattern

Problem

Solution

CHAIN OF RESPONSI-
BILITY [7, pp. 223]

EXPRESSION
BUILDER  [6, pp.
343]

MESSAGE
TOR [22]

REDIREC-

EXPLICIT INTERFACE

(1]

The client sending a mes-
sage does not know the actual
provider (e.g., the responsible
builder) of the requested be-
haviour.

The behaviour to instantiate
a language model and to pro-
cess a DSL script are imple-
mented by the same (model)
classes.

How to represent DSL invo-
cations and how to imple-
ment their propagation be-
tween chained BUILDERS?

Allowing direct and full
access to your BUILDER
implementation makes the
client components dependent
on one implementation and
side effects internal to this
BUILDER.

Give more than one (builder)
object the chance to act
as a provider of syntax-
processing behaviour.

Separate instantiation and
DSL syntax processing into
separate, but closely linked
(builder vs. model) objects;
but also into separate builders
for each syntax variant.
Provide for redirecting (DSL)
invocations from one builder
object to another by a built-in
or a custom redirection mech-
anism (e.g., DYNAMIC RECEP-
TION Or a PROXY).

To avoid coupling to one
BUILDER and its internals,
provide a distinct BUILDER
interface effectively shield-
ing client components from
the BUILDER implementation.
The BUILDER implementation
realising the interface can be
changed (at runtime), also as
part of a MESSAGE REDIREC-
TOR.

Therefore:

Provide for more than one EXPRESSION BUILDER
to process a DSL syntax element or DSL invoca-
tion. Render each builder responsible for han-
dling a syntax extension. Form a chain of builders
and pass the syntax-processing requests along
this chain. Each builder, in its turn, may decide
independently from other builders (a) to handle
the request, (b) to forward the request (as-is or
in a modified manner), or (c) to drop it entirely.
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In such a CHAIN OF BUILDERS, more than one BUILDER may handle
a (DSL) processing request sent by a client. To the client, the BUILDER
ultimately responsible is not known beforehand. Each refining
BUILDER acts as a potential MESSAGE REDIRECTOR (see Figure 5).
When the chain can be modified during runtime, the location of
processing is not even known to the chained BUILDERs themselves.

The class diagram in Figure 6 shows one possible structural
overview of a CHAIN OF RESPONSIBILITY between BUILDERS (on the
right). An abstracted interaction protocol between chained BUILDER
objects is depicted on the left. The challenge is to design and to
implement a chaining protocol that matches the requirements (or-
thogonality between builders etc.). The key idea is to have a refining
builder receive and, conditionally, forward DSL invocations to the
base builder, or any other refining builder in-between, for that
matter (see Figure 5).

From a bird’s eye perspective, a BUILDER can maintain a forward
reference to a successor BUILDER. These forward references can be
realised as explicit and named references between BUILDER objects,
or by encoding the references as more generic (language-level)
relationships between BUILDERs (e.g., mixin relationship, or the
composition of Java interfaces). Therefore, over several forward
references, BUILDERs form a chain of succeeding BUILDERs that
ends with a terminal BUILDER. The terminal BUILDER acts as the
base EXPRESSION BUILDER (see Figure 6, on the left). Maintaining
backward references to predecessors might also be necessary (e.g.,
to enable a kind of call forwarding with changing self-references).

Once references between BUILDERS have been established, DSL
invocations must be propagated between predecessor and successor
builders, if needed. The propagation logic establishes whether to
process a DSL script (or fragments of it) locally, with the currently
responsible ConcreteBuilder, or to forward the script to the suc-
cessor, if any. This generic decision condition is represented by the
opt fragment’s guard of Figure 6 (on the left). This propagation logic
can be implemented explicitly, by one BUILDER method forwarding
a call to the respective successor builder, or implicitly, by reusing
language-level mechanisms such as calls along a super-reference
or an unknown mechanism.

It is recommended practise to provide a common anchor for all
BUILDER implementations, e.g., an ABSTRACT SUPERCLASS [] (see
also Figure 5). Such a common anchor provides both for unifying
and for contracting a common method signature to DSL clients
the signature interface of all BUILDERs towards DSL clients. For
one, it may offer a get method to obtain the instantiated language
model corresponding to a DSL script. In addition, a common anchor
can also help reuse implementation details between BUILDERS (e.g.,
accessors and mutators to language-model elements during the
construction procedure).

Applying a CHAIN OF BUILDERS, from a DSL client’s perspec-
tive, does no guarantee ultimate or complete processing of the
input stream. A valid syntax element may fall off the end of the
chain, if propagation is not handled correctly between two chained
BUILDERS. Also, assigning blame to the responsible BUILDER for a
syntax fragment becomes more difficult. Propagation of DSL in-
vocations in a CHAIN OF BUILDERS, on the one hand, and between
BUILDERS in a WHOLE-PART structure must also be accommodated.
The former allows for (reactive) syntax extensions while the latter
helps organise more complex syntax extensions internally. One
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may also consider using a PROPERTY LIST [15] at the level of the
language model to facilitate extension by a CHAIN OF BUILDERS.

Sample Code. Consider a single BUILDER for Ansible playbooks
in Listing 7: MyPlaybookBuilder. This BUILDER implements a vari-
able DSL syntax using METHOD CHAINING. It is variable because one
can request a BUILDER variant supporting Ansible’s when clauses,
another variant without them. A when clause an Ansible marks a
certain step (task) as conditionally executable. This is an example of
DSL extension. Figure 8 documents one possible design and imple-
mentation of the variable internal syntax for this two-member DSL
family. In Java, a CHAIN OF BUILDERS can be implemented using
interfaces with default methods [9, Chapter 9]. A default method
provides a default implementation of a method for any class that im-
plements the interface, without overriding the method. A concrete
BUILDER (out of two possible ones) is implemented by a composition
class MyPlaybookBuilder; this materialises one product out of two
possible ones for this DSL family. As a mere unit of composition,
the class pulls together the different assets. Namely, it implements
one or more Java interfaces (IChainableBase, IChainableCondi-
tions) that act as the assets of the small DSL family. Each asset
interface implements one or more chainable methods for METHOD
CHAINING. The interface IChainableBase provides for the methods
common to all BUILDER variants: play () and task(). The extension
interface IChainableConditions adds when(). By implementing
either of these interfaces, the composition class MyPlaybookBuilder
enables either the base set of methods, or the extended one.

Listing 9 depicts the compact composition class (on the top, in
its entirety). The sole purpose of this class is (a) to implement the
interface providing the chainable methods (line 3, IChainableCon-
ditions) and (b) to implement a detail required by the chainable
methods, internally (lines 6-9): The getBuilder method implemen-
tation is required from within the chainable methods to be able to
return the given BUILDER instance to continue the METHOD CHAIN-
ING. The latter is a mere consequence of Java’s default methods
which do not provide for the typed self-context (this cannot be
used from therein).

To implement the BUILDER behaviour (e.g., testing context vari-
ables such as the most current play or task), the chainable inter-
faces require a minimal getter and setter interface around a given
BUILDER instance (setCurrent()/ getCurrent(), set()/ get();
see Figure 8). To share the implementation of these required meth-
ods between, and so to minimise, the composition classes, they
are provided by the ABSTRACT SUPERCLASS PlaybookBuilder. This
completes the idea of a BUILDER composition class, that combines
the chainable methods from a set of interfaces and that pulls the
methods required by chainable methods from the abstract super-
class.

Listing 9 also showcases a Java default method implementing
when () (at the bottom, lines 7-18). Its header section checks for the
valid execution context (there must be a play, and at least one task)
and then proceeds to extract the most recently added task to set the
execution constrain (not shown). Line 17 shows the required re-
turn statement, to have METHOD CHAINING continue with another
chained method. getBuilder is a required interface of this inter-
face, in essence compensating for the absence of this in a default
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Figure 6: Structural and behavioural overview of a CHAIN OF RESPONSIBILITY between BUILDERs. Adapted from [7, pp. 223].

MyPlaybookBuilder.Playbook()
-play()
.task("run some command")
.task("run another command");

MyPlaybookBuilder.Playbook()
-play()
.task("run some command")
.when("statusCode is failed")
.task("run another command")
.when("statusCode is succeeded");

Listing 7: An Ansible playbook DSL family, one variant w/o
when clauses (top) and one variant w/ when clauses (bottom).

method. The composition class, when declaring the implementa-
tion of this required interface, also provides for an argument of the
type parameter A). This way, METHOD CHAINING is guaranteed to
operate on the most concrete type level from the perspective of the
interface composition (MyPlaybookBuilder itself).

To sum up, in this Java implementation variant, the CHAIN OF
BUILDERS manifests in terms of an interface composition owned
by a BUILDER class (i.e., the product derived from a DSL family),
or alternatively by establishing generalisation/ specialisation re-
lationships between special-purpose interfaces then implemented
by this class. The chainable methods in METHOD CHAINING are im-
plemented as default methods by these interfaces (i.e., the assets
of the DSL family). In this example, a MyPlaybookBuilder imple-
menting IChainableBase will only support play and task calls
(see Listing 7, on the top). A MyPlaybookBuilder implementing
IChainableBase will additionally allow for when calls for a given
task (see Listing 7, at the bottom).

Known Uses.

e Fowler [6] points at composing internal DSLs. The moti-

vation of (internal) DSL composition is glimpsed at in [6,

Section 6.9]. To avoid bloating an internal DSL up (in terms

of additional expressiveness sought), composing two or more

smaller, and possibly independent SEMANTIC MODELS (i.e.,

DSL unification) is hinted at. At the syntax-level, mixing (dis-

tinct) builders is only contrasted to composing an internal

DSL with the host language: “You can also use the host lan-

guage’s abstraction features to help make the composition

[of internal DSLs] work” [p. 111, 6]. CHAIN OF BUILDERS puts

the spotlight on the forces, as well as the different design

and implementation options regarding abstraction features
for composable BUILDERS, ranging from subclassing, mixins

(decorators and default methods), to meta-programming.

DjDSL [18] is a DSL development system for developing

families of domain-specific languages (DSLs). DjDSL allows

for designing and for implementing a DSL family’s abstract
syntax in a variable manner, along with context conditions
and multiple concrete syntaxes. There is support for devel-
oping mixed DSLs, that is, DSL having two or more internal
or external syntaxes (in the spirit of Frag [23], but based on
parsing grammars) and support for the various DSL compo-
sition types (extension, unification, extension composition,
and even self-extension). As part of DjDSL, variable internal

DSL syntaxes can be defined and maintained using CHAIN

OF BUILDERS implemented as decorator mixins [24].

e Mixed-syntax processing: When BUILDERS form part of an
XML-to-object mapper [12] or a JSON-to-object mapper [19],
building cHAINS OF BUILDERS allows for processing mixed
content, e.g., XML documents with CDATA sections holding
JSON documents. At the head of the chain, an XML BUILDER
is responsible for the XML processing, forwarding to a JSON
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Figure 8: DSL extension: An overview of implementing a variable internal Java syntax using default methods, to provide for

the Ansible playbooks in Listing 7.

BUILDER at the tail for the protected (CDATA) content. More
generally, or in the same instance, BUILDERs each responsible
for processing different XML fragments (e.g., correspond-
ing to different XML schema fragments) or different JSON
fragments (e.g., corresponding to different JSON schema
fragments) can be combined into CHAINS, to reuse partial
builders for different variants of input documents.

4 APPLYING CHAINS OF BUILDERS: SOME
STORIES

The pattern description in Section 3 stresses examples of DSL exten-
sion. In DSL extension, a DSL developer composes a base language
(Ansible playbooks with plays and tasks) with a language exten-
sion (when clauses for plays). Generally, a language extension is
an incomplete language fragment which depends directly on the
base language for completion (in terms of the concrete syntax, the
abstract syntax, and the behaviours; [5]).

In the following, the focus is shifted towards additional com-
position types for DSLs (unification, extension composition); and
towards how CHAINS OF BUILDERS help support them at the syntax
level.

4.1 DSL restriction

DSL restriction has been considered a variant of DSL extension [5];
not undisputedly, though. At the level of concrete syntax, equiv-
alently, restricting an internal DSL can be realised by prepending
special-purpose BUILDERS at the chain’s head. Preceding BUILDERS
can consume then restricted DSL invocations. The consuming
BUILDER can either report the disallowed syntax element or discard
it silently, depending on the type of restriction sought. This way,
no corresponding abstract-syntax elements end up in the language-
model instantiations, to begin with. This form of syntax-level DSL
restriction may apply to either the base DSL, or any DSL composi-
tion.

Let us return to the running example of Ansible playbooks, once
more. A restricted variant of the playbook DSL supporting condi-
tionals (see Listing 9) may impose additional constraints onto the
use of when clauses; or a restricted variant may prohibit the use of
when clauses entirely. Pruning an entire syntax clause is more likely
a requirement towards a complete base syntax, rather than on the
result of a DSL extension. Nevertheless, for the sake of continuity,
I stick with this example for the time being. See Listing 10.

The composition class MyPlaybookBuilder can provide a method
implementation for when that overrides the default method provided
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public final class MyPlaybookBuilder
extends PlaybookBuilder
implements IChainableConditions<MyPlaybookBuilder>
{

~ W

6 @Ooverride
7 public MyPlaybookBuilder getBuilder() {

8 return this;

9 }

10

11 public static MyPlaybookBuilder Playbook() {
12 return new MyPlaybookBuilder();

13 }

14| }

2| public interface IChainableConditions<A>

3| extends IChainableBase<A> {

4 /* required interface */

5 A getBuilder();

6

7 default A when(String expression) {

8 if (getCurrent() == null |

9 getCurrent().getTasks().size() == 0) {
10 throw new UnsupportedOperationException();
11 }

12 /* get current Task */

13 getCurrent().

14 getTasks ().

15 get(getCurrent().getTasks().size()-1)

16 VAR

17 return getBuilder();

18 }

19] }

Listing 9: The composition class MyPlaybookBuilder (top)
and the extension interface IChainableConditions (bottom).

public final class MyPlaybookBuilder
extends PlaybookBuilder
implements IChainableConditions<MyPlaybookBuilder> {

@Override
public MyPlaybookBuilder when(String expression) {
/* throw new UnsupportedOperationException(); */
return getBuilder();
}
}

R = N N R

Listing 10: Exemplary implementation of a restricted vari-
ant of Ansible playbooks, based on Java default methods and
overrides.

by the implemented interface IChainableConditionals. The over-
riding method does not forward the call to the default method, there-
fore, effectively disabling this syntax element. By either returning
the BUILDER object or by throwing an exception (both, either un-
conditionally or conditionally), the DSL restriction can be realised
in different ways. With this override in place, the DSL script from
Listing 7 (bottom) will either execute (with when clauses silently
ignored) or an exception will be signalled.

4.2 Extension composition

In extension composition, two or more extensions are composed
with one another, or become combined into one amalgam exten-
sion, before entering a composition with a base DSL. Picture the
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MyPlaybookBuilder.Playbook()
-play()
.taskWhen("run some command",
"statusCode is failed")
.taskWhen("run another command",
"statusCode is succeeded");

public interface IChainable2inl<A>
extends IChainableBase<A>,
IChainableConditions<A> {

/* required interface */
A getBuilder();

default A taskWhen(

String name,

String expression) {
task(name);
when(expression);
return getBuilder();

}
}

Listing 11: An Ansible playbook variant with a combined
taskWhen (top), reusing the implementations of the separate
task and when (bottom).

requirement of providing a variant of Ansible playbooks which
offer a combined taskWhen syntax element, rather than a separated
conditional when on task. At the same time, this variant should
not reimplement (duplicate) any of the syntax-processing imple-
mentations of the two separated calls.

In the example, the CHAIN OF BUILDERS for composing two (or
more) syntax extensions can be implemented by extending the two
readily available interfaces IChainableBase and IChainableCon-
ditions using a third composition interface: IChainable2inl (see
Listing 11, at the bottom). This interface defines a corresponding
default method taskWhen. The method implementation calls the
existing methods task and when, available from the two extended
interfaces. A MyPlaybookBuilder class can now implement this
single interface to expose the combined syntax of all three interfaces
(rather than implementing all three of them).

+Ihsl |

StringLiteral Expression BooleanOrComparison
’I‘ +rhs |
+op
VariableRef «enumeration»
Operator

enumeration literals
EQUALS
NOTEQUALS

Figure 12: An exemplary language model (a.k.a. sSEMANTIC
MODEL) for a minimal expression language.

4.3 DSL unification

In DSL unification, two or more, otherwise free-standing and inde-
pendent DSLs are composed, at all levels: language models, concrete
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Playbook()
.play()

.task("run some command")

.when(Test()
.variable("statusCode")
.eq("failed"))

.task("run another command")

.when(Test()
.variable("statusCode")
.eq("succeeded"));

public interface IChainableConditionsWithExpr<A>
extends IChainableBase<A> {
default A when(TestExprBuilder expression) {
/* K/
return getBuilder();
}
}

Listing 13: An Ansible playbook variant with when condi-
tions that accept test expressions formulated using a second
DSL (at the top), reusing the implementations of the corre-
sponding EXPRESSION BUILDER: TestExprBuilder (at the bot-
tom).

syntaxes, and behaviour implementations. This may be motivated
by integrating (reusing) a generic kernel language (e.g., a language
to capture expressions [20]) into a more specific language for a
given application (i.e., the Ansible playbook language). Let us re-
visit the task and taskWhen facilities introduced earlier (see List-
ings 7 and 11). They represent test or trigger conditions, and these
conditions are opaque strings from the perspective of the Ansi-
ble playbook DSL (e.g., “statusCode is failed”). Assumingly, these
strings are valid and have meaning according to some external
syntax for an (non-Java) language. This is an example of FOREIGN
CODE [6, pp. 309]. As an alternative, the Ansible playbook DSL could
be extended to capture these test conditions as an integral part of
playbooks. However, this may complicate the playbook DSL and
bloat the language model (given that the conditions are optional
parts). In addition, one will find that these test expressions resem-
ble expressions typically found in software-testing languages; and
general-purpose functional languages [20]. So, why re-invent this
wheel?

If available, an existing internal language for expressions can be
composed with the Ansible playbook to form a unified DSL, as a
middle ground. Consider an exemplary model for expressions in Fig-
ure 12. A corresponding EXPRESSION BUILDER (TestExprBuilder,
implementation not shown) could realise an internal syntax based
on METHOD CHAINING on top of this language:

TestExprBuilder.Test()
.variable("varName").eq("foo")

Once processed, this syntax fragment yields an instantiation of
the model in Figure 12. This instance contains a BooleanAndCom-
parison expression, with an EQUALS operation between a left-hand
VariableRef resolving to a variable statusCode and a right-hand
StringLiteral of value failed.

Using a CHAIN OF BUILDERS, this internal DSL can be embed-
ded with the Ansible playbook DSL to render when and taskWhen

Sobernig

conditions first-class (see Listing 13, top). The integration vehicle
is a composable interface IChainableConditionsWithExpr that
provides a chainable method when accepting an instance of the
EXPRESSION BUILDER instance for test expressions (see Listing 13,
bottom). Internal to the default-method’s implementation, this £x-
PRESSION BUILDER can then be used to obtain the corresponding
language-model instance of expressions and to link the expres-
sion to some evaluation context (e.g., sourced from the runtime
occurrence of some Ansible task or module), for conducting the
variable tests, eventually. A unifying EXPRESSION BUILDER then of-
fers means to create method chains, both for defining playbooks
(MyPlaybookBuilder.Playbook()) and for defining test expres-
sions (MyPlaybookBuilder.Test()) in one composite expression
(see Listing 13, bottom). The CHAIN OF BUILDERS to obtain this DSL
unification is as follows (in order of method resolution for METHOD
CHAINING)

(1) MyPlaybookBuilder
(2) IChainableConditionsWithExpr (via implements)
(3) IChainableBase (via extends)

5 CONCLUDING REMARKS

This paper documents known and proven practises to implement
variable internal syntaxes of domain-specific languages (DSL); or
object-oriented APIs for variable syntax processing. This documen-
tation is centred around the description of CHAIN OF BUILDERS pat-
tern. This pattern corresponds to the combined application of two
established patterns: EXPRESSION BUILDER for separating concerns
in syntax processing and CHAIN OF RESPONSIBILITY for extending
syntax processors in a stepwise manner. The objective is to min-
imise preplanning (i.e., avoid anticipating explicit extension points)
while keeping syntax extension independent from each other (i.e.,
not requiring invasive changes to existing assets). Relationships to
other architecture and language-design patterns, e.g., by Fowler [6],
are discussed. Applying CHAIN OF RESPONSIBILITY to implement
DSL extensions, DSL extension compositions, and DSL unification
are presented. The running examples provide Java implementa-
tion examples of internal DSLs for deployment descriptors (Ansible
playbooks) and expressions, respectively.
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