Markus Niittgens, Frank J. Rump (Hrsg.)

EPK 2004

Geschaftsprozessmanagement mit
Ereignisgesteuerten Prozessketten

3. Workshop der Gesellschaft fiir Informatik e.V. (GI)
und Treffen ihres Arbeitkreises ,,Geschiftsprozessmanagement
mit Ereignisgesteuerten Prozessketten (WI-EPK)*

06. Oktober 2004 in Luxemburg

Proceedings

Veranstalter

veranstaltet vom GI-Arbeitskreis "Geschiftsprozessmanagement mit Ereignisgesteuerten
Prozessketten (WI-EPK)" der GI-Fachgruppe WI-MobIS (FB-WI) in Kopperation mit
der GI-Fachgruppe EMISA (FB-DBIS) und der GI-Fachgruppe Petrinetze (FB-GInf).

Prof. Dr. Markus Niittgens (Sprecher)
Hamburger Universitét fiir Wirtschaft und Politik
Email: nuettgens@hwp-hamburg.de

Prof. Dr. Frank J. Rump (stellv. Sprecher)
FH Oldenburg/Ostfriesland/Wilhelmshaven
Email: rump@informatik-emden.de

EPK 2004 / Geschiftsprozessmanagement mit Ereignisgesteuerten Prozessketten. Hrsg.:
Markus Niittgens, Frank J. Rump. — Luxemburg 2004

© Gesellschaft fiir Informatik, Bonn 2004

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in
diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme,
dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als
frei zu betrachten wéren und daher von jedermann benutzt werden diirften.

EPML2SVG - Generating Websites from EPML Processes

Jan Mendling, Alberto Brabenetz, and Gustaf Neumann
Department of Information Systems and New Media
Vienna University of Economics and BA
firstname.lastname@wu-wien.ac.at

Abstract: This paper presents an approach to map EPC business process models
available in EPML to Scalable Vector Graphics (SVG) and websites. This mapping
has been implemented as an XSLT transformation program called EPML2SVG. Such
a transformation may serve as a reference for visual tools that use EPML. Further-
more, business process models available in SVG can be used in web presentations and
they can be viewed without buying a licence of a business process modelling tool.
Moreover, EPML2SVG leverages EPML as an interchange format for EPCs. Web-
sites generated by EPML2SVG contain SVG graphics for each EPC model and an
HTML navigation structure based on links to each process models. We discuss design
decisions of the program and illustrate the generated SVG by an example.

1 Introduction

Event-Driven Process Chains (EPC) are a wide-spread technique for modelling business
processes. EPML (EPC Markup Language) is a tool-neutral interchange format for busi-
ness process models represented as EPCs. It has been designed to serve as an import and
export format as well as an intermediary format for transformations between heterogenous
business process modelling tools [MN02, MNO03, MNO04]. It is related to other standardiza-
tion efforts like OMG’s XML Metadata Interchange (XMI) [Ob03], the Petri Net Markup
Language (PNML) [BCvH 03], or WIMC’s XML Process Definition Language (XPDL)
[Wo02] that all aim to provide a tool-neutral interchange format.

In this paper we address the task of reusing business process models available in EPML and
generating websites including Scalable Vector Graphics (SVG) [FJJ03] files from them.
There are different motivations for this work. First, a transformation to SVG can serve
as a reference model standardizing the visual representation of EPML documents (see
[BCvH 03]). Second, SVG graphics of EPC business process models can be integrated
into web-based trainings for e.g. SAP courses (see [As02]). Third, an SVG representation
can be used within a website to communicate business process models to members of a
company without buying a licence of a business process modelling tool like e.g. ARIS
Toolset. Finally, the provision of tools is important to leverage EPML as an interchange
format for EPCs.

EPML has been designed following the design principles of readability, extensibility, tool

55

orientation, and syntactical correctness [MNO3]. In the context of this work the EPML
design principles of readability and tool orientation are especially important. First, read-
ability provides for an easy development of programs that transform EPML code. Second,
tool orientation in terms of position information of EPC symbols allows to build graphics
from models available in EPML. This paper will present a transformation program that
generates websites from EPML files. It is called EPML2SVG. This program is written in
XSLT [C199], a scripting language specialized on generating new XML documents (i.e.
HTML and SVG in this case) from other XML input files (i.e. EPML). Each EPC business
process model will be used to build a separate SVG file. The rest of the paper is structured
as follows. Section 2 will give an overview of SVG and its principles and advantages.
In Section 3 we will present the generation of websites from EPML files. Section 4 will
present related research. Finally, Section 5 will give some concluding remarks and an
outlook on future research.

2 Scalable Vector Graphics

SVG is an XML-based format for two-dimensional vector graphics standardized by the
World Wide Web Consortium [FJJ03]. It can contain graphic elements, images, and text.
SVG defines a graphic as a set of geometric vector objects that can be grouped, styled,
transformed, and composed (see [DHHO02] for details). Vector representation provides
for a loss-free scaling and storage efficiency. Furthermore, SVG offers dynamic effects
like e.g. changing colors, moving text, or zooming. As SVG is based on XML it can be
easily manipulated via a simple text editor. Moreover, SVG documents can be combined
with other XML and programming technologies. On the one hand, SVG can be included
in HTML documents [Pe02] and on the other hand it can include e.g. XLink elements
[DMOO01] to represent hyperlinks from graphic objects to web resources. Furthermore, text
included in SVG graphics can be retrieved and indexed by search engines. A shortcoming
is that SVG is not compressed like other image formats', because it is text-based. Yet, this
is not a problem within the context of the work presented here.

SVG uses the so-called painter’s model as its rendering concept (see [DHHO02]). This term
refers to the way an artist paints an oil painting. SVG paints the rendering elements in
sequential order. It starts with the first element of the SVG document, let’s say a red rect-
angle, and draws it on the area indicated by its coordinates. Second, a green circle is drawn
whose area partially overlaps with that of the rectangle. According to the painter’s model,
the current element (the green circle) is drawn on top of the already existing drawing. This
implies that the rectangle is partially obscured by the circle, unless semi-transparency has
been defined for the circle. After that, the next element is drawn, and so on. When the cir-
cle has an edge, its area is drawn first, and the edge afterwards. This sequential drawing of
elements on top of the current drawing constitutes the painter’s model employed by SVG.

Each SVG document has an svg root element that includes a width and a height at-
tribute defining the size of the graphic. The top left point represents the origin of SVG’s

For an overview of design criteria for multimedia interchange formats see [K092]

56

coordinate system. The svg element may nest multiple graphic elements including rect,
circle, ellipse, line, polygon, polyline, image, path, text, and use. In the
following we will sketch some of their characteristic. For a good introduction to SVG in
general refer to [DHHO2].

N

path element circle element line element polyline element polygon element ellipse element rect element

<svg width="900" height="300">
<path d="M50,50 L140,50 L140,140, L50,140z" fill="red"/>
<circle cx="170" cy="100" r="50" fill="green"/>
<line x1="225" yl="150" x2="275" y2="50" stroke="black" stroke-width="5" fill="none"/>
<polyline points="300,50 325,150 350,50 375,150 400,50 425,150" stroke="black" fill="none"/>
<polygon points=" 480,50 527,84 509,140 450,140 432,84" stroke="black" fill="none"/>
<ellipse cx="620" cy="100" rx="72" ry="50" stroke="black" fill="none"/>
<rect x="710" y="50" rx="20" ry="20" width="120" height="100" stroke="black" fill="yellow"/>

<text x="50" y="180">path element</text>
<text x="135" y="180">circle element</text>
<text x="225" y="180">line element</text>
<text x="320" y="180">polyline element</text>
<text x="440" y="180">polygon element</text>
<text x="580" y="180">ellipse element</texts>
<text x="735" y="180">rect element</text>
</svg>

Figure 1: Basic elements of SVG.

The most general graphic element of SVG is path. In Figure 1 the path element is used to
draw a red rectangle. The 4 attribute defines the path by giving commands and references
to positions. The M command moves the current position to the specified (x,y) coordinates.
The L command draws a line from the current position to the specified position. Z can
be used to close the path just like in the red rectangle example. See [DHHO02] for further
commands including cubic bezier curves. Basic shapes like rect or ellipse are sim-
ple shorthands for equivalent paths. Figure 1 illustrates how these shapes are defined: a
circle by its center coordinates and radius, a 1ine by its first and second point coor-
dinates, polyline and polygon by a sequence of positions, an ellipse by its center
coordinates and two radii, and a rect by its top left corner, width and height, and op-
tionally the radii of elliptic arcs rounding the corners. Furthermore, text can be drawn by
defining text elements (see Figure 1). The style of these shapes and text elements can be
specified by various attributes. These include the definition of a fill color (£111), defini-
tion of a stroke color (stroke), or definition of the stroke width (stroke-width). For a
complete list of these style attributes see the specification [FJJ03].

Furthermore, SVG permits images to be included using the image element. This is similar
to the way as images are included in HTML. All elements can be grouped via a g element.
The whole group can be translated, scaled, rotated, or skewed via a transform command.
Finally, the use element draws a previously defined symbol on a specified positions on
the SVG graphic. The SVG viewer internally replaces the use by a group element that
contains the elements defined in the symbol element. The following section will discuss
how SVG can be used to render EPC business process models defined in EPML.

57

3 From EPML to Web Presentations

This section introduces the EPML2SVG program implemented in XSLT. We will first give
a short introduction to EPML. Then we discuss architectural alternatives to make EPML
business process models available as websites. Afterwards, we present the mapping from
EPML to websites implemented in the EPML2SVG program. Finally, we discuss the
program. In case of potential confusion of names we use namespace prefixes to identify
svg and epml elements and attributes.

3.1 EPML in Brief

EPML is an XML-based tool-neutral interchange format for EPC business process mod-
els [MNO2, MNO3, MNO04]. The epml element is the root of every EPML file. It con-
tains among others a directory element that can nest further directories and epc mod-
els. Each of these models is identified by a unique EpcId and a name attribute. An
epc element is a container for multiple control flow elements like event, function,
processInterface, as well as and, or, and xor connectors, and multiple control flow
arc elements. Each of these elements is identified by a unique 14 attribute and a name
element. The function and the processInterface element may include ToProcess
elements. The latter has a LinkToEpcId attribute representing a logical pointer to a sub-
process of a function or to a subsequent process of a process interface. Each arc element
has a £1ow element whose source and target attributes represent the source and the
target of the control flow arc. All EPC elements may have a graphics element. This
element may contain position, £i11 (not applicable for arcs), 1ine, and font visu-
alization information. For control flow elements the position element specifies the x
and the y position of the top left corner of a bounding box. Its size is indicated via the
attributes width and height. Control flow arcs may have multiple position elements,
each representing a point of a polyline. In the most simple case there are two position
elements to represent the start point and the end point of the arc. For further details and
further syntax elements of EPML we refer to [MNO04].

3.2 Static versus Dynamic

Basically, there are two ways to generate websites from EPML files: static and dynamic.
For a static website architecture all HTML and SVG files are generated in one go. After-
wards, these files can be published in a web directory. This approach has the advantage
that it is easy to implement. Furthermore, requesting files from a static website provides
a good performance. On the other hand, chances to the original EPML file will require a
new run for generating the website. In a dynamic setting websites are generated from the
original EPML file on request. That has the advantage that chances to the EPML file are
immediately available. Yet, generating websites on the fly requires more computing time.

58

The EPML2SVG program provides for a generation of static websites. In particular, two
different kinds of files are generated: HTML files for navigation through the EPC business
process models, and SVG files for visualization of individual EPCs (see Figure 2). The
EPML2SVG program arranges both kinds of files in an HTML frameset. Each EPML file
maps to several HTML files. For one EPML file an HTML frameset is generated display-
ing a header frame at the top, a navigation frame at the left, and a welcome frame at the
right. The navigation frame lists all EPC models of the EPML file and provides hyper-
links to corresponding SVG files to be displayed in the right frame. Furthermore, each
epml :epc element maps to a separate SVG file whose name is built from its epml:id
attribute. This naming convention is also used to generate the corresponding hyperlinks.

| SVGfiles |
epcl.svg |
EPML Input | | EPML2SVG.xslt
epc2.svg |
<epml> <?xml version="1.0"?> epc3.svg
. <xsl:stylesheet ...>
<directory> <xsl:template <svg width=“200"
<epc id=“1“> match="/"> height="400"
<epc id="“2"“> <redirect:write <rect .../>
.. file="x_frame.html">) ‘ HTML files ‘ <circle .../>
<epc id="“3"“> A] <polyline .../>
- </redirect:write> <marker .../>
</directory> A html frameset | L ..
</epml> </xsl:stylesheet> </svg>

html topframe |

html rightframe |

html leftframe
for navigation

L

L4 [

Figure 2: Files generated by the EPML2SVG program

3.3 Mapping from EPML EPCs to SVG

In general, there are two design choices to be taken concerning the representation of SVG
elements generated from EPML files: path versus shape, and group versus symbol. The
first choice is to be made between a generic representation using the svg:path element
and a shorthand representation via basic shapes like e.g. svg:rect. We have decided
to use basic shapes whenever possible because it avoids calculation in the transformation
program. Consider the epml : function element. It is graphically described by its top left
corner, and its height and width. This matches exactly the representation of a svg:rect
element. For transforming it to a svg:path all corner coordinates would have to be cal-
culated. The second choice is to be made between a group (svg:g) and a svg: symbol
representation. In a group representation each element of an EPC is mapped to a group
of SVG elements; e.g. an epml : function maps to a group containing a rectangle and a

59

text label. The symbol representation is applicable for recurring complex sets of graphic
elements. They can be defined in an svg:symbol which is referenced by a svg:use
for each position where the symbol is to be displayed. As symbols in SVG cannot be
parametrized for different text labels [DHHO02], we chose for mapping each element of an
EPC to a group of SVG graphic elements.

<svg height="80" width="540">
<g id="1" epc="event">
<polyline transform="scale(0.4)" stroke-width="2" fill="#FFOOFF" stroke="black"
points="350,125 387.5,50 562.5,50 600,125 562.5,200 387.5,200 350,125"/>
<text transform="scale(0.4)" fill="black" font-style="italic" font-size="12pt" y="125" x="400">event</text>
</g>
<g id="2" epc="function">
<rect transform="scale(0.4)" fill="#00FF00" stroke="black" stroke-width="2"
height="150" width="250" ry="20" rx="20" y="50" x="50"/>
<text transform="scale(0.4)" fill="black" font-style="italic" font-size="12pt" y="125" x="100">function</text>
</g>
<g 1d="3" epc="processInterface">
<rect transform="scale(0.4)" fill="none" stroke="black" stroke-width="2"
height="135" width="222.5" ry="20" rx="20" y="50" x="650"/>
<polyline transform="scale(0.4)" stroke-width="2" fill="none" stroke="black"
points="872.5,80 900,143 862.5,200 700,200 675,185"/>
<text transform="scale(0.4)" fill="black" font-style="italic" font-size="12pt" y="125" x="700">process interface</texts>
</g>
<g 1d="4" epc="and">
<circle transform="scale(0.4)" fill="none" stroke="black" stroke-width="2"
height="100" width="100" r="50" cy="100" cx="1000"/>
<polyline transform="scale(0.4) translate(0,7)" fill="none" stroke-width="5" stroke="black"
points="970,110 1000,70 1030,110"/>

process interface

</g>
<g 1d="5" epc="or">
<circle transform="scale(0.4)" fill="none" stroke="black" stroke-width="2"
height="100" width="100" r="50" cy="100" cx="1150"/>
<polyline transform="scale(0.4)" fill="none" stroke-width="5" stroke="black"
points="1120,90 1150,130 1180,90"/>
</g>
<g 1d="6" epc="xor">
<circle transform="scale(0.4)" fill="none" stroke="black" stroke-width="2"
height="100" width="100" r="50" cy="100" cx="1300"/>
<line transform="scale(0.4)" style="stroke-width:5;stroke:black" y2="130" x2="1330" yl="70" x1="1270"/>
<line transform="scale(0.4)" style="stroke-width:5;stroke:black" y2="70" x2="1330" yl1="130" x1="1270"/>
</g><g 1d="7" epc="arc"s>
<polyline points="950,175 1350,175 " stroke="black" stroke-dasharray="0.25% 0.25% 0.25%"
fill="none" transform="scale(0.4)" style="marker-end:url (#arrow)"/>
</g>
</svg>

Figure 3: EPC elements and SVG code generated by EPML2SVG.

Figure 3 displays EPC icons and their SVG representation generated by EPML2SVG.
For each function, event, processInterface, and, or, xor, and arc element a
svg:g group is generated containing icon-specific shape elements. The size and the
position of the shape group is determined by the epml:graphics subelements of the
EPC elements. In order to easily relate SVG shapes to their EPML source code, the
EPML2SVG program writes the epml : id of the source element to the respective svg:g
element and attaches an svg:epc attribute? stating its EPC element type. Accordingly,
a function with epml:id="2" maps to a group element with a svg:id="2" and a
svg:epc="function" attribute (see Figure 3).

ZNote that this epc attribute is syntactically written to the svg namespace. Yet, of course, the SVG speci-
fication does not define an epc attribute for groups. The SVG viewer will ignore it. Accordingly, it is actually
a comment.

60

In the following, we give only some short explanations on the mapping. For further de-
tails we refer to the EPML2SVG program®. In EPML functions and process interfaces can
contain toProcess subelements whose 1inkToEpcId attribute represents a reference
to another process. These EPML elements are mapped to XLink hyperlinks in the SVG
graphic. Such hyperlink allow to open the referenced process graphic via a simple click.
Furthermore, svg:polyline elements generated from arcs reference a svg:marker el-
ement. It permits to draw arrow heads for a line by simply referring to a path defined by
the marker. For details see the specification [FJJ03]. The rest of the transformation are
relatively straight forwards mappings to SVG shapes.

Figure 4 gives a screenshot of an HTML frameset generated by the EPML2SVG pro-
gram. There are three EPC process models included in the navigation list at the left-hand
side. Each contains a hyperlink to an SVG file of the corresponding EPC business process
model. The right frame displays the SVG file of such an EPC model.

_=leix
|

) urck :_J _;‘:_'E“:m;ﬁ;;_'_r;m ks WA w1 W St W S £ snvendng (G Googe IE OICT 3 Tomest F]Webchl E]0PMN E]Bacn @va Elbpes @]0E .
uque_]r.u.lawu_rma.lm =) B wedeha |

Google - =] B websute - | 5 | e optinen

EPC Business Process Repository generated by EPML2SVG chimeriopind by i Moviliog and Albonto Brabonetz 2004

(a#1 transformation: Mon Sep 20 13:33:23 CEST 2004)

EPC model list

» Home

= Analyse{ld=1)

» Lager{Td=2

a Call-Clenter-
Abwickhing(Td=T)

P
A\

Neue Medien -

| &] Fertig || 8 Lokales intranet

Figure 4: Screenshot of a HTML Frameset generated by the EPML2SVG program.

3Information on how to obtain the EPML2SVG program is available on the EPML website (http://wi.wu-
wien.ac.at/"mendling/EPML).

61

3.4 Discussion

Although most of the mappings can easily be implemented using XSLT, there are some
challenges regarding texts. SVG does not understand newline characters in text ele-
ments. This means that each time there is a newline character in the text label of e.g.
an epml: function a separate text span at a position below the first part of the string has
to be added. In XSLT this has to be programmed by the help of a recursive template that
processes the text label as long as there are no more newline characters*. If SVG were able
to interpret newline characters, the transformation would be much more straight forward.

Another challenge is the automatic layering of process graphs, in particular EPC business
process models. The EPML2SVG program is not able to calculate positions when there
are no epml :graphics element included. Layout and drawing of graphs is a non-trivial
problem and subject of a whole research community (see e.g. [BETT99]). The automatic
calculation of positions is among others needed when an EPML file has been generated
from a language like BPEL4WS [ACD 03] that does not include any graphical informa-
tion. We expect to address this challenge in the future.

4 Related Research

There have been some academic research projects dealing with transformation of XML
business process model data into graphics. In the context of Petri Net Markup Language
(PNML) [BCvH 03] a mapping to SVG has been refined. This mapping is implemented
in the PNML2SVG transformation script available at [St03a]. This mapping has been
defined to provide for a precise description of the graphical presentation of a PNML doc-
ument. PNML compliant visual tools can check their conformance using this reference
model of PNML visualization. A project at TU Chemnitz uses the ARIS Markup Lan-
guage (AML), the XML interchange format of ARIS Toolset, to generate SVG graphics
of business process models [As02]. The purpose of this project is to make EPC busi-
ness process models available in web-based SAP trainings. In contrast to EPML2SVG it
transforms only one EPC model to one SVG file. Beyond that, EPML2SVG generates a
whole HTML navigation frameset. The AML Interpreter project at Rostock University
also takes AML as an input format [St03b]. The AML Interpreter displays EPC business
process models available in AML and offers a transformation to standard graphic formats
GIF and JPEG. The motivation of this project is to allow visualization of ARIS process
models without having to install ARIS Toolset. This may safe licence cost. There are
usually many employees in a company who only sometimes need to view process models.
For them a simple viewer like AML Interpreter would be sufficient and no ARIS Toolset
installation required. Yet, GIF and JPEG are not vector graphics, but image formats. In
contrast, the SVG files generated by EPML2SVG provide for a loss-free scaling of the
EPC business process models.

4For details on the recursive template solution see the EPML2SVG program available from the EPML website
(http://wi.wu-wien.ac.at/"mendling/EPML).

62

5 Conclusion and Future Work

In this paper we have presented the EPML2SVG transformation program written in XSLT
that generates websites including SVG graphic files from EPML documents. This trans-
formation can be used as a reference model when implementing graphical EPC tools. Fur-
thermore, the generated graphics can be used in web training courses on business process-
related topics. Moreover, they can be used to publish process models on the intranet of a
company without having to buy licences for expensive business process modelling tools.
Finally, EPML2SVG leverages EPML as an interchange format for EPCs.

Although the exchange of graphical model information has been recognized as an impor-
tant issue of interchange model data (see e.g. [MNO4, BCvH 03, Ob03]) there is currently
no consensus on how representing graphic information in such interchange formats. It will
be an interesting topic of future research to identify the pros and cons of directly includ-
ing SVG code in interchange formats. Furthermore, automatic calculation of positions
for EPC business process model elements is a non-trivial task. We expect to address this
problem in the context of EPML in the future.

Acknowledgement. The authors would like to thank the anonymous reviewers for there
comments on an earlier version of this paper, which helped to improve the presentation of
the ideas.

References

[ACD 03] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, 1., and Weerawarana, S.: Business Process
Execution Language for Web Services, Version 1.1. Specification. BEA Systems, IBM
Corp., Microsoft Corp., SAP AG, Siebel Systems. 2003.

[As02] Assmann, M.: Generierung webfihiger EPK-Grafiken mittels ARIS, XML und
SVG. TU Chemnitz. http://www-user.tu-chemnitz.de/"maas/projectpage/index2.html.
04.12.2002.

[BCvH 03] Billington, J., Christensen, S., van Hee, K. E., Kindler, E., Kummer, O., Petrucci, L.,
Post, R., Stehno, C., and Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: W. M. P. van der Aalst and E. Best (eds.), Applications and
Theory of Petri Nets 2003, 24th International Conference, ICATPN 2003, Eindhoven,
The Netherlands. volume 2679 of Lecture Notes in Computer Science. pages 483—505.
2003.

[BETT99] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G.: Graph Drawing - Algorithms
for the Visualization of Graphs. Prentice Hall. 1999.

[C199] Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C Recommendation 16
November. World Wide Web Consortium. 1999.

[DHHO02] Duce, D., Herman, 1., and Hopgood, F.: SVG Tutorial. In: Proceedings of
the WWW2002 Conference, Hawaii, USA. http://www.w3.0rg/2002/Talks/www2002-
svgtut-ih/hwtut.pdf. May 2002.

63

[DMOO1]

[FJJ03]

[K092]

[MNO2]

[MNO3]

[MNO04]

[0b03]

[Pe02]

[St03a]

[St03b]

[Wo02]

DeRose, S., Maler, E., and Orchard, D.: XML Linking Language (XLink) Version 1.0.
W3C Recommendation 27 June 2001. World Wide Web Consortium. 2001.

Ferraiolo, J., Jun, F., and Jackson, D.: Scalable Vector Graphics (SVG) 1.1. W3C
Recommendation 14 January 2003. World Wide Web Consortium. 2003.

Koegel, J. F.: On the Design of Multimedia Interchange Formats. In: Proceedings of
the 3rd International Workshop on Network and Operating System Support for Digital
Audio and Video. pages 262-271. 1992.

Mendling, J. and Niittgens, M.: Event-Driven-Process-Chain-Markup-Language
(EPML): Anforderungen zur Definition eines XML-Schemas fiir Ereignisgesteuerte
Prozessketten (EPK). In: M. Niittgens and F. J. Rump (eds.), Proc. of the Ist GI-
Workshop on Business Process Management with Event-Driven Process Chains (EPK
2002), Trier, Germany. pages 87-93. 2002.

Mendling, J. and Niittgens, M.: XML-basierte Geschiftsprozessmodellierung. In: W.
Uhr, W. Esswein and E. Schoop (eds.), Proc. of Wirtschafisinformatik 2003 / Band 11,
Dresden, Germany. pages 161 —180. 2003.

Mendling, J. and Niittgens, M.: Exchanging EPC Business Process Models with
EPML. In: J. Mendling and M. Niittgens (eds.), Proc. of the Ist GI-Workshop
XML4BPM - XML Interchange Formats for Business Process Management, Marburg,
Germany, March, 2004. pages 61-79. 2004.

Object Management Group: XML Metadata Interchange (XMI). Specification, Ver-
sion 2.0. Object Management Group. May 2003.

Pemberton et al., S.:. XHTML 1.0 The Extensible HyperText Markup Language (Sec-
ond Edition). W3C Recommendation 26 January 2000, revised 1 August 2002. World
Wide Web Consortium. 2002.

Stehno, C.: PNML2SVG. Universitit Oldenburg. http://parsys.informatik.uni-
oldenburg.de/"pep/pnml. 28.02.2003.

Stoy, M.: AML Interpreter. Universitit Rostock. http://www.informatik.uni-
rostock.de/"masto/aris/. 01.03.2003.

Workflow Management Coalition: Workflow Process Definition Interface — XML Pro-

cess Definition Language. Document Number WFMC-TC-1025, October 25, 2002,
Version 1.0. Workflow Management Coalition. 2002.

64

