Applying Patterns for Reengineering to the Web

Author: Uwe Zdun

Affiligtion:

New Media Lab, Department of Information Systems, Vienna University of Economics, Austria

Address:

Vienna University of Economics
Department of Information Systems
Uwe Zdun

Augasse 2-6

1090 Wien

Austria

Phone: ++43 1 313 36 4796
Fax: ++43 1313 36 746

Emal: zdun@cm or g

Applying Patterns for Reengineering to the Web

ABSTRACT

Today reengineering existing (legacy) systems to the web is a typical software
maintenance task. In such projects developers integrate a web representation with
the legacy system’'s API and its responses. Often the same information is provided to
other channels than HTTP and in other formats than HTML as well, and the old
(legacy) interfaces are still supported. Add-on services such as security or logging
are required. Performance and scalability of the web application might be crucial.
To resolve these issues, many different concepts and frameworks have to be well
understood, especially legacy system wrapping, connection handling, remoting,
service abstraction, adaptation techniques, dynamic content generation, and others.
In this chapter, we present patterns from different sources that resolve these issues.
We integrate them to a pattern language operating in the context of reengineering to
the web, and present pattern variants and examplesin this context.

Keywords: 1S Maintenance, Legacy Migration, Reengineering, Software Patterns,
Software Architecture, Object Oriented Design.

INTRODUCTION

Many existing software sysems have to be migrated to the web. That means, the legacy system
gets an interactive web interface, typicdly in addition to its exiding intefaces. This web
interface forwards web requests to the legacy system, decorates the responses of the system with
HTML markup, and sends the results to the web client. Inputs are handled via the web browser,
sy, usng HTML links and forms For smdl applications building a web interface is quite
smple; however, for larger, existing systems there are some typica issues, including:

high flexibility and adaptability of the web interface,

reuse of the presentation logic,

high performance,

preserving states and sessons,

user management, and
serving multiple channds

That means, implementing a web interface for a larger, exiding legacy system is a nontrivid
tak that is likdy to be underesimated. This underestimation, in turn, results in unexpected
maintenance costs and development times. However, there are many successful projects that have

avoided the common pitfals.

Software patterns are a way to convey knowledge from successful solutions. To tackle the
issues named above, we present patterns from various pattern languages and pattern catalogs that
can be gpplied in the context of reengineering to the web. In particular, we discuss connection
and invocation handling, legacy system wrgpping and adaptation, deding with asynchronous
invocations, concurrency handling, service and channd abdraction, sesson management, and
dynamic content generation and converson. The paterns are origindly presented in different
contexts, in this chapter we present them in variants specific for reengineering to the web. This
way we build up a pattern language for reengineering to the web, conssing of patterns dready
documented elsewhere in related, but yet different, contexts.

The remainder of this chapter is dructured as follows In the next section we give a brief
problem outline, and then we briefly explain the concepts 'pattern’ and ’pattern language.” Next,
we discuss connection and invocation handling in web gpplications that connect a legacy system
to the web. Then we introduce solutions for legacy system wrapping, adaptation, and decoration.
In the following section we discuss how to provide the services of a legacy sysem to more than
one channd. Also we illustrate how to provide sessons and date in web gpplications despite the
HTTP protocol being datedess. Next we discuss content generdtion, representation, and
converson for the web. The following section deds with the integration of typica add-on
savices, such as security or logging. Findly, we give an overview and discusson of the pattern
language that we have explained incrementdly in the preceding sections, provide a case Sudy,

and corclude.

PROBLEM OUTLINE

In the context of reengineering to the web, a legacy application gets an (additiond) interactive
web interface that decorates the outputs of the system with HTML markup and trandates the (eg.
form-based) inputs via the web browser into the (legacy) sysem’'s APIs. At firgt glance, this

3

seems to be a conceptualy sraightforward effort, though it might turn out to be a lot work for

larger systems.

In Figure 1 we can see a dmpligic threetier architecture for interactive, web-based

gpplications. A web user agent, such as a browser, communicates with a web server. The web
saver “undergtands’ that certain requests have to be handled interactively. Thus, it forwards the
request and dl its information to another module, threed, or process that trandates the HTTP

request to the legacy system’s APIs. An HTML decorator builds the appropriate HTML page out

of the system’ s response and trigger the web server to send the page to the web client.

] x W
ined el 4k T Dd—P
S e

T — Web
> Server

incoming request

Request
Decoder

legacy system's APIs

response in HTML

HTML

Decorator

1) Legacy
% System
T

Figure 1: Simplistic Three-Tier Architecture for (Re-)engineering to the Web

Using this smple architecture for a given legacy system, we can use a smple process model for

migrating to the web. In particular the following steps have to be performed in general. Of course there are

feedback loops during these steps, and they are not in any particular order:

Providing an Interface API to the Web: To invoke a system’s functions/methods and

decorate them with HTML markup, we firs have to identify the rdevant components
and provide them with digtinct interfaces (which may, in the ided case, exist dready).
These interface have to satisfy the web engineering project’s requirements. To find
such interfaces, in generd, for each component there are two possibilities:

o Wrapper: The developer can wrap the component with a shdlow wrapper
object that just trandates the URL into a cal to the legacy sysem’s API. The

wrapper forwards the response to an HTML decorator or returns HTML

fragments.

0 Reengineered or Redeveloped Solution: Sometimes it is suitable to reengineer

or redevelop a given component completely, so that it becomes a purdy web-

enabled solution. For ingtance, this makes sense, when the legecy user interface
does not need to be supported anymore.

Implementing a Request Decoder: A component has to nap the contents of the URL
(and other HTTP request information) to the legacy system’s APl or the wrapper’s
interface respectively.

Implementing an HTML Decorator Component: A component has to decorate the
legacy system’s or wrapper’ s response with HTML markup.

Integrating with a Web Server: The components have to be integrated with a web
server solution. For ingtance, these components can be CGlI-programs, run in different

threads or processes, may be part of a custom web server, etc.

In our experience, this architecture is in principd applying for most reengineering to the web
efforts and for many newly developed web-endbled systems (that have to serve other channds
than HTTP as well). However, this architecture and process modd do not depict the maor
strategic decisons and the desgn/implementation efforts involved in a lage-scde web
development project well. There are many issues, critica for success, that are not tackled by this
ampligic architecture, including: technology choices, conceptud choices, representation
flexibility and reuse, performance, concurrency handling, dedling with asynchronous invocations,
preserving states and sessions, user management, and service abstraction.

In this chepter, we will survey and categorize critical technica aspects for reengineering to the
web using the patterns of successful solutions. Thus we will sep by Sep enrich the smple
architecture presented above to gather a conceptua understanding which eements are required
for reenginesring a larger system to the web. Moreover, this way we will build up a framework to
categorize web deveopment environments and packages. An important god is to assemble a
feature lig and terminology for mapping requirements to concrete technologica and conceptud
choices s0 that new projects can easier decide upon used frameworks.

PATTERNS AND PATTERN LANGUAGES

In this chapter, we present a pattern language for reengineering to the web. In short, a pattern isa
proved solution to a problem in a context, resolving a set of brces. Each pattern is a three-part

rule, which expresses a relation between a certain context, a problem, and a solution [Alexander,

1979]. In more detail, the context refers to a recurring set of dtuations in which the pattern
gpplies. The problem refers to a sat of gods and condraints that typically occur in this context,
cdled the forces of the pattern. The forces are a set of factors that influence the particular
solution to the pattern’s problem. A pattern language is a collection of patterns that solve the
prevaent problems in a paticular domain and context, and, as a language of patterns, it
specificaly focuses on the pattern reationships in this domain and context. As an eement of
language, a pattern is an indruction, which can be used, over and over again, to resolve the given

system of forces, wherever the context makes it rlevant [Alexander, 1979].

Our pattern language uses patterns that have been documented in the literature before, ether as
“isolated” petterns or in other pattern laguages. In the pattern language presented, we
specificdly use these peatterns in the context of reengineering to the web. That means, we
describe the paterns in this particular context. Note that there is a difference to the generd

purpose use of these patterns.

We present the patterns within the explandions of the reengineering solutions, where the
patterns occur the firg time. Each pattern is presented with a problem section, followed by a
solution which garts with the word “therefore” We aways cite the origina pattern descriptions,
refer to them for more details on the particular patterns.

CONNECTION AND INVOCATION HANDLING

There are many different kinds of frameworks that can be used to access objects running in a
remote server, such as didributed object frameworks (like CORBA, DCOM, RMI), web
gpplication frameworks, or object-oriented messaging protocols. In this chapter, we commonly

refer to these kinds of frameworks as remoting frameworks.

Web application frameworks, such as Java Servlets and JSP, Apache and Apache Modules
[Thau, 1996], AOL Server [Davidson, 2000], TclHttpd [Welch, 2000], WebShel [Vckovski,
2001], Zope [Latteler, 1999, or ActiWeb [Neumann and Zdun, 2001], provide a pure server-side
remoting framework based on web servers. That means, invocations sent with web requests are
interactively handled by code running in the web server. Often for reengineering to the web an
existing web application framework can be reused. In some cases it makes sense to implement a

custom invocation framework on top of a web server, for ingance, if the performance of exidting

web gpplication frameworks causes problems or if it is not possble to access or control required
parameters in the HT TP header fields.

On client side, in most cases, the web browser is used as the primary client. If other programs
are used as clients (or if a web browser should be implemented), an HTTP client suite has to be
chosen (or built) as well. A fundamental difference of web gpplication frameworks in comparison
to other kinds of remoting frameworks, such as digtributed object frameworks, is that the client
(e.g. the web browser) is a generic program handling al possble applications. Distributed object
frameworks use an applicationspecific dient implementation that is redized with the dient
components of the distributed object frameworks.

Many web agpplications wrapping a legacy system have to support other remoting frameworks
as well. For ingtance, distributed object frameworks that are dso based on HTTP (such as web
services) can be supported, or frameworks that are based on other protocols (such as CORBA).
Combining different protocols and remoting frameworks can be handled by a SERvicE
ABSTRACTION LAYER[Vogd, 2001].

The named remoting frameworks use a Smilar basic remoting architecture, but yet there are
many differences. The developer, who wants to use one or more of these remoting frameworks,
has to understand the basic remoting architecture of the used frameworks well. Of course, in the
web reengineering context this especidly means to understand the web agpplication framework
used. This is important because it may be necesssty to tune or configure the remoting
frameworks, for ingtance, to optimize Quaity of Service (QoS), tune the performance, use
threading, use POOLING [Kircher and Jain, 2002], or extend the invocation process. Also for
integrating different frameworks it isimportant to understand their basic architecture well.

Layers of a Web Application Framework

In this section, we explain the remoting architecture of web application framework usng differ-
ent LAYERS [Buschmann et d., 1996] (see Figure 2):

Pattern 1 — LAYERS:

Condder a sygem in which high-level functiondities ae depending on low-levd
functiondities. Such systems often require some horizontad structuring that is orthogond to

therr vertica subdivison. Locd changesbility, exchangesbility, and reuse of sysem parts
should be supported.

Therefore, dructure the system into LAYERS and place them on top of each other. Within

each LAYER dl condtituent components work on the same leve of abstraction.

In a web application framework, the lowest layer is an adaptation layer to the operating system
and network communication APIs. The advantage of usng an adaptation layer is tha higher
layers can abgtract from platform details and therefore use an platform-independent interface. The
operating system APIs ae (often) written in the procedurd C language, thus, if the
communication framework is written in an object-oriented language, WRAPPER FACADES [Schmidt

et a., 2000] are used for encapsulating the operating system’s APIs.
Pattern 2 — WRAPPER FACADE:

Condder an object-oriented system that should use nonrobject-oriented APIs (such as
opeating sysem APIs, sysem libraries, or legacy sysems). It should be avoided to
program non-object-oriented APIs directly.

Therefore, for each st of related functions and data in a non-object-oriented API, create

one or more WRAPPER FACADE classes that encgpsulate these functions and data with a more
concise, robugt, portable, and maintainable interface.

The higher layers only access the operating syslem’'s APIs via the WRAPPER FACADES. Each
WRAPPER FACADE condsts of one or more classes that contain forwarder operations. These
forwarder operations encepsuae the C-based functions and data within an object-oriented
interface. Typicd WRAPPER FACADES within the operating system adaptation layer provide access
to threading, socket communication, /O events, dynamic linking, etc.

On top of the adaptation layer the communication framework is defined. It handles the basics
of connection handling and asynchronous invocation. The layer containing the HTTP dient (eg.
the web browser) and the HTTP sarver components, including the web application framework,
are defined on top of the communication framework layer.

The sarver agpplication, findly, contans the wrappers for the legacy system. If the legecy
system provides a procedurd API, the pattern WRAPPER FACADE can be used to access it. Or the

legacy system might run in a different process or different machine (e.g. as a server process or a

batch process). Then some kind of connection is required, such as inter-process communication

or another communication framework.

Note tha even though only the highet LAYER of the web application framework is concerned
with the reengineering to the web task, the wrappers in it may have to access detals in lower
LAYERS In generd, low-levd functiondities are hidden by higher level LAYERS. But sometimes it
is necessary to ded with the low-levd functiondities directly, say, for configuration,
performance tuning, or Qudity of Service tuning. Thus the developer of a reengineering to the
web solution has to understand the lower LAYERS (APIs), even though it is usudly possble to

reuse exiting lower LAYER implementations.

Web Connection vs. Connection to the Legacy System

As illugrated in Figure 2 there are possbly two connections between different systems. Besdes
the web connection between web client and web server, there may be a second connection from
the web gpplication framework to the legacy system. We might have to cope with characteristics
of the web connection when connecting to the legacy sysem as wdl. Typicd problem fieds are
asynchronous invocations, concurrency, the statelessness of the HTTP protocol, missng support
for sessons, and potentid performance overheads. If a particular problem is not dready resolved
by the web application framework, it has to be resolved within the connection to the legacy
gystem. Out of these reasons, even if an existing web application framework can be reused, a
reengineer has to undergand the solution to these problems in the web gpplication framework
well. The connection to the legacy system has to use the invocation modd of the web application

framework and/or customize it to its requirements.

- ~i;1vokles- -l
Client: Web Browser - Server Application »| Legacy
l 4 § System
>] c
-)] Remoting Layer: 3
Remoting Layer: HTTP Client g Web Application Framework o
2 HTTP Server 2
o
l P 4 o
Communication Framework g Communication Framework %
a £
! 2 t 3
; 5) =
Adaptation Layer 3 Adaptation Layer =
= 2
! f 8
o
Operating System APIs » Operating System APIs

Figure 2: Web Application Layers

As a typicd example, consder a legacy system that dlows for synchronous processng (eg.
batch processng) only. Web clients send asynchronous and concurrent requests. Thus somewhere
these requests have to be demultiplexed and synchronized. Potentidly the web application
framework can demultiplex and synchronize the requests dready. But often for performance
reasons such requests are handled ty multiple threads in the web server. These threads again can
concurrently access the legacy system. Then the connection to the legacy system has to handle
demultiplexing and synchronization for the access to the legacy system.

That means, the patterns of connection handling and invocation handling discussed in the next
sections ether can be implemented within the web application framework or as pat of the
connection to the legacy system.

Communication Framework: Connection Handling and Concurrency
For remote communication, connection edablishment is typicdly handed by the
ACCEPTOR/CONNECTOR pattern [Schmidt et ., 2000]:

Pattern 3 — ACCEPTOR/CONNECTOR:

Protocols like HTTP are based on connections (eg. socket connections). Coupling of
connection management and configuration code with the processng code should be
avoided.

Therefore, separate the connection initidization from the use of established connections. A
connection is created, when the connector on client side connects to the acceptor on server
dde. Once a connection is established, further communication is done usng a connection
handle

An HTTP sarver listens to a network port to accept connections sent by the client; in turn, the
client (i.e. the web browser) uses a connector to start an HT TP request. A connector and acceptor
par is dso used for response handling. The server response connects to the client that awaits the

server’s responses with a response acceptor.

An HTTP server has to support asynchronous invocations to enable multiple smultaneous

requests. Nontrivid dlients (like most web browsers) should not block during request and
regponse, and thus, are aso asynchronous. Therefore, the programming model of most web

gpplications is event-based both on client Sde and server sde, meaning that an event loop and/or

10

multi-threading is supported and connection handling is done usng calbacks for the network
events. A REACTOR [Schmidt et a., 2000] reacts on the network events and efficiently
demultiplexes the events. It dispaiches al requests to handler objects:

Pattern 4 — REACTOR:

Event-based, distributed systems (may) have to handle multiple requests (and responses)
smultaneoudy.
Therefore, synchronoudy wait for (connection) events in the REACTOR. The sysem

regigers event handlers for certain types of events with the REACTOR. When an event
occurs, the REACTOR digpatches the event handler associated with the event.

In web gpplications, aREACTOR istypicaly used on client Sde and server Sde.

Server side concurrency can smply be handled by the REACTOR and an event loop. That means
the REACTOR queues up dl network events in the order of demultiplexing. This is a very smple
concurrency handling architecture that yidds a good performance for reaivey smdl, remote
operations. Computation-intensive or blocking operations may cause problems as queued

requests have to wait for these operations.

If computatiorrintensve or blocking operations can be expected (what may be the case for a
legacy system), the web server should proceed with other work while waiting for the legacy
sysem’'s response. Thus, in such cases, typicdly a mult-threaded server is used. Then only one
threed of control has to wat for a computationintensve or blocking operation, while other

threads can resume with their work.

If we access a legacy system that requires synchronous access from multiple threeds, we have
to synchronize and schedule the accesses. This can done by using objects in the web application
saver for scheduling access to the legacy system; there are two dterndive patterns for

synchronizing and scheduling concurrently invoked remote operations [Schmidt et d., 2000]:
Pattern 5 — ACTIVE OBJECT:

Congder tha multiple clients access the same object concurrently. Processing-intensve
operations should not block the entire process. Synchronized access to shared concurrent

objects should be provided in a straightforward manner.

Therefore, decouple the executing from the invoking thread. A queueis used between those

11

threads to exchange requests and responses.
Pattern 6 — MONITOR OBJECT:

Congder that multiple client requests access the same thread of control concurrently. An
object should be protected from uncontrolled concurrent changes and deadl ocks.

Therefore, let a MONITOR OBXECT ensure that only one operation runs within an object a a
time by queuing operaion executions. It gpplies one lock per object to synchronize access
to dl operations.

Often threading is used for connection handling and execution. For each particular connection
a connection handle has to be ingtantiated. To optimize resource dlocation for connections, the
connections can be shared in a pool usng the pattern POOLING [Kircher and Jain, 2002]. This
reduces the overhead of ingtantiating the connection handle objects.

Pattern 7 — POOLING:

Condder a system tha provides access to multiple resources of the same kind, such as
network connections, objects, threads, or memory. Fast and predictable access to these
resources and scaability are required.

Therefore, manage multiple ingtances of a resource type in a pool. Clients can acquire the
resources from the pool, and release them back into the pool, when they are no longer
needed. To increase efficiency, the pool eagerly acquires a static number of resources after
credtion. If the demand exceeds the available resources in the pool, it lazily acquires more

resources.

When the legacy system can be accessed concurrently, we can adso pool the instances that
connect to the legacy system to avoid the overhead of edtablishing a connection to the legacy
sysem.

In the context of reengineering to the web, it is especidly important to sdect for a proper
concurrency model. Also, connection and/or thread POOLING have to be adjusted to the
requirements of the legacy application. Usudly, these issues do not have to be implemented from
scratch, but only the models of used remoting frameworks have to be wdl understood and
integrated with the modd of the legacy application. In contrast, the connection to the legacy
system ismost often hand-built.

12

Remoting Layer
On top of the connection handling and concurrency layer (the communication framework) there
ae a few badc remoting patterns (from [Vodter e d., 2002]) that are used for building the
remoting layer.

In a remoting framework clients communicate with objects on a remote server. On the server
gdetheinvoked functiondity isimplemented as aREMOTE OBJECT [V odlter et d., 2002]:

Pattern 8 — REMOTE OBJECT:

Accessng an object over a network is different from accessng a loca object because of
machine boundaries, network latency, network unreliability, and other properties of

network environments.

Therefore, let a digtributed object framework transfer loca invocations from the client sde
to a REMOTE OBJECT within the server. Each REMOTE OBJXECT provides a well-defined

interface to be accessed remotely.

In web application frameworks, the REMOTE OBXECT is responsble for building up the
delivered web pages dynamicdly. In the legacy reengineering context that means it has to invoke
the legacy sysem and decorate it with HTML. That means, if a connection to the legacy system
has to be established, the REMOTE OBJECT is respongble for building it up. As explained in the
previous section the concurrency patterns and POOLING might dso be gpplied within the REMOTE
OBJECT.

The client invokes an operation of a local object and expects it to be executed by the REMOTE
OBXECT. To make this happen, the invocation crosses the machine boundary, the correct operation
of the correct REMOTE OBJECT is obtained and executed, and the result of this operation invocation
is passed back across the network. In a distributed object framework a CLIENT PROXY [Voelter et

a., 2002] isused by aclient to access the REMOTE OBJECT :
Pattern 9 — CLIENT PROXY:
The programming model on client sde should not expose the networking details to clients.

Therefore, provide a CLIENT PROXY as a loca object within the client process that offers the

REMOTE OBJECT'S interface and hides networking detalls.

13

In web gpplications the CLIENT PROXY usudly is a generic invocation handler that sends
network requests for web pages using an URL. In the URL or in the HTTP request, the detals of
the invocation (object 1D, operation name, parameters) are encoded. These details are used by the
server to find the correct object to be invoked. These tasks are performed by an INVOKER [Voeter
et a., 2002] on the server side:

Pattern 10 — INVOKER:

When a CLIENT PROXY sends invocations to the server sde, somehow the targeted REMOTE
OBJECT has to be reached.

Therefore, provide an INVOKER that is remotely accessed by the CLIENT PROXY with the
invocation data. The INVOKER de-marshds the invocation data and uses it to digpaich the

correct operation of the target REMOTE OBJECT .

Note that in distributed object frameworks that are primarily designed for programto-program
communication, such as CORBA or web services, often CLIENT PROXIES and INVOKERS are
specific for a REMOTE OBJECT type. They can be generated from an INTERFACE DESCRIPTION
[Vodter et d., 2002]. In contrast, in a web gpplication the interfaces are solely defined by the
sarver and the correct access interfaces (and parameters) have to be ddivered to the client using
web pages. For integrating web application with distributed object frameworks it is necessary to
integrate these differences of the remoting modes. When the legacy system contains full
INTERFACE DESCRIPTIONS, such as C header files for ingtance, these can potentidly be used to

generate the INVOKERS automatically.

Usudly, there is more than one INVOKER in a web gpplication framework; for ingance, one for
delivering datic web pages from the file sysem and one for handling remote invocations of
REMOTE OBJECTS Thus some ingance is required to pick out the responsble INVOKER for an
incoming request. On client and server Sde, a REQUEST HANDLER [Vodter et d., 2002] is used to
abgiract the communication framework for CLIENT PROXY and INVOKER

Pattern 11 — REQUEST HANDLER:

On dient and sarver dde the deals of connection handling have to be handled. In
particular, communication setup, resource management, threading, and concurrency have to
be handled and configured in acentra fashion.

14

Therefore, provide a SERVER REQUEST HANDLER, responsble for deding with the network
communication on sarver dde together with a respective CLIENT REQUEST HANDLER,
responsble for client Sde communication. These REQUEST HANDLERS interact with CLIENT
PROXIES and INVOKERS respectively.

Usudly, the same communication framework implementations can be used on dient and
sarver side, but the REQUEST HANDLERS are different; the CLIENT REQUEST HANDLER CONNECts to
the server dde and uses the REACTOR to wait for the reply, whereas the SERVER REQUEST
HANDLER waits for incoming invocations and sends the reply back, after it is processed. CLIENT
PROXY, REQUEST HANDLER, and INVOKER build together a BROKER [Buschmann et a., 1996] (see
Figure 3).

-+~ :RemoteObject [Legacy System AP

>
3
e
S Marshaller
o) p——
M 1
. 0
— ™ :ClientProxy g ~u :Invoker —— InstancePool
— (&}
Marshaller £ 1
v E ThreadPool
:ClientRequestHandler | | § ™| :ServerRequestHandler
IS .
| > | ConnectionPool
Communication Framework Communication Framework

Figure 3: Web Remoting Layer

Marshdling of request and response has to hgppen on dient and server side according to the
HTTP protocol. This especially means adding of HTTP headers, encoding URLs and form data,
and converting binary data (eg. usng Base64 encoding). This is done by a MARSHALLER [Voelter
etal., 2002):

Pattern 12 — MARSHALLER:

The data to describe operation invocations of REMOTE OBJECTS consst of the target object’s
object 1D, the operation identifier, the arguments, and possibly other context information.
All thisinformation has to be transported over the network connection.

Therefore, require eech REMOTE OBJECT type to provide a way to seridize itsdf into a
trangport format that can be transported over a network as a byte stream. The distributed

15

object framework provides a MARSHALLER (on client and server dde) that uses this
mechanism whenever a remote invocation needs to be transported across the network.

A MARSHALLER for web gpplications dso has to convert remote invocations into parts of web
pages. Usudly, remote invocations are either modded as HTML links or actions of HTML
forms. In contrast to didributed object frameworks, in a web agpplication marshdling of
invocations is only performed on server Sde the dlient dde invocaions are encoded into the
delivered web pages. For ingance, the following invocation to the REMOTE OBJECT obj ect Nare

and the method net hodNare can be embedded in an HTML document asalink:

htt p: // wwv. nyhost . or g/ obj ect Nane+net hodNane?ar g=xyz
On server sde such invocations have to be de-marshdled, when a request arrives (for instance,

the URL dgring has to be split and/or the HTML form data has to be evauated). Marshdling can
triggered by the INVOKER. If more than one INVOKER is used in the system, the REQUEST HANDLER
can de-marshd the invocation partidly to find the correct INVOKER to handle the invocation.

Note that the connection to the legacy system might need more context information, such as
for indance a sesson identifier. Such context information aso need to be marshdled and
embedded in HTML or HTTP (that is ether in the URLs of HTML links, in the HTML text with
HIDDEN form fields, or as cookies).

Sengtive information, such as user authentications, additiondly can be encrypted during
marshdling.

LEGACY SYSTEM WRAPPING, ADAPTATION, AND DECORATION
An important agpect of migrating a legacy sysem to the web is wrapping. Wrappers are

mechanisms for introducing new behavior to be executed before, after, in, and/or around an
exiging method or component. Wrapping is especidly used as a technique for encapsulating
legacy components. Common techniques of reusng legacy components by wrapping are
discussed in [Sneed, 2000, Brant et al., 1998].

On sarver-dde of a web gpplication framework, we have to mgp incoming invocations into the
legacy system. The invoker provides the invocation data that it has obtained by de mashdling
the URL and the HTTP request header. The invocation data references a wrapper object. This
wrapper is responsble for forwarding the invocation into the legacy sysem and obtaining the

result.

16

The COMPONENT WRAPPER pattern [Zdun, 2002a] generdizesthisform of (legacy) wrapping:
Pattern 13 — COMPONENT WRAPPER:

A component should be used with its externd interface only, but ill we often require some
way to customize and adagpt a component to a degree that goes beyond pure
parameterization.

Therefore, let the access point to a component be a COMPONENT WRAPPER, a fird-class
object of the programming language. Within this object the component access can be
customized without interfering with the client or the component implementation.

The COMPONENT WRAPPER is a white-box for the component’s client and enables us to bring in

changes and cugtomizations, eg. with DECORATORS [Gamma et al., 1994] and ADAPTERS [Gamma
et d., 1994]. Note that the legacy system can run in the same process as the COMPONENT

WRAPPER, or it can run in a different process When reengineering to the web, a typica
COMPONENT WRAPPER iS dS0 a REMOTE OBJXECT running in the web agpplication framework. It

exports (some of its) operations as URL s to the web.

The COMPONENT WRAPPER methods can be smple forwarder operations. When a procedura
APl is supported by the legacy system, they are usudly implemented as WRAPPER FACADES. O,
dternatively, the COMPONENT WRAPPER might build up a connection to the legacy system either
with inter-process communication (eg. for baich processng applications) or with a
communication protocol (e.g. for server gpplications).

As an indirection mechanism, wrappers can adso be used as a place for goplying adaptations
and decorations[Gamma et al., 1994]:

Pattern 14 — ADAPTER:

A dient requires a different interface than provided by a class, yet the class cannot be
changed.

Therefore, use an ADAPTER to convert the interface of a class into another interface clients
expect. It can be redized as a class adapter usng multiple inheritance or as an object

adapter which forwards messages to the adapted object.

Pattern 15 — DECORATOR;

17

An object should expose some additiona behavior, yet the class of the object should not be
changed.

Therefore, use a DECORATOR to dynamicdly attach additiond responsbility to an object
usng a DECORATOR object that forwards invocations to the decorated object, after the

decoration has taken place.

In the context of reengineering to the web, ADAPTERS are especidly used for adaptations of
interfaces, if the legacy system does not support a required interface that should be exposed to the
web (or other remote clients). There are many tasks for DECORATORS in the context of
reengineering to the web, induding logging, access control, encryption, etc. Besdes
DECORATORS oOf the COMPONENT WRAPPER, DECORATORS can aso be gpplied for the INVOKER, if

the whole invocation process should be decorated.

Both tasks, adaptation and decoration, can aso be further supported by the pattern MESSAGE
INTERCEPTOR [Zdun, 20024):

Pattern 16 — MESSAGE INTERCEPTOR:

Consider decorations and adaptations take place for certain objects over and over again.
Then it would make sense to support these tasks as a firg-dass mechaniam, instead of
programming them from scratch for each use.

Therefore, build a cdlback mechanism into the INVOKER working for al messages that pass
it. These cdlbacks invoke MESSAGE INTERCEPTORS for dStandardized events, such as
“before’ a remote method invocation, “after” a remote method invocation, or “instead-of”
invoking aremote method.

A MESSAGE INTERCEPTOR intercepts messages sent between different entities, and can add
arbitrary behavior to the invocation and/or the response. Support for MESSAGE INTERCEPTORS Can
be provided on different levels A MESSAGE INTERCEPTOR can be supported by the programming
language used for building the COMPONENT WRAPPER (or a language extenson). Also,
interceptors can be provided in distributed systems by a middieware, as implemented in TAO or
Orbix (see the pattern INTERCEPTOR [Schmidt et d., 2000] which describes this variant). The
digributed variant of MESSAGE INTERCEPTORS can be implemented in a web application
framework on top of the INVOKER. This is specificdly suitade for tasks that have to be handled
per invocation, such as user rights management, marshaling, access control, logging, €etc.

18

In Figure 4 an INVOKER that supports MESSAGE INTERCEPTORS is depicted. In this examples, a
request for a COMPONENT WRAPPER atives. This COMPONENT WRAPPER has two “before’
interceptors. These are digpatched before the actual invocation takes place. When these
interceptors have returned, the COMPONENT WRAPPER is invoked and it forwards the invocation to
the legacy system. The COMPONENT WRAPPER a0 has one “after” interceptor. It is dispatched by
the INVOKER &fter the COMPONENT WRAPPER returns and before the result is sent back across the
network. Usng such a chaned MESSAGE INTERCEPTOR architecture developers can flexibly
regiger add-on services a MESSAGE INTERCEPTORS a runtime for specific COMPONENT

WRAPPERS, as required.

1) HTTP request:
http://.../ComponentWrapper3+aMethod+...

f

/

’ Authentication Interceptor Logging Interceptor
‘ P €ging P ‘ Component Wrapper 1
I f X
/
. ; : I Legac
l; Session Mgt Interceptor | K '%tgrmlggﬁgenl?\%lr}appeﬂ aMethod" rapper 2 —edaes
| : i System
i \
'\ | 4) before invocation: " I \n
| \ ‘ComponentWrapper3 aMethod /l Component Wrapper 3

\ 1
| 3) before invocation: Il T
\ “"ComponentWrapper3 aMethod" Vs Pl

}\ + \6) invoke I
¥ ivoler 1 [omore, |
Request Handler « I
‘ . Z
~

2) invoke "Component Wrapper 3 aMethod"

Figure 4: An invoker applying message interceptors for a component wrapper

REMOTE OBJECTS can be pooled using POOLING [Kircher and Jain, 2002]. In case of
COMPONENT WRAPPERS for legacy sysems that means a COMPONENT WRAPPER pool is used to
access the legacy sysem (one pool for each used COMPONENT WRAPPER type). For each
invocation a COMPONENT WRAPPER is taken from the pool, handles the invocation, is cleaned up,
and put back into the pool. This way we can avoid the overhead of ingtantiating the COMPONENT
WRAPPER and egtablishing a connection to the legacy system for each incoming invocation. This,
of course, requires the legacy sysem to support multiple concurrent invocations (or
synchronization).

19

SERVICE AND CHANNEL ABSTRACTION

Often a legacy system provides multiple services. Each COMPONENT WRAPPER type can be seen as
one sarvice of the legacy application, and dl these services should be offered via the same web
application interface. Also, different requests coming from different clients, communicating over
different channds, have to be supported by many web agpplication frameworks. It should not be
required to change the application logic every time a new channe has to be supported or a new
sarviceis added to the application.

When reenginesring large-scale systems to the web, it can be expected that the problems of
multiple channels and service abstraction are occurring together. These forces are often resolved
by a SERVICE ABSTRACTION LAYER architecture [V ogel, 2001]:

Pattern 17 — SERVICE ABSTRACTION LAYER:

Congder a sysem that serves multiple services to multiple channels. If possble, services
should be implemented independently from channd handling, and implementations should
be reused.

Therefore, provide a SERVICE ABSTRACTION LAYER as an extra layer to the gpplication logic
tier containing the logic to receive and delegate requests. For each supported channe there
is a channd adapter. The INVOKER does not directly access the COMPONENT WRAPPER bt it
sends invocations to the SERVICE ABSTRACTION LAYER firdt, which then sdlects the correct
COMPONENT WRAPPER.

The SERVICE ABSTRACTION LAYER also converts the invocation data to a format understood by
the COMPONENT WRAPPER, and converts the response back to the client format. This is done using

CONTENT CONVERTERS [V ogel and Zdun, 2002].

20

)

Legacy —
Client Server Application Legacy
System
CORBA -
Client [*——corea 5] Component
Adapter ™ > |—] — i
B 3 Wrapper 1 Service 1
s 5
«— HTTP > 5 —
Adapter £ [Component Service 2
2 Wrapper 2
Return :E
—t» O
MHP Lq .- Channel 2
Client Adapter o) Component -]
= (%) Wrapper 3 Service 3
— Broadcast Channel
Adapter

Figure 5: Service Abstraction Layer

SESSION MANAGEMENT AND STATE PRESERVATION

A client can be expected to make severd subsequent requests over a time span, and often some
date has to be preserved between these requests. For ingtance, especialy in multi-user systems,
users might have to log in and out. Most legacy applications are requiring states to be maintained
for continued interaction with a client. The HTTP protocol is satdess and cannot be used for
maintaining the date of an interaction.

The SESSIONS pattern [Sorensen, 2002] provides a solution to this problem:
Pattern 18 — SESSIONS:

A system requires a state for an interaction with a client, but the communication protocol is
Sateless.

Therefore, date is tied to a sesson so that a request can access data accumulated earlier
during an interaction. Such data is referred to as sessonpecific daa There is a sesson
identifier to let REMOTE OBJECTS be able to refer to asession.

In web applications, there are two variants of the SESSIONS pattern: sessons can be kept in the
saver or in the client. If the sesson is kept in the server, the sesson identifier is sent with the
each response to the client, and the dlient refers to it in the next invocation; if it is kept in the

client, the client hasto send it to the server, which refersto it in its responses.

To map a daeess client request properly to the correct sesson, we have different options in
web applications.

21

URL Encoding: We can encode information, such as user name and password, in the
URL by attaching them as sandard URL parameters to the base URL. This works in
damog any sdting, but we have to be aware that some browsers have limitations
regarding the length of the URL. Moreover, the information is readable on the user's
screen (if URL contents are not encrypted form). For sendtive gpplications we can
encrypt the contents of the URL.

HIDDEN Form Fields: We can embed information in an HTML form that is hidden
from display by usng HIDDEN form fidds. However, of course, they are readable as

plaintext in the HTML page s source. Again, we can use encryption for sengtive data.

Cookies: Cookies are a way to store and retrieve information on the client Sde of a
connection by adding a smple, pesgent, cient-sde sate settable by the server.
However, the client can deactivate cookies in the user agent; thus, cookies do not

always work. Cookies can optionaly be sent via a secure connection (eg. SSL).

In any case, when reengineering to the web, it is necessary to integrate these SESSIONS with the

sesson and user modd of the legacy application (if there is any). For indance, one solution is

that COMPONENT WRAPPERS log the user in and out for each invocation. Or, dternativey, the

COMPONENT WRAPPERS can hold the sesson open until the next invocation. In case of many client

sessons, it may be necessary to introduce LEASES [Jain and Kircher, 2002]:

Pattern 19 — LEASES:

A (web) dient can abort a dateful interaction without the server redizing it. Then exiging

SESSIONS are never stopped and opened connections are never closed.

Therefore, provide LEASES for each sesson (or connection) that expire after a certain

amount of time. Let the COMPONENT WRAPPER close a session (or connection) that is held

open, when its LEASE expires. When a client sends the next invocation in time, the LEASE is

renewed 0 that the session isheld open again for the full lease duration.

DYNAMIC CONTENT GENERATION AND CONVERSION
In [Vogd and Zdun, 2002] we present a pattern language for content generation, representation,

and converson for the web. Here, we use a sub-sat of this pattern language in the context of

reengineering systems to the web.

22

Dynamic content generation and converson are usudly central tasks of a project deding with
migration to the web. In particular the web requests recelved by the INVOKER have to be
trandated into the APl of the legacy systam, and the response of the system has to be decorated
with HTML makup. Wha seems to be a rdaivedy smple effort a fird glance may lead to
severe problems when the resulting system has to be further evolved later on. Often we find
sysems in which the HTML pages ae smply generated by string concatenation, such as the
following code excerpt:

StringBuffer htm Text = new StringBuffer();
String name = | egacyQbj ect. get Nare() ;

ht M Text . append("
 Name: ");
ht m Text . append(nane) ;

Hard-coding of HTML markup in the program code may lead to severe problems regarding
extenshility and flexibility of content cregtion. Content, representation syle, and application
behavior should be changegble ad hoc. In this section, we will discuss two conceptudly different
gpproaches for decorating with HTML markup: template-based approaches and congtructive

approaches.

Template-Based Approaches

A CONTENT FORMAT TEMPLATE [Vogd and Zdun, 2002] provides a typica template-based
approach for building up web content:

Pattern 20 — CONTENT FORMAT TEMPLATE

A system requires content to be built up in a target content format. Content editors should
be able to add dynamic content parts and invocations to legacy systems in a Smple way. A
high performance for building up web pagesis required.

Therefore, provide a template language that is embedded into the target content format (e.g.
HTML). The templates contain specia template language code which is subgtituted by a
template engine before the page is ddivered to the client.

Known uses of template-based approaches are PHP [Bakken and Schmid, 2001], ASP, JSP, or
ColdFusion. These let developers write HTML text with specid markup. The specid markup is
subgtituted by the server, and a new page is generated. For instance, in PHP the PHP code is
embedded by escaping HTML with a specia comment:

23

<body>
<hl> <?php echo("M/ PHP Heading\n"); ?> </hl>
</ body>

In the same way invocations to COMPONENT WRAPPERS can be embedded in template
languages to connect to alegacy system.

On the firgt glance, the approach is smple and even well-suited for end-users (such as content
editors), say, by usng specid editors. The HTML design can be separated from the software
development process and can be fully integrated with content management systems. However,
some web-based applications require more complex interactions than smply expressible with
templates. Sometimes, the same actions of the user should lead to different results in different
dtuations. Most approaches do not offer hightlevd programmability in the template or
conceptud integration across the template fragments. Application parts and design are not clearly
separated. Thus template fragments cannot be cleanly reused. Complex templates may quickly
become hard to understand and maintain.

Sometimes integration of different scripts can be handled via a shared dataspace, such as a
persstent database connection. Sometimes, we require server-sde components for integrating the

scripts on the server side. In such cases a constructive gpproach can be chosen as an dternative.

Constructive Approaches

Condtructive approaches generate a web page on-the-fly usng a distinct APl for congtructing web
pages. They are not necessaxrily waell-suited for end-users as they require knowledge of a full
programming language. However, they dlow for implementing a more complex web agoplication
logic than eadly achievable with most template- based approaches.

The most smple congtructive approach is the CGI interface [Coar, 1999]. It is a standardized
interface that alows web servers to cal externa gpplications with a set of parameters. The
primary advantages of CGl programming are that it is Smple, robugt, and portable. However, one
process has to be spawned per request, therefore, on some operating systems (but, for instance,
not on many modern UNIX vaiants) it may be dgnificantly dower than using threads. Usudly
different smal programs are combined to one web agpplication. Thus conceptud integrity of the
architecture, rgpid changeability, and understandability may be reduced sgnificantly compared to
more integrated application development approaches. Since every request is handled by a new

24

process and HTTP is dateless, the gpplication cannot handle sesson dates in the program, but
has to use externa resources, such as databases or centrd files/processes.

A vaiant of CGI is FastCGI [Open Market, Inc., 1996] which dlows a single process to
handle multiple requests. The targeted advantage is mainly performance. However, the approach
is not standardized and implementations may potentialy be less robust.

A smilar gpproach integrated with the Java language are serviels. They are bascdly Java
clases running in a Java-based web server's runtime environment. They are a rather low-leve
approach for congructing web content. In general, HTML content is creasted by programming the
dring-based page condruction by hand. The approach offers a potentidly high performance. As
different servlets can run in one server goplication (servlet container), servlets provide a more

integrated architecture than CGl, for instance.

Mogt web servers offer an extenson architecture. Modules are running in the server’s runtime
environment. Thus a high peformance can be reached and the server's feature (eg. for
scaability) can be fully supported. Examples are Apache Modules [Thau, 1996], Netscape
NSAPI, and Microsoft ISAPI. However, the approach is usudly a low-level approach of coding
web pages in C, C++, or Java. Moreover, most APIs are quite complex, and applications tend to

be monolithic and hard to understand.

Custom web servers, such as AOL Server [Davidson, 2000], TclHttpd [Welch, 2000],
WebShell [Vckovski, 2001], Zope [Latteler, 1999], or ActiWeb [Neumann and Zdun, 2001],
provide more hightleve environments on top of ordinary web-servers. Often they provide
integration with high-levd languages, such as soripting languages, for rgpid customizability. A
st of components is provided which implement the most common tasks in web-gpplication
development, such as HTTP support, sesson management, content generation, database
accessdperdgence sarvices, legacy integration, security/authentication, debugging, and dynamic
component loading. Some approaches offer modules for popular web servers as well, as for
instance the Apache Module of WebShell.

In these condructive gpproaches HTML markup can either be built by hard-coding, perhaps
together with FRAGMENTS (see next section), or usng a CONTENT CREATOR [Voge and Zdun,
2002]:

Pattern 21 — CONTENT CREATOR:

25

Content in different content formats has to be built up dynamicdly with a congructive
approach. But HTML text should not be hard-coded into the program text.

Therefore, provide an abstract CONTENT CREATOR class that contans the common
denominator of the used interfaces. For each supported content format there are concrete
classes that implement the common denominator interface for the specific content format.
The concrete classes might dso contain methods for required specidties.

For instance, WebShdll [Vckovski, 2001] uses globa procedures to define the dements of its

CONTENT CREATOR:

proc dl {code} {
web: : put "<dl >"
upl evel $code
web: : put "</dl >"

}
To code these procedures we have to interfere with HTML markup. However, we can avoid it

later on when we combine such proceduresto HTML FRAGMENTS:

dl {

b {M first page}
em{in Wb Shell}

}
Here we have created a <dI > ligt entry with a bold and an emphasized text in it. Potentidly, the

procedure d can be exchanged with another implementation for building a different content

format.

In Actiweb [Neumann and Zdun, 2001] CONTENT CREATORS are used to build up pages. Thus
we can use the same code to build up pages for different user interface types. A Smple example
just builds up aweb page:

Ht m Bui | der ht m Doc
ht m Doc start Docunent \
-title "My ActiWeb App" \
- bgcol or FFFFFF
ht M Doc addString "My Acti Wb App"
ht m Doc endDocunent
We ingtantiate an object htm Doc, then start a document, add a dring, and end the document.

The developer does not see any HTML markup a dl. The page is autométicaly created by the

CONTENT CREATOR ¢l ass.

26

Many approaches combine the template-based and the constructive approach. However, often
the two used models are not well-integrated; that is, the developer has to manudly care for the
bal ance between static and dynamic parts.

Caching

When the web client sends a request to the web server, the requested page may be available on
the file sysem of the server or it may be dynamicdly created. The template-based and
constructive approaches introduced so far require dynamic page creation. Compared to datic
pages, dynamic creation has the problem of memory and performance overheads. A CONTENT
CACHE[Vogd and Zdun, 2002] provides a solution:

Pattern 22 — CONTENT CACHE
The overhead of dynamic page cregtion causes performance or memory problems.

Therefore, increase the performance of web page delivery by caching dready crested
dynamic content.

In the context of reengineering to the web, caching has to work in concert with the legacy
application. Usudly, we cannot change the legacy application to invaidate cached dements that
are not vaid anymore. We can therefore only cache those operations of the legacy system for

which the COMPONENT WRAPPER can determine whether the cacheis il vaid or not.

Caching whole pages is only a good idea for amplistic pages. For larger web gpplications, the
dynamic web pages should be designed in such a way that parts of pages can be cached. The
pattern FRAGMENTS[Vogd and Zdun, 2002] solves this problem:

Pattern 23 — FRAGMENTS:

Web pages should be desgned to dlow the generation of web pages dynamicaly by
assuring the consstency of its content. Moreover, these dynamic web pages should be
provided in ahighly efficient way.

Therefore, provide an information architecture which represents web pages from smaller
building blocks, caled FRAGMENTS. Connect these FRAGMENTS S0 that updates and changes
can be propagated along a FRAGMENTS chain.

27

Thus FRAGMENTS can be cached instead of whole pages. Only parts of web pages that have (or
might have) changed since a previous cregation of the FRAGMENT are dynamicaly created. Static
FRAGMENTS of web pages and dynamic FRAGMENTS that are dill vaid are obtained from the
CONTENT CACHE.

Web Content M anagement

The full pattern language in [Vogd and Zdun, 2002] contains some additionad patterns not
described here (GENERIC CONTENT FORMAT, CONTENT CONVERTER, and PUBLISHER AND
GATHERER). These are mainly used for content gethering, storing, and publishing. These content
management tasks are usudly not required for reengineering to the web, as the content itsdf is
managed by the wrapped legacy applications. Note that, in the content management context, the
pattern CONTENT CONVERTER is mostly used to convert to and from a GENERIC CONTENT FORMAT,
whereas in the web reengineering context it can be used for converting to/from the content
formats of the legacy system.

Note that there are adso applications that contain content from multiple sources, and a wrapped
legecy application is only one of these sources. For integrating and managing this content, the
patern language from [Voge and Zdun, 2002] can be used in its origind web content

management focus.

ADD-ON SERVICES

In a web gpplication that wrgps a legacy system many add-on services may be required per
invocation. Typicd examples are authorization, encryption, and logging. When a request arives
or when the response is sent, the add-on service has to be executed. That means, we can
potentialy apply those add- on services either within:

the REQUEST HANDLER for request- specific services,
the INVOKER for invocation-specific services, or

the COMPONENT WRAPPER for services that are specific per REMOTE OBJECT Or REMOTE
OBJECT type.

As discussed before, the patterns DECORATOR and ADAPTER provide a smple, object-oriented

solution for providing additiond services. MESSAGE INTERCEPTORS can be used for providing a

28

fird-class solution for add-on services. Usudly higher-levd LAYERS can configure MESSAGE

INTERCEPTORS for lower levels.

Security issues are relevant for many web gpplications that wrap a legacy sysem. These are
often provided as add-on services. For indance, a login with user name and password may be
required. Moreover, secure communication or securing transferred data is required. These issues
have to be tightly integrated with sesson management. In generd, we require user
authentications and encryption as typicd means to secure an interactive web gpplication, for
ingtance:

HTTP Basic Authentication: The definitton of HTTP/11 [Fdding e 4., 1999
contains some means for user authentication of web pages, cdled basc authentication
gheme This dmple chdlenge-response authentication mechanism lets the server
chdlenge a dient request and clients can provide authentication information. The basc
authentication scheme is not considered to be a secure method of user authentication,
snce the user name and password are passed over the network in an unencrypted form.

HTTP Digest Authentication: Diget Access Authentication, defined in RFC 2617
[Franks et d., 1999], provides another chdlenge-response scheme, that does never

send the password in unencrypted form.

Encrypted Connection (using S3.): Using a secure network connection, supported by

most servers, we can secure the transaction during a session.

URL Encryption: To avoid readability of encoded URLs we can encrypt the attached
part of the URLS.

HTTP authentication is usudly handled on the REQUEST HANDLER levd. The authentication
information is obtained from the COMPONENT WRAPPER that connects to the legacy system. URL
encryption is usudly handled per invocation within the MARSHALLER.

An important aspect of most web agpplications is the required high availability. Usudly a web
gte should run without any interruptions. This has severa implications that have to be consdered
when choosng frameworks, concepts, implementations, etc. At least the following functiondities

are usudly provided as add-on services

29

Permanent and Selective Logging: All relevant actions have to be logged so that
problems can be traced. Some selection criteria should be supported, otherwise it may
be hard to find the required information out of the possbly large number of log entries.
Sometimes, for legad reasons, even more information has to be logged, such as user
transaction traces for ecommerce dores Thus logging needs to be highly
configurable. For instance, WebShdl [Vckovski, 2001] supports log filters that
diginguish different log levels and redirect log entries to different dedtinations, like
files, stdout, or SMS.

Notification of Events: In cases when certain events hgppen, such as certain error
dtates, a person or gpplication should be notified. For instance, when a error message is
recurring, an email or SMIS may be sent to the system’ s adminigtrator.

Testing: Load generators and extensive regresson test suite are required for testing

under redistic conditions.

Incremental Deployment: Dynamicaly loadable components enable incrementa
deployment so that the application needs not to be stopped to deploy new functiondity.

If multiple add-on services are required, as well as dynamic configuration of these, typicdly a
chained MESSAGE INTERCEPTOR architecture is provided. This architecture can dso be used for
standard services, such as URL decoding, marshalling, etc.

PATTERN LANGUAGE OVERVIEW AND DISCUSSION
The pattern language presented in this chapter mainly can be used to explain different successful
technica solutionsin the realm of reengineering to the web. There are the following main gods:

Design Guideline: The patterns provide a design guideline for reengineering to the web
that can even be used in early project phases, when there is no decison for concrete
technologies yet.

Project Estimation and Technology/Framework Selection: The pattern language can
help to estimate the effort for a reengineering to the web project in generd, and make
import project-specific decisons, such as sdecting for a web agpplication framework.
The project team has to compare the features of particular frameworks with the project
requirements. These, in turn, can be obtained by sdlecting the required pattern variants.

30

Even though this method cannot ensure to avoid al possble technica problems, it
provides a good means to get a concrete estimation or bass for framework selection in
ealy project phases. The aspects discussed in this chapter can dso be used as a
checklist for a project estimation.

Means for Communication: Patterns provide a means for communication, for insance,
between technicad and nontechnical stakeholders of a system that dlows for accurate
discusson, but without delving too deep into the technicd detalls (as, for instance,
when adiscussion is based on the concrete technical design or implementation).

In Figure 6 an integrated overview of the patern language is presented. The arrows indicate
important dependencies of the patterns in the context of reengineering to the web. Only the
pattern LAYERS is not depicted here because it dructures the other patterns (and thus has
relationshipsto al other patterns).

"“\
R ey
cache eler/nents %Lf” \(Sg %‘f"‘é &

— ~ \ 3
instance \ ContentCache | Content FormatTempIate | 'I

pooling
7 invokes Content Creat
)
/ - / ‘\ cachgacontent / CIMEEN ST
\ A

Client Proxy Invoker \ \ build content bunld content

/ Ii remote objectt (e 9‘ HTML) Te.g. HTML)
network network is a component \
/ Wrapper? the 7 adaptation/

Iegacy system \ | VZ / decoration

*| Message Interceptor |

/ communlcatlon communication
. \
" Requestanaier |
Request Handler | ’_
- —decoratio|
7 \ »| Component Wrapper n_, Decorator
I l \ dlspatch IR
! channels services marshal N .
[\ BN invocation \ adaptation _ T
- | Service Abstractlon Layer | \ \ ‘Qp
Pooling / A— maintain
B session
connection Marshaller 1
handling A uses wrapper facade
\ / | / | ®© acces pro;:edural
\ f / egacy system
i : : marshal
rpssionfnd [Reactor | =] _Active Object se5ion gata \
: / - \~\ - \
\ \ / service handler Sessions \
\ conpection concurrency Monitor Object . \
\ handler typeé { use leases fo
\ / 4 expire session

\ V | service handler / L
concurrenc
Acceptor/Connector |—- urrency Leases Wrapper Facade

Figure 6: Overview: Pattern Language for Reengineering to the Web

As can be seen, the LAYERS and functiondities, discussed in the previous sections, can cleanly
be separated from each other. That means individud parts of a solution can be developed in
Separate teams, except for common (i.e. reused) code and integration points.

31

The main integration points are the two connections client/server and server/legacy system.
We have to ded with asynchronous invocations, concurrency, d<tate preservation, and
performance issues a these integration points. When reengineering to the web, we usualy cannot
change the legacy system or the CLIENT PROXY (as it is part of the web browser). Thus we have to
ded with these issues somewhere in the server’s processng chain of REQUEST HANDLER,
INVOKER, and COMPONENT WRAPPER. Therefore these three patterns can be seen as the centra

patterns of the pattern language.

When more than one service is provided to more than one channd, we can use a SERVICE
ABSTRACTION LAYER. This gdtuation is quite typicad when reengineering to the web, as possbly
old interfaces ill have to be supported and/or other channels than the web should be supported
(in the future). Thus, as Br as possble, decoration and adaptation of the server’s processing chain
should happen at the end of the chain, S0 that they are reusable for different channds. Only those
parts that are specific for the web (i.e. for the HTTP protocol) should be handled at the REQUEST
HANDLER. Thus it often useful to implement a generic MESSAGE INTERCEPTOR chan, in which
add-on services (like SESSIONS, user control, LEASES, applicationlevd marshdling, security,
testing, etc.) can be defined for each COMPONENT WRAPPER 0bj ect.

From a managerid point of view many important issues are only indirectly addressed by the
software desgn and architecture patterns discussed in this paper. Examples are multi-user
concerns, detailed technology sdlection, security and security audits, or data access related to
converting a legacy sysem. Some of these issues are directly related to the pattern language, such
a multi-user concerns which have to be consdered when deciding for a SESSIONS model. As
discussed above, technology choices only include those technology areas in focus of the patterns,
and many important business aspects of a technology (such as costs, mantenance models, or
credibility of business partners) are not in focus of the patterns. Other concerns go beyond the
scope of this chapter and should be handled using the respective patterns in these areas. A good
sarting for security pattern is [Schumacher, 2003]. A good source for the broad area for data
access to legacy systems and (relational) database management systemsis [Keller, 2003].

USING THE PATTERN LANGUAGE IN PRACTICE: A CASE STUDY

As pointed out in the previous section, a main use of the pattern language (from a managerid
point of view) is to provide a bass for communication both in early project phases ad with non

32

technical stakeholders. It can dso be used to discuss about technology decisons in case the
patterns are dready implemented by some technologies/frameworks potentidly used within a
project.

We have used the patterns as a basis for communication between technical and non-technica
stakeholders in various projects (see for instance [Goedicke and Zdun, 2002, Zdun, 2002b] for
more detalls). In this section, we want to congder a few typicad desgn decisons based on the
patterns to illusrate these benefits of patterns for the communication compared to technicd
solutions. For space reasons, we cannot consider a whole project’s design decisons here, but will
only outline a few centrd ones For each design decison we will describe the reguirements
within the project, explan the aternatives based on the pattern language and consdered
technologies/frameworks, and finaly explain the solution.

Condder a project in which a large legacy system gores, ddivers, and manages documents on
different kinds of storage devices. The system should get a additiond web interface, however, the
old interfaces are 4ill required. The code base is written entirdy in C and has dready digtinct
APIs for access by cusom GUI dients There are a few crucid requirements for the web
interface, including load baancing, performance, and smple adeptation to the cusomer’s IT
infrastructure (i.e. Smple adaptations of branding and layout of forms). For al other features the
web system should be as smple as possble and only add minimd additiona cods to the overdl
system. A management requirement is that a Java-based solution should be used, if possible.

The technology pre-sdection for a Java-based solution limits the possble implementation
aternatives. We could use a non-Java web server and let a web server module access the Java
based solution (eg. via JNI). But this solution would require us to implement many parts of the
pattern language by hand that are dready somehow avalable in Java A more Java-like ®lution
is the use of a REE gpplication server. Interndly we can use different Java frameworks,

including servlets, EIBs, JSP, and others.

As the potentia customers for the system are quite diverse, the web gpplication system has
high demands for load baancing and falover for some customers, for others not. Here a smple
solution with the whole web application running in only one agpplication server is not enough for
al cusomer dtes, but it may be enough for some customers. That means a solution shodd be

33

scalable for cusomers with high hit rates, but yet impose no extra cogts for cusomers with low
hit rates.

These requirements suggest a scadable LAYERS architecture with REACTORS for each LAYER
INVOKERS are used for interconnecting the LAYERS. There is one primary ACCEPTOR/CONNECTOR
that accepts web requests running in a frontend web server. This frontend web server dso
delivers datic web pages and datic page FRAGMENTS, and it invokes dynamic page cregtion in a
Sseparate application server. The gpplication server contains its own REACTOR waiting for requests
for dynamic content. Within the application server the INVOKER is Stuated. It is actudly
responsible for invoking the REMOTE OBJECTS that connect to the legacy system. There are dso
other REMOTE OBJECTS that perform other tasks than legacy integration. Note that there is dso a
sample vaiant of the patern INVOKER in the frontend web server that is responsble for
redirecting the invocations.

Each server has its own REACTOR, and INVOKERS are used to access the next LAYER That
means, the system uses an event-based form of communication between these LAYERS. As a
positive consequence, there are no cyclic dependencies (back from lower LAYERS into higher
LAYERS), which would make it hard to debug and maintain the web gpplication.

Another consequence of this architecture is that the web gpplication is highly down- and up-
scdable. The extreme of downscding is tha the whole web gpplication runs within a single
sarver that serves as frontend web server and gpplication server. The extreme of up-scding is that
the primary ACCEPTOR/CONNECTOR is Stuaed in a smple server tha is just there for load
badancing, then there is LAYER of multiple, redundant web servers ddivering datic web pages,
then there is another load baancer, and findly there are multiple, redundant application servers.
Figure 7 shows this scalable server architecture.

T . \ Web Application
/ Server Server

2 I I ! 1 . . 1
i ! Load , . Web | ! lLoad , iApphcatlon. Wrapper

Server ! Balancer , ' Facade Layer

s, N e ™ pteaion 17
s 1 Server | : Server |

Figure 7: Scalable Architecture for the Web Application. Mandatory elements have plain lines,

Legacy
System

1 Server
1

34

optional elements are presented with dotted lines. The optional elements are only present in
up-scaled installations.

The REMOTE OBJECTS in the application server provide access to the legacy sysem. Here, we
actudly have two choices. In some cases it would be possble to let the web system access the
database directly (i.e. when data is only read from the database). In other cases we need WRAPPER
FACADES to access the routines of the C-based legacy system to ensure consstency of data,
especidly when data is changed (i.e. the C-based interface access the interna database
exclusvdy).

Because a digtinct C-based interface is dready existing for separate clients within the legacy
system, writing WRAPPER FACADES is quite sraightforward. A WRAPPER FACADE LAYER should
only be bypassed, if redly necessary; here, the C-based wrappers are quite lightweight and
bypassing them for performance reasons is not necessary.

Note that in this architecture the legacy system is the bottleneck that cannot as easly be
replicated as web servers and gpplication servers. It is necessary to synchronize access from
concurrent gpplication servers to the legacy system. This can be done usng MONITOR OBJECTS
that queue the access to the WRAPPER FACADES (here MONITOR OBJECT is chosen indead of
ACTIVE OBJECT because it is dready supported by Java's synchronized primitive). If this is too
much a performance pendty, direct access to the database and replication of the database might
be an option.

There are two kinds of REMOTE OBJECTS. COMPONENT WRAPPERS to the legacy system and
helper objects that contain gpplication logic solely used for the web application. The REMOTE
OBXECTS are redized as Enterprise Java Beans (EJB). Here, we have two main choices. We can
use so-cdled entity beans that represent a long-living gpplication logic object with container
managed persstence. Alternatively, we can use sesson beans. A session bean represents a single
client indde the application sarver with a SESSONS abdraction. Sesson beans can dther be
stateful or sateless.

The main task of the COMPONENT WRAPPERS in this architecture is to compose invocations to
the operations of the WRAPPER FACADES as needed by the web application. A centra problem
here is tha legacy functiondities are required to be cdled in some order, within the same

35

transaction, or with other invocation congraints. The same problem dso arises for entity beans of
the web agpplication (that do not access the legacy system).

As a solution to these problems, dl REMOTE OBJECTS should be datdess and just used for
compogtion of invocations to the Sateful entities (COMPONENT WRAPPERS and entity beans).
From the web, we do not access the dateful entities directly, but use the dedicated REMOTE
OBXECTS.

This solution is dso chosen because entity beans provide many features (such as
synchronization, pooling, and lifecycle management) tha impose a peformance pendty. If
synchronization is dready done in the WRAPPER FACADE LAYER for access to a legacy system
and/or if only concurrent read access to data is required, these features are not necessarily
required, and thus entity beans do not provide an optima performance.

A more high-levd and more complex dternative to the architecture described above is the
Java Connector Architecture (JCA). JCA is especidly gpplicable for connecting to heterogeneous
information systems such ERP, mainframe transaction processing, database systems, and legacy
goplications not written in the Java programming language. A COMPONENT WRAPPER (called
resource adapter in JCA) defines a standard set of contracts between an gpplication server and the
information syslem: a connection management contract to let an gpplication server pool
connections to an underlying legacy sysem, a transaction management contract between the
transaction manager and the legacy system, and a security contract to provide secure access to the
legacy system. As most of these features are not required or only in a smple fashion, JCA is not
chosen here. This desgn decison aso avoids the peformance overheads of connection,

transaction, and security management.

Invocations from frontend web server to gpplication server are typicdly redized by embed
ding URLs pointing to the pages or FRAGMENTS that are dynamicaly created in the gpplication
server. Somehow the gpplication server has to embed these links as well as sesson identifiers and
other context information in the web pages This is typicdly done by multiple levels of
MARSHALLERS. Firg, there is the HTTP MARSHALLER of the web server. It marshdls and de
marshdls dl dements in the HTTP header fidds. URL marshdling and de-marshdling is used to
access the correct REMOTE OBJXECT. Other context information can ether be transported in the
header fields, by means of cookies, or within the URL.

36

The overdl sysem architecture dready implements a Ismple form of CONTENT CACHE and
FRAGMENTS because dtatic FRAGMENTS ae “cached” in dedicated servers. If additiond
performance is required, dynamic parts might be additiondly cached by storing the FRAGMENTS
in a database. There is also a CONTENT CACHE for the documents retrieved from storage devices
within the legacy sysem. Thus a CONTENT CACHE in addition to these caching measures rather

seems to be an overhead.

There ae some cudomization requirements for the system, but the sysem functiondity is
amilar in mogt inddlaions of the web goplication. To ensure rapid deployment a the customer,
a programmatic description of the web interface, as in CONTENT CREATOR pattern, is not the best
solution. Thus the CONTENT FORMAT TEMPLATE language Java Server Pages (JSP) is used. Java
sarviets are used where programmatic, dynamic pages are required. JSP provides for smple
changesbility at the customer, because only the templates need to be adapted to the customer’s
requirements. The downdde is that the rgpid changeahility is limited to those changes envisoned

during design of the CONTENT FORMAT TEMPLATES.

Note that the architecture implements dready a SERVICE ABSTRACTION LAYER, even if not used

as such. That means, future channels can be integrated easily. For instance, one possble addition
would be to offer aweb service interface in the future.

Programmatic adaptations of COMPONENT WRAPPERS can be expected to be occurring in rare
cases becase the legacy system has dready a mature interface APl that is in long use. Thus
changes can be smply introduced with ADAPTERS and DECORATORS. It is sendble to avoid the
implementation effort and performance pendty of a cusom MESSAGE INTERCEPTOR architecture.

There ae dready different ways of POOLING supported in this architecture, including
connection pooling by the web server or component pooling by the EJB server. Thus it does not
seem necessary to add additiond pools.

CONCLUSION

In this chapter, we have presented a pattern language for reengineering to the web. It is built from
patterns dreedy published in other contexts. The main contribution of the pattern language is that
it provides clear dternatives and sequences for gpplying a project for reengineering to the web.
The patterns dlow for important technica condderations in a mogly framework-neutrd way

(like estimations and technology/framework sdection), as wel as a means for communication.

37

Also they provide desgn guiddines for sysem parts that have to be developed from scratch, such
as the wrappers and connections to the legacy system. Patterns, however, do not provide an out-
of-the-box solution, but a desgn effort is required for each project. As different systems in focus
of reengineering to the web projects can have quite different characteridics, this variability of the
pattern gpproach is a strength for finding a suitable solution in such a project.

Note that some parts of the pattern language are concerned with forward engineering of web

gpplications. That means they can adso be gpplied without a connected legacy system; yet, in this
chapter we have focused on the more complex reengineering to the web case,

REFERENCES

[Alexander, 1979] Alexander, C. (1979). The TimelessWay of Building. Oxford Univ. Press,

[Bakken and Schmid, 2001] Bakken, S. S. and Schmid, E. (1997-2001). PHP manud.
http:/AMmww.php.net/manud/ery.

[Brant et d., 1998] Brant, J, Johnson, R. E., Roberts, D., and Foote, B. (1998). Evolution,
architecture, and metamorphosis. In Proc. of 12th European Conference on Object-Oriented
Programming (ECOOP 98), Brussds, Belgium.

[Buschmann et d., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Sta, M.
(1996). Pettern-orinented Software Architecture - A System of Patterns. J Wiley and Sons
Ltd.

[Coar, 1999] Coar, K. A. L. (1999). The WWW common gateway interface — verson 1.1.
http://cgi-spec.golux.com/draft-coar-cgi- v11-03-clean.html.

[Davidson, 2000] Davidson, J. (2000). Tcl in AOL digitd city the architecture of a mult-
threaded high-performance web dte. In Keynote a Tc2k: The 7th USENIX Td/Tk Confer-
ence, Audtin, Texas, USA.

[Fidding et a., 1999] Fidding, R., Gettys, J., Mogul, J,, Frysyk, H., Masinter, L., Leach, P., and
Berners-Lee, T. (1999). Hypertext transfer protocol — HTTP/1.1. RFC 2616.

[Franks et al., 1999] Franks, J., Halam-Baker, P., Hostetler, J., Lawrence, S, Leach, P., Luoto-
nen, A., and Stewart, L. (1999). Http authentication: Basc and digest access authentication.
RFC 2617.

[Gamma & d., 1994] Gamma, E., Hem, R., Johnson, R., and Vlissdes, J. (1994). Design
Petterns. Elements of Reusable Object- Oriented Software. AddisonWedey.

38

[Goedicke and Zdun, 2002] Goedicke, M. and Zdun, U. (2002). Piecemed legacy migrating with
an achitecturd pattern language A case dudy. Journd of Software Maintenance and
Evolution: Research and Practice, 14(1):1-30.

[Jain and Kircher, 2002] Jain, P. and Kircher, M. (2002). Leasing pattern. In Proceedings of the
Conference on Pattern Languages of Programs (PLoP), I1llinois, USA.

[Keller, 2003] Keler, W. (2003). Patens for Object/Reational Access Layers.
http://mww.objectarchitects.de/ObjectArchitectsorpatterns.

[Kircher and Jain, 2002] Kircher, M. and Jain, P. (2002). In Proceedings of the 7th European
Conference on Pattern Languages of Programs (EuroPLoP), Irsee, Germany.

[Latteier, 1999] Latteier, A. (1999). The indder's guide to Zope: An open source, object-based
web gpplication platform. Web Review, 3(5).

[Neumann and Zdun, 2001] Neumann, G. and Zdun, U. (2001). Distributed web agpplication
development with active web objects. In Proceedings of The 2nd International Conference on
Internet Computing (IC’ 2001), Las Vegas, Nevada, USA.

[Open Market, Inc., 1996] Open Market, Inc. (1996). FasCGl: A high-performance web server
interface. http://www fastcgi.com/devkit/doc/fastegi-whitepaper/fastegi.htm.

[Schmidt et a., 2000] Schmidt, D. C., Sta, M., Rohnert, H., and Buschmann, F. (2000). Patterns
for Concurrent and Distributed Objects. Patern-Oriented Software Architecture. J. Wiley and
Sons Ltd.

[Schumacher, 2003] Schuhmacher, M. (2003). Security Patterns. (2003).
http://www.securitypatterns.org.

[Sneed, 2000] Sneed, H. M. (2000). Encapsulation of legacy software: A technique for reusing
legacy software components. Annds of Software Engineering, 9.

[Sorensen, 2002] Sorensen, K. E. (2002). Sessons. In Proceedings of the 7th European
Conference on Pattern Languages of Programs (EuroPLoP), Irsee, Germany.

[Thau, 1996] Thau, R. (1996). Design consderdtions for the Apache server goi. In Proceedings of
Fifth International World Wide Web Conference, Paris, France.

[Vckovski, 2001] Vckovski, A. (2001). Tcl Web. In Proceedings of 2nd European Tcl User
Mesting, Hamburg, Germany.

39

[Vodter et d., 2002] Vodter, M., Kircher, M., and Zdun, U. (2002). Object-oriented remoting: A
pattern language. In Proceedings of The First Nordic Conference on Pettern Languages of
Programs (VikingPLoP), Denmark.

[Vogd, 2001] Vogd, O. (2001). Service abdraction layer. In Proceedings of the 6th European
Conference on Pattern Languages of Programs (EuroPLoP), Irsee, Germany.

[Vogd and Zdun, 2002] Vogel, O. and Zdun, U. (2002). Content converson and generation on
the web: A pattern language. In Proceedings of the 7th European Conference on Pattern
Languages of Programs (EuroPLoP), 2002, Irsee, Germany.

[Welch, 2000] Welch, B. (2000). The TclHttpd web server. In Proceedings of Tcl2k: The 7th
USENIX Tcl/Tk Conference, Austin, Texas, USA.

[Zdun, 20028] Zdun, U. (2002d). Language Support for Dynamic and Evolving Software A
chitectures. PhD thesis, Universty of Essen, Germany.

[Zdun, 2002b] Zdun, U. (2002b). Xml-based dynamic content generation and conversion for the
multimedia home platform. In Proceedings of the Sixth Internationd Conference on Integrated
Design and Process Technology (IDPT), Pasadena, USA.

40

