
Using Split Objects for Maintenance and Reengineering Tasks

Uwe Zdun
New Media Lab, Department of Information Systems

Vienna University of Economics, Austria
zdun@acm.org

Abstract

Language integration is an important issue in the area
of software maintenance and reengineering. We describe a
novel solution in this area: automatically applied and com-
posed split objects. Split objects provide a language integra-
tion that goes beyond simple wrappers by integrating object
identity, state, methods, and class hierarchies of entities in
two languages to one logical entity. The split object concept
can be applied as an aspect-oriented solution, in which an
aspect of a system is implemented in another language. After
describing these concepts and two split object frameworks
that we have implemented, we discuss how split objects can
be applied for other maintenance and reengineering tasks
than language integration. These application fields include
software component testing, dynamic feature analysis, and
variation and configuration management.

Keywords: Split Objects, Aspect-Oriented Programming
(AOP), Wrapping, Language Integration, Testing, Dynamic
Feature Analysis, Variation Management.

1. Introduction

Consider a situation in which a particular concern should
be implemented in more than one programming language.
This is a common situation in many maintenance or reengi-
neering projects. A typical example is a legacy system, writ-
ten in C or Cobol, that should be reengineered to the web.
In the web application a Java-based application server should
be used. Then the legacy language needs to be integrated
with Java. Another typical reason for language integration
is that one language is better suited for a particular task
than the language in which the main application logic is (or
should be) implemented. Ousterhout [23], for example, ar-
gues that dynamic and introspective scripting languages with
strong string manipulation capabilities are good for compo-
nent composition, writing test cases, and configuration tasks,
whereas system languages, such as C, C++, or Java, are good
for implementing the system’s core, for instance, in form of
reusable components. To implement each task in the best
suited language, we need to integrate these languages some-
how.

A typical solution for language integration in the area

of software maintenance is to use wrappers. Wrappers are
mechanisms for introducing new behavior to be executed be-
fore, after, in, and/or around an existing method or compo-
nent. Wrapping is especially used as a technique for encap-
sulating legacy components [25]. Moreover, wrappers are
used to extend object-oriented structures [3].

Even though wrappers are very useful in many situations,
pure wrapping poses some problems in more complex lan-
guage integration situations. A wrapper provides only a
“shallow” interface into a system, and it does not reflect fur-
ther semantics of the language elements implementing the
application logic. Examples of such semantics are internal
class hierarchies or delegation relationships. Further, a wrap-
per does not allow one to introspect the system’s structure.
The logical object identity between wrapper and its wrappees
(i.e. the elements that are wrapped) is not explicit. In many
cases, some of the system’s data is required for the wrapper’s
client, but it is not accessible for the wrapper. To circumvent
such problems, one can maintain such additional information
on the wrapper in parallel to the application logic. But this is
waste of performance and memory. In many cases, such so-
lutions are implemented by hand (and thus hard to maintain).

In this paper we propose split objects as a wrapping ap-
proach that supports deeper language integration. A split ob-
ject physically exist as an instance in both languages to be
integrated, but logically it is treated like one, single instance.
That is, invocations that cannot be dispatched for one of the
two split object halfs can be delegated to the other half. This
way, the methods and the state of one half can be accessed
from the other one. One half is called the wrapper half, and
it provides an automatic forwarding mechanism to send in-
vocations to the wrappee half. The wrapper mimics the user-
defined class hierarchy of the wrappee, and methods can be
wrapped. Optionally, (public) variables can be automatically
traced; that is, a callback is executed to update a variable
state on one split object half, when the same-named variable
on the other half is changed. Depending on the language fea-
tures of the two involved languages, these functionalities can
either be implemented by extending the language’s dispatch
process, using reflection, or using generative programming
techniques.

The very idea of split objects has been applied in a number
of projects, for instance, in NS [28] and Open Mash [21] for
integrating the object concepts of Object Tcl and C++. How-

ever, in these projects only a hand-built, hard-coded solution
is applied (here the wrappers are registered in the C++ con-
structors of the wrappees). The main novel contributions of
this work are:

• We have applied the split object concept for a number
of maintenance tasks other than language integration,
namely component testing, dynamic feature analysis,
and variation and configuration management.

• We have integrated the split object concept with reflec-
tion [19] and generative programming techniques [7].
These techniques are used to automate the composition
of a given system with split objects and the dispatch
process between the wrapper and wrappee halfs of a
split object. Compared to earlier split object solutions
[28, 21], an important consequence of automating the
wrapping process is that the wrappee half does not need
to be changed (manually) for integrating with the wrap-
per. Generative aspect languages, such as AspectJ [16],
can be used as a program generator as well (see Section
4).

• We have extended the split object concept to work as
an aspect-oriented programming (AOP) [17] technique.
Aspects avoid tangled solutions for cross-cutting design
concerns. The typical situation in which split objects
are applied is close to an aspect: a concern should not
or cannot be implemented in one language, and thus
it is implemented in a separate module (the aspect).
Now the aspect needs to be composed with the sys-
tem. This is a typical AOP situation, but unfortunately
today’s AOP composition frameworks such as AspectJ
[16], JAC [24], Hyper/J [27], or JBoss AOP [4] are hard
to apply in the named maintenance situations as a sole
solution. Firstly, they do not deal with language inte-
gration but are solely working in one language (in the
examples: Java). Secondly, aspect composition in these
extensions is not dynamic and, as we argue later in this
paper, this is crucial for some of the maintenance situa-
tions. Split objects can be used to implement dynamic,
multi-language aspects or configuration of aspects on
top of a given AOP implementation.

There are a couple of other approaches dealing with
language interoperability. Interface description languages
(IDLs) of middleware systems, such as CORBA’s IDL or
the Web Service Definition Language (WSDL), and the
Inter-Language Unification (ILU) [31] are providing inter-
operability by invocations through well-specified, language-
independent interfaces. .NET’s common language runtime
(CLR) can load and run code written in any programming
language that is aware of the CLR. Interoperability is pro-
vided by a common language specification (CLS). Our ap-
proach is similar to these approaches in that it provides inter-
operability between different programming languages. How-
ever, our approach focuses on a different goal. It mainly pro-
vides a transparent and automatic indirection into a wrapper
layer that fulfills additional tasks, such as the reengineering
or maintenance tasks discussed in this paper.

This paper is structured as follows. At first, we explain the
concept of split objects in Section 2. Next, in Section 3 we
discuss two frameworks implementing this concept; one for
integrating the Tcl extension Frag [32] with Java and one for
integrating the Tcl extension XOTcl [20] with C++. Then, as
an example of using split objects as an AOP concept, in Sec-
tion 4 we discuss using AspectJ together with Frag to pro-
vide dynamic split object aspects for Java. In Section 5 we
explain how to use these concepts and frameworks to imple-
ment the following software reengineering and maintenance
tasks: component testing, dynamic feature analysis, and vari-
ation and configuration management. Finally, we conclude.

2. The Concept of Split Objects

Split objects are a concept to deal with the situation mo-
tivated in Section 1: because of some requirements a con-
cern has to be implemented in more than one programming
language. The concept of a split object is to make an ob-
ject live across the language barrier by splitting it into two
half objects, each of them living in one of the two languages.
Logically, the two half objects share their identity and state.
Typically the two languages run in the same process, even
though this is not necessary.

2.1. Invoking Split Object Halfs

A split object can be accessed from within both languages.
Both split object halfs are proxies [11] for the respective other
half. That is, using a split object half the other half can be
accessed.

Typically, there is a methodinvoke provided for a split
object that allows one to sent messages to the respective other
half. invoke receives the method name, the arguments, and
the return type (if required) as parameters.

The invoke method can either be implemented by a su-
perclass of the split object halfs or it can be introduced (for
instance, using generative programming techniques or AOP)
for each split object class. The implementation of thein-
voke method must be suited to the language features of the
target language. There are the following options:

• Dispatcher Extension: If the target language contains
a runtime dispatch mechanism (such as Tcl or Lisp for
example),invoke can forward the invocation to the dis-
patcher and receive the result.

• Reflection: Some languages (such as Java or Tcl) con-
tain a reflection API that allows one to look up a method
by name and invoke it.

• Generative Programming: If the other options do not
work (as in C or C++ for instance) or if these runtime
techniques impose a problematic performance overhead,
a program generator can be used to inject the invoca-
tions. For instance, to invoke C functions or C++ meth-
ods typically function pointers are registered that can be
accessed using theinvoke method. The disadvantage

of this technique is that only those methods can be in-
voked for which a function pointer binding was gener-
ated before. In other words, the runtime flexibility of
this solution is more limited.

2.2. Automatic Type Conversion

For an invocation between two languages with differing
type systems it is necessary to convert the types of parameter
and return values. Usually a generic type is used for argu-
ment passing between the languages. For instance, we can
useObject in Java, a void pointer in C/C++, and strings in
scripting languages or distributed object systems.

For efficiency reasons, primitive types are converted using
an automatic type converter. This is (partly) supported for
many types by (some of) the programming languages. For
instance, Java primitive types can be serialized to strings, and
Tcl supports an automatic type converter for converting types
to and from a string representation. Note that there are many
ways to improve the efficiency of type conversion, such as
lazy conversion or sharing of immutable objects.

Non-primitive types can be represented as split objects in-
stead of converting them back and forth. That is, they exist
in both languages and have a unique split object ID. Thus
only the reference needs to be converted. This is very effi-
cient, but it is not suitable for primitive types or instances not
involved in split object interactions, because split object al-
ways impose a penalty in terms of performance and memory
consumption.

Note that an automatic type converter is also provided
for marshalling in distributed object frameworks, such as
CORBA, RMI, Web Services, or .NET.

2.3. Automatic Forwarding

For most tasks it is useful that one of the two split object
halfs is a wrapper for the other one. That is, the wrappee
half contains some application logic, and the wrapper half
contains an automatic forwarding mechanism to reach the
wrappee half. Automatic forwarding is typically imple-
mented using a number of elements:

• Split Object Wrapper Superclass: A superclass is as-
signed to all split object wrappers. It contains the im-
plementation of the automatic forwarding mechanism.
There is a field that stores the object identity of the
wrappee. In non-OO languages the superclass concept
can be simulated (see for instance [12]).

• Split Object Factory: A factory [11] allows one to create
a split object from the runtime environment of the wrap-
per. The factory contains two factory methods. One
makes an existing object in the wrappee’s language a
split object; that is, a wrapper is created. The other fac-
tory method creates a complete new split object, con-
sisting of a wrapper and a wrappee.

• Mixin Methods: On the wrapper’s superclass a method
next (or sometimes calledproceed) is defined that

is able to forward a given invocation to the wrappee.
This method is invoked within wrapper methods. At the
point where this invocation takes place, the same-named
method of the wrappee is invoked automatically.next
returns the result of this method. The mixin method on
the wrapper can perform behavior before or after the
next invocation, it can omit thenext invocation, and/or
it can manipulate the result.

In Figure 1 the dynamics of an invocation to a method
someInvocation for the wrapper half of a split ob-
ject is shown. The wrapper implements the method
someInvocation . This method is a mixin method and
contains an invocation ofnext . next forwards the in-
vocation toinvoke . invoke invokes the same-named
method on the wrappee.

• Variable Traces: Optionally, variable traces can be sup-
ported. These allow the wrapper layer to bind a wrap-
per variable to a public variable of the wrappee. State
changes are then automatically propagated.

• Automatic Forwarding: Some methods of the wrappee
might not be altered in their behavior by the wrapper. It
is tedious to hand-built a wrapper method for each such
method on the wrapper. Instead the wrapper should au-
tomatically forward these methods. There are two vari-
ants to build an automatic forwarding mechanism:

– Default Behavior: If the dispatcher of the wrap-
per’s language can be extended (as in Tcl or Lisp,
for instance), we can implement a default behavior
for split object classes that is invoked every time a
method invocation cannot be dispatched. The de-
fault behavior of a split object wrapper sends the
same method invocation to wrappee split object
half using theinvoke method.
In Figure 2 a methodsomeInvocation is in-
voked for the wrapper half of a split object, but this
method is not implemented for the wrapper. The
dispatcher catches the runtime exception, and, as a
default behavior, it tries to invoke the same-named
method on the wrappee. This invocation either
causes a runtime exception because the method is
not found for the wrappee either, or it returns the
invocation result. In the example in the figure, the
result is returned to the client.

– Generated Wrapper Stubs: In languages that do
not allow to alter the dispatch process, we can
simulate a default behavior by generating a wrap-
per stub for all methods that are defined for the
wrappee, but not defined for the wrapper. These
methods simply hand the invocation to theinvoke
method so that it gets executed on the wrappee.

2.4. Class Hierarchy Integration

Most often the split object layer mimics the user-defined
class hierarchy of the wrappee half, because this way we can

:Dispatcherclient :SplitObjectWrappee

someInvocation()

invoke(self, "someInvocation")

:SplitObjectWrapper

next

someInvocation()

Wrappee LanguageWrapper Language

someInvocation()

Figure 1. Method mixin dispatched for the wrapper half of a split object

method not
found exception

:Dispatcherclient :SplitObjectWrappee

someInvocation()

:SplitObjectWrapper

Wrappee LanguageWrapper Language

dispatch("someInvocation")

someInvocation()

invoke(self, "someInvocation")
someInvocation()

Figure 2. The default behavior of the wrapper half forwards unknown invocations to the wrappee half

use the same modeling means in the wrapper layer and in the
application logic layer. Parallel class hierarchies are also very
useful for structuring the method mixins, forwarder methods,
and variable traces. A homomorphic structure is especially
useful for generating wrapper stubs because we can intro-
spect each class, and create the missing methods as wrapper
stubs on its pendant in the wrapper layer. This way, name
clashes can be avoided.

A structural homomorphism is not required for using the
split object concept, but it helps to avoid the additional com-
plexity of “new” structures in the wrapper layer. In general,
only those parts of the host language class hierarchy are re-
flected in wrapper language that are needed for the wrapping
task, and not more. For some tasks it even makes sense to
build heterogeneous class hierarchies. Moreover, building
parallel class hierarchies is not even always possible. For
instance, when Java wraps C++ we cannot directly mimic
multiple-inheritance relationships. Also, when non-object-
oriented languages are used for wrapping, it is necessary to
find a different solution.

An important part of class hierarchy integration is inte-
grating the life-cycle concepts of the languages to avoid “un-
safe” replication of objects or memory leaks. For instance,
when integrating with Java we have to make sure that a ref-
erence to the Java instance is maintained as long as the wrap-
per language instance exists. When the object in the wrapper
language is destroyed, all references to the Java object are

deleted so that it can be garbage collected. In C++, in con-
trast, we have to invoke the respective destructor. Note that
this one-to-one integration of the life-cycle of objects is only
one possible alternative. Instead we might also implement
split objects that are shared or instantiated on demand to op-
timize resource allocation.

3. Two Split Object Frameworks

We have explained the split object concepts on a fairly ab-
stract level in the previous section because there are many
different implementation variants for the different elements
of a split object framework. Which implementation variants
are best suited is highly depending on the features of the two
languages that are integrated using split objects. In this sec-
tion, we present two frameworks using object-oriented Tcl
variants together with Java and C++ respectively, one imple-
mented with reflection and one with a program generator. We
use Tcl here, because we needed it in our projects; any other
(object-oriented or procedural) languages can also be used
for implementing the wrapper half of a split object frame-
work.

3.1. Introducing Frag into Java using Java Reflection

Frag [32] is an object-oriented Tcl variant, completely im-
plemented in Tcl. It is intended to be used as a configuration

language for other languages. The Frag implementation runs
in a Java Virtual Machine (on top of Jacl [8]), and it also
works with the standard Tcl implementation implemented in
C.

Within Frag, there is a Frag classJavaClass provided.
This class is used for wrapping a Java class with a Frag ob-
ject. Thecreate method of this class creates a split object,
consisting of a Java and a Frag half.

All split objects in Frag inherit from a classJava . The
methoddispatcher of the classJava is responsible for for-
warding all invocations that cannot otherwise be dispatched
to the Java half.dispatcher is automatically invoked as
a default behavior, when a method cannot be dispatched in
Frag.

Internally, primitive Java types are automatically con-
verted to and from strings. Non-primitive types have to be
used as split objects in order to be used from Frag.

Consider we want to put a JavaInteger objects into a
JavaHashtable . First, we have to create wrapper classes
for the respective Java classes:

JavaClass create Integer
JavaClass create Hashtable \

-set javaClass java.util.Hashtable

The Java classes can be used to create split objects from
within Frag. For instance, we can create a Java Hashtable
and an Integer instance:

Hashtable create ht
Integer create i1 1

The object names (ht and i1) identify split objects. These
can be used to invoke methods via Java reflection. Actually
in the above example we have already invoked the Java con-
structors this way. Note that the JavaInteger constructor
requires an initial value as argument: internally the string1
is recognized as an integer and is automatically converted to
the Java typeint , required by the constructor.

As an example for an ordinary invocation, we canput the
Integer into the hashtable using the string IDfirst :

ht put first i1

Figure 3 shows the class relationships for theHashtable .

FragJava

JavaClass

«classes»

Hashtable

Java

create()

dispatcher()

Hashtable

Frag

frag

frag

«invokes»

«invokes»

«invokes»

«creates»«creates»

Figure 3. Example Class Relationships

3.2. Introducing XOTcl into C++ using SWIG

XOTcl [20] is an object-oriented variant of the language
Tcl, implemented in C. It is typically used for gluing (and
objectifying) C components. In principle, it can also be used
for gluing components written in C++, but without further
support C++ would have to be integrated in the same way as
C: by wrapping C++ methods with (hand-written) wrappers
that are using function pointers. But this way we would loose
much information that can be well modeled in XOTcl such as
C++ method, class, and inheritance structures. Thus a better
idea is to “really” integrate the two object-oriented languages
using the split objects concept.

We cannot use a solution similar to the Java solution, ex-
plained in the previous section, because C++ does not allow
for reflective lookup and invocation of methods. Instead, the
XOTcl wrapper classes and invocations can be automatically
generated. In our implementation we used the wrapper gen-
erator SWIG [26] to create all wrapper classes. Our SWIG-
XOTcl implementation automatically creates XOTcl classes
and C++ wrapping code from a given SWIG interface file.
Thus we only have to document the C++ interface as a SWIG
interface file, and all necessary wrapper code is generated
automatically. For instance, consider we want to use XOTcl
scripts to access a simple C++ stack class. First, a SWIG in-
terface file for this C++ class is needed. Note that this file is
almost identical to a C++ header file:
%module stack
%{
#include "stack.h"
%}
class Stack {

public:
Stack();
˜Stack();
void push(void* element);
void* peek();
void* pop();

};

Next the wrapper generator is run. It produces wrapper func-
tions for accessing the C++ public methods declared in the
interface file, including the constructor and destructor. It also
creates an XOTcl classC++, responsible for connecting an
XOTcl object to a C++ instance. That means, it stores an
ID for the C++ instance, and creates or destroys the C++ in-
stance, when the XOTcl instance is created or destroyed.

For each class name in the SWIG header file a same-
named XOTcl class is generated that inherits from theC++
class. For each C++ method, the XOTcl wrapper class has
a same-named method that invokes the C++ method using a
function pointer. For each variable a Tcl variable trace is pro-
duced. This trace sets the C++ variable whenever the same-
named variable is accessed from Tcl.

4. Introducing AOP into Frag/Java Split Ob-
jects using AspectJ

As mentioned before, the situations where split objects
can be applied are close to AOP, because the split object

wrapper untangles a concern from an implementation. If used
as an ordinary wrapper implementation, the client invokes the
wrapper. The wrapper forwards the invocation to the wrappee
(as depicted in Figures 1 and 2). This alone is not an AOP so-
lution: in the split object solution explained so far, the client
needs to know that the split object is applied, because it has
to invoke the wrapper. What is missing is a means to re-
compose the separated concern with the application logic in
a non-invasive way.

As a simple example, where such a non-invasive composi-
tion is important, consider again the Frag/Java split object so-
lution. In some cases, we might want to use Frag to make ad-
ditions to an existing Java program. Consider ahashtable
is defined as a split object, and the following invocation is
performed in the host language Java:
hashtable.get("first");

Even though thehashtable is defined as a split object, this
invocation bypasses the wrapper half and reaches the Java
hashtable object directly. To avoid bypassing we need
to modify the client or wrappee implementation. Instead of
dispatching the invocation to the wrappee split object half
directly, the invocation is performed for the wrapper half
first. What would be needed is an invocation sent through
the wrapper layer:
frag.eval("hashtable get first");

It is tedious to insert such invocation into the source code.
A transparent and automatic invocation of the wrapper half,
as depicted in Figure 4, is required. The wrappee half of the
split object is called by a client. The invocation is not dis-
patched directly, but another operationdispatch is called
that indirects the invocation into the wrapper layer. This for-
warding step should not be hand-built, but “woven” into the
application. Thus forwarding is not visible to the client (i.e.
the change is “non-invasive”). In the wrapper layer a dis-
patcher forwards the invocation to the respective split object
half. This object performs the invocation. During the invo-
cation it invokes the primitivenext that lets the dispatcher
perform the original invocation on the wrappee. The wrapper
receives the result, and it can handle this result in arbitrary
ways. For instance, it can simply return it to the client.

We have developed an AspectJ aspect that weaves Frag
split objects into a given Java program. The aspect con-
tains one advice that is invoked before the constructors of
user-defined classes. It callsmakeSplitObject that creates
a split object half in Frag. All other methods of the user-
defined classes are intercepted by an around advice. The
method invokeSplitObject sends the invocation to the
split object half first, and ifnext is invoked, it is sent to the
Java implementation as well:
abstract aspect FragSplitObject {

static Frag frag;
...
static void makeSplitObject(JoinPoint jp,

Object o) {...}
static Object invokeSplitObject(JoinPoint jp,

Object o) {...}
...
before(Object obj): theConstructors(obj) {

makeSplitObject(thisJoinPoint, obj);

}
Object around(Object obj) : theMethods(obj) {

return invokeSplitObject(thisJoinPoint,
obj);

}
}

The aspect is defined as an abstract aspect. In concrete as-
pects the pointcutsplitObjectClasses is refined. That
is, the classes to which the aspect is applied can be defined
by the user. For instance, we can apply the split objects to the
classesA, B, andC:
public aspect FragSplitObjectABC

extends FragSplitObject {
pointcut splitObjectClasses(Object obj):

this(obj) &&
(within(A) || within(B) || within(C));

...
}

Note that we have used AspectJ as a static AOP framework
for Java to aid the implementation of split object aspects. The
use of AspectJ for this purpose is not mandatory, we can use
most other aspect frameworks for weaving-in the forward-
ing step. For instance, we can use another program genera-
tor such as or Compost [1] to weave the split object into the
wrappee code. If the source code is not available, we can use
a byte code manipulator such as Javassist [6] to weave the as-
pect into the byte code. In languages that support dynamic
message interceptors (such as XOTcl [20], Frag [32], and
many distributed object systems), we can use the interceptors
to indirect messages to the split object. Once applied, the
split object aspect solution goes beyond the original (static)
AOP solution in two ways that are important for reengineer-
ing or maintenance tasks explained in Section 5:

• The split object aspect introduces the language proper-
ties of the wrapper language into the host language and
its AOP framework. When using Frag as the wrapper
language for Java and AspectJ, for instance, we intro-
duce Frag’s language dynamics into the statically woven
AspectJ aspect, written in Java. That is, we can dynam-
ically configure and compose the aspects at runtime.

• The code written in the wrapper language can be reused
across different host languages. For example, we can
reuse Frag code across different host languages sup-
ported by Frag (Java, C, C++, and Tcl).

The default behavior of the split object aspect, explained
above, is that all invocations are sent through the split object
layer, but the invocations are not altered. By re-defining the
classes in the dynamic Frag language, one can dynamically
configure and compose the aspect. For example, if we want
to redirect all invocations of a methodopen on classA to an
instance of a Java classLogger , we have to create a split
object binding for theLogger class and introduce the indi-
rection method for classA dynamically. This mixin method
first logs the invocation and then invokes the original method
behavior usingnext :
String script =

"A method open {logger logMethod A open; next}";
frag.eval(script);

:Dispatcherclient :SplitObjectWrappee

someInvocation()
dispatch("someInvocation")

invoke(self, "someInvocation")

:SplitObjectWrapper

Wrappee Language Wrapper Language

someInvocation()
next

next
someInvocation()

Figure 4. A split object aspect is woven into the wrappee code

5. Using Split Objects for Reengineering and
Maintenance Tasks

Now that we have introduced the concept of split objects,
two implementation variants, and split object aspects, we
want to discuss some possible uses of the concept and the
frameworks in the field of software reengineering and main-
tenance.

5.1. Component Testing

An important software maintenance task is software test-
ing. Some approaches aim at easing the process of writing
tests. For instance, JUnit [10] is a framework that eases writ-
ing test cases in Java and assembling them into test suites. A
drawback of this approach is that it requires the developer to
build the test cases apart from the components to be tested.
Software tests, however, are conceptually closely coupled to
the components to be tested. On the other hand, tightly cou-
pling test cases with implementation details is problematic as
well, because as soon as the implementation details change,
the test cases have to be adjusted as well. If the number of
test cases grows, test case maintenance can become a serious
concern. JUnit only offers a programmatic compilation of
test cases in Java requiring recompilation for reconfiguration.
Many projects prefer scripting languages for test case man-
agement and specification because of the rapid changeability
and the string manipulation capabilities of these languages.

Different approaches aim at modeling a coupling between
components and component tests. For instance, Orso et al.
[22] derive assertion-based self-checks of software compo-
nents using component metadata. Some approaches pro-
pose built-in tests for components [29, 2] that are part of
the class specification. Jéźequel et al. apply a design-by-
contract approach to implement self-testable software com-
ponents [15]. In particular, they embed “test-contracts” in
source code comments and apply a preprocessor to extract

the test information before compilation. These approaches,
in turn, have the drawback that they bloat the software com-
ponents’ sources with metadata or test code.

The problem that tests should be separated from the com-
ponent to be tested, but yet a close coupling is required, lets
an AOP solution come to mind. Using AspectJ [16], for in-
stance, one can “introduce” test methods to existing classes.
This way tests are separated in the aspect, but still share the
object identity with the instance to be tested.

Unfortunately, the current generative AOP frameworks,
such as AspectJ [16] or Hyper/J [27], have a number of prob-
lems regarding component testing. For instance, the pointcut
languages of most AOP frameworks do not allow an aspect
to be (easily) composed with a particular instance. Also it
might be hard to specify context constraints using pointcuts.
Dynamic aspect composition at runtime is not supported, and
thus re-compilation is required to change test cases.

Split objects provide a solution balancing the forces dis-
cussed above. We have applied these concepts for testing
C and C++ (and XOTcl) components. In our concept, we
use component metadata in the scripting language XOTcl to
specify the test information. This metadata describes the split
object wrapper hierarchy, automatically generated by SWIG.
A test framework is provided that introspects these classes for
test metadata. The whole test suite can be run automatically.

Consider for instance a simple C++Counter class. The
SWIG wrapper generator creates a split object classCounter
in XOTcl. In the test script we can derive an instance from
this class, and test it. The methodscount andcounter are
only defined in C++. SWIG generates wrapper methods so
that the XOTcl split object half forwards invocations sent to
these methods into C++.

The test framework executes thetestScript , and auto-
matically compares a user-definedresultScript with the
result of the last invocation in the test script (which returns
the counter value in the example below):
@Test counting::countTo5 {

testScript {

Counter create c1
for {set i 0} {$i < 5} {incr i} {

c1 count
}
c1 counter

}
resultScript {5}

}

The split object solution for component testing has a num-
ber of benefits that are not offered in their entirety by any of
the other approaches discussed before. The split object shares
the identity with test object; thus there is a close coupling be-
tween test and tested object. The test wrapper is annotated
with component metadata for tests, instead of hard-coding
test cases. The test code is completely untangled from the
code of the production system. Test cases can be specified
in an invasive manner (e.g. for a specific instance) or non-
invasive manner (e.g. using introspective queries like “ap-
ply the test for all instances whose class name begins with
XYZ”). The split object code can be completely generated
by SWIG automatically. Test cases are written in the flexible
scripting language with powerful string processing capabil-
ities. Thus it is very easy to write test cases rapidly. The
test framework, written in XOTcl, can be reused for many
languages (Tcl, XOTcl, C, and C++).

There are some drawbacks of the XOTcl split object solu-
tion for testing C++ as well. Some additional work is re-
quired for specifying the SWIG interface files of the C++
components. The approach imposes some overheads in terms
of memory and performance usage. For typical test cases this
should not pose a problem. But in cases where the test suite
needs to be part of the operational system this might be prob-
lematic. Developers have to acquire a basic Tcl knowledge
for test case specification.

5.2. Improving Dynamic Feature Analysis

For reengineering a large-scale system it is crucial to gain
an initial understanding of the system and its architecture.
Even though there are many tools and approaches to com-
pletely reverse engineer an existing system [18], in many
cases these might produce very complex results or require
a significant amount of work. Static feature analysis such as
semi-automatic feature location based on dependence graphs
[5] also poses some problems, especially regarding complex-
ity in large-scale systems that are not well documented.

Dynamic feature analysis techniques [30, 9] can pro-
vide important starting points for static program analysis.
Gschwind and Oberleitner [14] identify some shortcomings
in current dynamic feature analysis techniques. For each new
analysis a program run is required, sometimes even requiring
a complete re-compilation. Traces cannot be tuned to partic-
ular objects or method invocations. Parameter values passed
to objects are not available during analysis.

To overcome these shortcomings Gschwind and Oberleit-
ner propose ARE, a reengineering tool based on AspectJ.
The general idea of the tool is to compose an aspect with
all classes to be traced, and use the dynamic joinpoint model
of AspectJ for fine-tuning these trace aspects at runtime. This

solution avoids the shortcomings named above, but yet it has
some shortcomings as well. A main drawback is that As-
pectJ’s aspect instrumentation is not really object specific or
method invocation specific. ThethisJoinpoint invoca-
tion context of AspectJ is used to obtain method signatures
and arguments at runtime. The aspect woven into the appli-
cation remains unchanged for the whole program execution.
As a consequence any manipulation of the control flow (such
as adding a new AspectJ advice) or the structures (such as
adding an AspectJ introduction) requires recompilation of as-
pects and the system.

Note that exactly this problem is addressed by injecting
Frag split objects into Java using AspectJ, as explained in
Section 4. The system is instrumented so that every invoca-
tion is firstly sent through the split object layer. After instru-
mentation, the split objects are just wrappers that are invoked
instead of the original receives, and forward all invocations
to these original receivers (they are simply invokingnext).
Thus the system is working in the same way as before, but
every invocation passes the split object layer.

In the split object layer we are able to trace and manipu-
late the split objects. Using the introspection options of the
scripting language, we can also find out about the static struc-
ture of the entities involved in a control flow.

The object half in the scripting language can be changed
at runtime, once it is composed with the system. Split ob-
jects allow for dynamic feature analysis in the style of ARE:
traces of control flows with all parameters and results can be
analyzed and specific traces can be filtered out using method
mixins. Consider for instance a methodx of a Java classB
is invoked, but only if an instance of another classA has in-
voked it, the method should be logged. This fine-tuning can
be reached by introspecting the calling object of the invoca-
tion and the type of this object.
B method x {} {

if {[[callstack callingObject] info isType "::A"]}
Logger writeTrace [list Called [self] \

[callstack method]]
}
next

}

Note that we have used control flow data (the callstack in-
formationcallingObject) and structure data (theisType
introspection option) to fine-tune feature logging in this
wrapper method.

There are some interesting features for manipulating a sys-
tem. These can be very helpful when restructuring a sys-
tem. A split object can be used to dynamically introduce
new methods to a class. Using method mixins we can inject
method calls. That is, the control flow can be changed from
the within the split object layer. For instance, we can redirect
an invocation to a different instance than the one originally
called (without needing to recompile the system to add such
manipulations).

The split object solution is not well applicable for all dy-
namic analysis tasks. Any analysis that depends on perfor-
mance measurements suffers from the overheads of the split
object layer and are thus not accurate (the same applies for
other AOP solutions). AOP techniques typically have less

instrumentation points than pure parse tree approaches, be-
cause the pointcut and joinpoint models abstract from these
details. Compost [1] operates directly on the parse tree and
thus might be an alternative when a more fine-grained instru-
mentation is needed. In general, our approach does not rely
on AspectJ for instrumentation: any framework can be used
that can intercept the construction of an entity (to make it a
split object) as well as all invocations (to indirect them into
the split object layer). That is, our approach can also be ap-
plied to other languages than Java or to the Java Byte Code
(e.g. using Javassist [6]).

5.3. Variation and Configuration Management

Many monolithic systems have problems regarding intro-
duction of new variants, flexibility, and configuration man-
agement. This problem occurs for reengineering of legacy
systems, as well as the maintenance of newly developed sys-
tem. We have experienced this problem for instance during
reengineering a C-based document archive system [13] and
for variation management of software for Java-based inter-
active television set-top boxes. In both cases, hard-coding
the variations or configuration options was not enough, be-
cause rapid customization without re-compilation (even by
non-programmers in some cases) was required.

Many projects use metadata in a separate file, as for in-
stance an XML configuration file, as a solution. For instance,
JBoss AOP uses XML configuration files to configure aspect
composition [4]. This solution is good for handling simple,
structured configuration options or variations in a declara-
tive manner. It is hard, however, to deal with configuration
options or variations that require behavioral specifications
and/or programming constructs, such as conditions, loops,
blocks, substitutions, or expressions. JAC [24] allows an as-
pect to define its own configuration options. Even though this
works for simple behavioral configurations, a real program-
ming language is substantially more expressive than these
simple domain-specific languages.

In such cases, we propose to use split objects and a dy-
namic configuration language instead. For instance, Frag is
designed for configuring Java using scripts. Consider, for in-
stance, interactive games that should run on the digital televi-
sion set-top box. A programming language is needed, but yet
programming in-game scenes in Java is tedious. Game level
and scene designers usually are not programmers. Thus, what
is need, is a simple configuration language that can easily be
connected to those elements of the Java program which are
relevant for game scripting.

Consider, for instance, a Java classWizard provides all
basic actions for a wizard character, such as character paint-
ing, move sequences, spell cast movements, etc. Now con-
sider further the wizard is capable of some 100 spells, each
having different effects on the wizard and the spell’s target.
Also each spell causes different visual effects. Configuring
these spells is a typical game scripting task. For instance, a
spell script might look as follows:
JavaClass create Wizard -superclasses Character
...

Wizard method castBurnSpell {target} {
self spellCastMovement 3
set success [self castSpell fireball]
self substractMana 15
$target burn [expr 2 * $success]
$target hit [expr 3 * $success]

}

Obviously, many parameters in this script (and all other spell
scripts) need extensive game playing and testing by trial and
error. If it would be necessary to re-compile and re-start the
game application to change such parameters, there would be
a considerable overhead in terms of development times. In-
stead it makes sense to dynamically manipulate and exchange
the script during game play testing.

The split object solution allows us to untangle the aspect
“in-game configuration” from the game code. Other AOP
solutions would also work in this context, but as a disad-
vantage most current AOP languages require re-compilation.
The split object solution has the disadvantages that the em-
bedded interpreted language is slower than a compiled solu-
tion.

The problem of having to add variation management (like
versioning for instance) or configuration options, often oc-
curs during legacy reengineering as well. Many AOP lan-
guages are not applicable in this context because for many
legacy system languages there are no stable AOP language
extensions (yet). Here, the split object solution has the advan-
tage that it is significantly easier to develop an in-house solu-
tion of (the wrappee part of) a split object framework than an
AOP language extension for the legacy system’s language.

5.4. Integration with Non-OO Languages

So far we have discussed the approach from an object-
oriented perspective because split objects are an object-
oriented concept. Yet there is in no limitation regarding the
host language, and object-orientation can be simulated in pro-
cedural languages (see [12]).

For instance, we have integrated C programs into object-
oriented applications using split objects. Then a number of C
functions has to be grouped to form an object-oriented wrap-
per as the wrappee half of a split object. In [13] we present
the details of a solution for a C-based document archive sys-
tem.

6. Conclusion

In this paper we have described split objects as a practi-
cal concept for language integration and extended the basic
concept in various ways. In particular, we have developed
a concept to automate the application and composition of
split objects (either using reflection or generative techniques).
As a proof of concept we have presented two split object
frameworks for C++/XOTcl and Java/Frag. We have also de-
scribed how to use split objects as dynamically configurable
and composable aspects (a feature not offered by today’s as-
pect composition frameworks solely). Note that the general
concept is applicable for any programming language; it is

not limited to using a Tcl variant as the wrapper language.
We have used Tcl variants because they have provided the
required dynamic and introspective language features in our
application areas: component testing, dynamic feature anal-
ysis, variation and configuration management. There are a
number of other potential application areas, such as calculat-
ing dynamic metrics. For these (quite diverse) reengineering
and maintenance tasks we have shown that split objects can
be applied to avoid some drawbacks of existing solutions. As
outlined before, we have used the concepts with success in a
number of practical research and industry projects.

The approach should only be applied if the flexibility of
the split object layer is needed. In other cases, there is a
performance and memory overhead because every invocation
needs to be sent through split object layer. This overhead is
rather hard to quantify in general because different languages
and integration solutions have quite different properties. In
most cases, the performance overhead equals an additional
invocation in the (often slower) wrapper language. Another
drawback of split objects is the higher complexity of the soft-
ware structures and that developers have to learn two lan-
guages. Note that these issues are only relevant in compari-
son with a pure host language design. In appropriate applica-
tion cases, where the split object flexibility is needed by the
application task, however, pure host language solutions are
often complex and slow as well. Thus a proven, reusable split
object solution is typically easier to understand and maintain
than an equally powerful solution in the host language that is
implemented for a particular project only.

References

[1] U. Aßmann and A. Ludwig. Introducing Connections into
Classes with Static Metaprogramming. In P. Ciancarini and
A. Wolf, editors, 3rd Int. Conf. on Coordination, number
1594. Springer, Apr. 1999.

[2] C. Atkinson and H. Gross. Built-in contract testing in model-
driven, component-based development. InProc. of ICSR-
7 Workshop on Component-Based Development Processes,
April 2002.

[3] J. Brant, R. E. Johnson, D. Roberts, and B. Foote. Evolution,
architecture, and metamorphosis. InProc. of 12th European
Conference on Object-Oriented Programming (ECOOP’98),
Brussels, Belgium, July 1998.

[4] B. Burke. JBoss aspect oriented programming.
http://www.jboss.org/developers/projects/jboss/aop.jsp,
2003.

[5] K. Chen and V. Rajlich. Case study of feature location using
dependence graph. InProceedings of the 8th International
Workshop on Program Comprehension, June 2000.

[6] S. Chiba. Javassist. http://www.csg.is.titech.ac.jp/∼chiba/
javassist/, 2003.

[7] K. Czarnecki and U. Eisenecker.Generative Programming:
Methods, Techniques and Applications. Addison-Wesley,
1999.

[8] M. DeJong and S. Redman. Tcl Java Integration. http://
www.tcl.tk/software/java/, 2003.

[9] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program
comprehension by static and dynamic feature analysis. InPro-
ceedings of the International Conference on Software Main-
tenance, November 2001.

[10] E. Gamma and K. Beck. JUnit. http://www.junit.org/, 2003.
[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[12] M. Goedicke, G. Neumann, and U. Zdun. Object system layer.
In Proceedings of EuroPlop 2000, pages 397–410, Irsee, Ger-
many, July 2000.

[13] M. Goedicke and U. Zdun. Piecemeal legacy migrating with
an architectural pattern language: A case study.Journal of
Software Maintenance and Evolution: Research and Practice,
14(1):1–30, 2002.

[14] T. Gschwind and J. Oberleitner. Improving dynamic data anal-
ysis with aspect-oriented programming. InProccedings of
the 7th European Conference on Software Maintenance and
Reengineering (CSMR2003), Benevento, Italy, March 2003.

[15] J. J́eźequel, D. Deveaux, and Y. L. Traon. Reliable Ob-
jects: Lightweight Testing for OO Languages.IEEE Software,
18(4), July/August 2001.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. Getting started with AspectJ.Communica-
tions of the ACM, 44(10):59–65, Oct 2001.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProceedings European Conference on Object-
Oriented Programming (ECOOP’97), pages 220–242, Finn-
land, June 1997. LCNS 1241, Springer-Verlag.

[18] R. Koschke. Atomic Architectural Component Recovery for
Program Understanding and Evolution. PhD thesis, Univer-
sity of Stuttgart, 2000.

[19] P. Maes. Concepts and experiments in computational reflec-
tion. ACM SIGPLAN Notices, 22(12):147–155, 1987.

[20] G. Neumann and U. Zdun. XOTcl, an object-oriented script-
ing language. InProceedings of Tcl2k: The 7th USENIX
Tcl/Tk Conference, pages 163–174, Austin, Texas, USA,
February 2000.

[21] Open Mash Consortium. The open mash consortium.
http://www.openmash.org, 2000.

[22] A. Orso, M. Harrold, and D. Rosenblum. Component meta-
data for software engineering tasks. In2nd Int. Workshop on
Engineering Distributed Objects (EDO 2000), Davis, USA,
Nov 2000.

[23] J. K. Ousterhout. Scripting: Higher level programming for the
21st century.IEEE Computer, 31, March 1998.

[24] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC:
a flexible framework for AOP in Java. InReflection 2001:
Meta-level Architectures and Separation of Crosscutting Con-
cerns, pages 1–24, Kyoto, Japan, Sep 2001.

[25] H. M. Sneed. Encapsulation of legacy software: A technique
for reusing legacy software components.Annals of Software
Engineering, 9, 2000.

[26] Swig Project. Simplified wrapper and interface generator.
http://www.swig.org/, 2003.

[27] P. Tarr. Hyper/J. http://www.research.ibm.com/hyperspace/
HyperJ/HyperJ.htm, 2003.

[28] UCB Multicast Network Research Group. Network simulator
- ns (version 2). http://www.isi.edu/nsnam/ns/, 2000.

[29] Y. Wang, G. King, and H. Wickburg. A method for built-in
tests in component-based software maintenance. InIEEE In-
ternational Conference on Software Maintenance and Reengi-
neering (CSMR’99), pages 186–189, March 1999.

[30] N. Wilde and M. C. Scully. Software reconnaissance: Map-
ping program features to code.Software Maintenance: Re-
search and Practice, 7:49–62, 1995.

[31] Xerox. Inter-Language Unification. http://www2.parc.com/
istl/projects/ILU/, 1999.

[32] U. Zdun. Frag. http://frag.sourceforge.net/, 2003.

