
The Development of the OpenACS
Community∗

Neophytos Demetriou, Stefan Koch, Gustaf Neumann
Vienna University of Economics and Business Administration

Vienna, Austria

Abstract

OpenACS is a high level community framework designed for devel-
oping collaborative Internet sites. It started from a university project at
MIT, got momentum from the ArsDigita Foundation, and split up into a
commercial and an open source version. OpenACS has proven its durabil-
ity and utility by surviving the death of its parent company (ArsDigita)
to grow into a vibrant grassroots collection of independent consultants
and small companies implementing diverse and complex Web solutions
around the globe for NPOs, philanthropy, and profit. A heritage from
this history is a still dominant position of contributors with commercial
interests, which in its intensity is above the norm found in open source
projects. In this paper, OpenACS with its community is presented as a case
study documenting the forces between commercial interests, securing in-
vestments, and technical development in a large open source project with
a large proportion of commercial involvement.

1 Introduction
The free and open source software world has spawned several projects in dif-
ferent application domains like most notably the operating system Linux to-
gether with the suite of GNU utilities, the office suites GNOME and KDE,
Apache, sendmail, bind, and several programming languages that have a-
chieved huge success in their respective markets.
In the last years, also the commercial interest in open source software has

increased dramatically [34]. This has also lead to changes in many projects,
which now include contributors who get paid for their contributions and oth-
ers, who receive no direct payment. This is also reflected in several recent
surveys: For example, Lakhani and Wolf [26] found that 13% of respondents

∗Amodified version of the paper will be publised as a book chapter in: Miltiadis Lytra, Ambjorn
Naeve (eds): Open Source for Knowledge and Learning Management: Strategies Beyond Tools,
Idea Group Publishing, Hershey, PA, 2006.

1

received direct payments, and 38% spent work hours on open source develop-
ment with their supervisor being aware of the fact (684 respondents from 287
distinct projects). Ghosh [11] reports a group of 31.4% motivated by monetary
or career (mostly for signaling competence) concerns in a sample of 2,280 re-
sponses. Hars and Ou [18] found a share of 16% being directly paid, Hertel et
al. [21] report 20% of contributors receiving a salary for this work on a regular
basis with an additional 23% at least sometimes in a survey of Linux kernel
developers. Given these results, many projects currently will be composed of a
mixture of paid and volunteer participants, thus distinctly deviating from the
’classical’ open source development as described most notably by Raymond
[38]. This mixture, and the resulting conflicts of interests could have severe re-
sults on working styles, processes and also products of open source projects. In
this paper, we will present the case study of OpenACS [29], a project between
commercial interests, securing investments, and technical development. The
OpenACS changed its status several times during its lifetime, starting from
a university project from MIT, getting momentum from the ArsDigita Foun-
dation, and lastly splitting up into a commercial and an open source version,
where the commercial version failed but the community continues to develop
the open source version. While the literature yields discussions and exam-
ples on commercial projects going open source or enterprises investing in open
source projects [3, 20, 19], most notably the Mozilla project [17], the history of
OpenACS seems unique in its complexity. Nevertheless, we propose that this
form of biographywill increasingly show up in software development projects,
and that the repercussions on processes and products are important to analyze.
The structure of this paper is as follows: in the following section, we will

describe the history of OpenACS. The turbulent past of the project shaped the
management framework with its idiosyncrasies. As a next step we will ana-
lyze up to which point the influences of the project management structure and
forces of the different stakeholders can be observed from some empirical data
obtained frommining the source code management system [16, 40]. The paper
will finish with some conclusions.

2 History of OpenACS
2.1 The Early Days
The roots of OpenACS trace back to Philip Greenspun and his work on the site
photo.net starting in 1995, and “Philip and Alex’s Guide to Web Publishing”
in 1998 [15]. The project started out as a rapid prototyping framework for web-
applications, based on the experiences of photo.net. The core elements of
the framework were a highly scalable web-server (AOLserver [31]) with a tight
integration with relational databases (especially with Oracle and PostgreSQL),
and the scripting language Tcl [35].
AOLserver was originally developed by NaviSoft under the name NaviS-

erver, but changed names when AOL bought the company in 1995. AOL

2

uses this server to run its busiest sites, such as digitalcity.com1 and aol.com.
It has been reported that as early as mid-1999 multiple AOLserver instances
were serving more than 28,000 requests per second for America Online [14].
AOLserver is a multi-threaded application server with well-abstracted data-
base access and connection pooling mechanisms. Scalability is achieved due to
the fact that most performance critical functionalities are implemented in C.
AOLserver uses the built-in scripting language Tcl as an extension language

[36] to provide a flexible means of composing systems from predefined compo-
nents. This way, application specific hot spots can be quickly programmed and
the server can be extended on the fly (without restarting). Based on this combi-
nation of scalability and rapid application development it became possible to
develop complex web application in short time.

2.2 ArsDigita
We want to focus now on the historical development of the framework, which
deeply influenced the structure of the project and the active development com-
munity. In 1997, Philip Greenspun and a group of students mostly from MIT
joined forces to produce the world’s best toolkit for building scalable commu-
nity-orientedWeb applications. The newly founded company ArsDigita (”Dig-
ital Arts”) was quickly able to attract high profile clients, such as Deutsche
Bank, WGBH (radio and television channel), the World Bank, and Siemens. In
early 2000, ArsDigita took $35 million from two venture capital firms (Grey-
lock, and General Atlantic Partners).
With one of the world’s largest corporations on their client list, ArsDigita

was already defying the conventional wisdom by actively supporting an open
source version of its toolkit. The founders of the ArsDigita Corporation also
created a nonprofit organization, the ArsDigita Foundation, which sponsored
a yearly programming contest for high school students and a free brick and
mortar school teaching an intensive one-year course in undergraduate com-
puter science (in 2000).
The underlying engineering was supported by millions of dollars of ven-

ture capital spent on hiring PhDs in Computer Science fromMIT, CalTech and
other major universities across the Atlantic and Europe. At this time ArsDigita
employed more than 240 people (see Figure 1), mostly developers, working on
the foundation of what is now called OpenACS (more about this later). How-
ever, with the advent of the investors the interests shifted away from commu-
nity supported open source version towards the company’s needs. The com-
pany decided to redevelop the framework based on Java in order to develop
a proprietary enterprise collaboration software. The commercial version was
calledACS-Java,while the community supported Tcl-based version was devel-
oped further under the name of OpenACS. The proprietary product was never
launched and, in 2002, ArsDigita was acquired by Red Hat.

1Now, cityguide.aol.com.

3

Figure 1: Development of ArsDigita and early OpenACS.

2.3 The ArsDigita Community System (ACS)
In general most Web applications have the same basic needs: (a) user manage-
ment (represent people and relationships between them), (b) security manage-
ment (manage accessibility to functionality and data), (c) content management
(content repository), and (d) process management.
Instead of developing these functionalities repetitiously on a per-applica-

tion basis, ArsDigita decided to develop a general application framework ad-
dressing these needs. This framework is based on a complex data model (cur-
rent OpenACS uses a few hundred tables and views) and a high level API in Tcl
(in current OpenACS a few thousand functions). This framework was called
ArsDigita Community System (ACS) and was first published in version 1.0 in
Dec. 1998.
The code base of ACS emphasizes collaboration and management of ge-

ographically distributed on-line communities. During the various projects,
more and more pieces of code were factored out to increase reuse and to ad-
dress the requests derived from the collaboration, e-commerce, and content
management packages developed on top of the core. The system started with
a small core of functionality, but only a little more than one year after the initial
version, ACS 3.0 was released as a rich application framework as open source
under the GNU General Public License version 2 (Jan. 2000). Dozens of pack-
ages based on the core functionality were created. Ten months later, the next
major refactoring led to version 4.0 (release Nov. 2000), where a completely

4

new kernel was developed based on a highly flexible security management
system, subsites, templating, workflow management and a refactored content
repository. Most notably, the package manager was developed that supports
creation of packages with version dependencies, data migration scripts and
allowing remote upgrading of packages.
In 2001, the ACS code tree forked inside ArsDigita, with the Tcl code base

being maintained and refactored by one group of developers, while the prod-
uct line was being re-written in Java EE. By 2002, when Red Hat acquired Ar-
sDigita, the Tcl code base became solely supported by the open source com-
munity. At this time a rich set of application packages (such as forums, FAQ,
bulk-mail, file-storage, calendar, web-shop, etc.) were already available. This
rich set of packages led to the adoption of ACS by programmers and compa-
nies worldwide and fueled the ongoing development of OpenACS without the
strong former commercial backing.

2.4 OpenACS
Since 2002 the OpenACS project is run by a group of independent program-
mers, whose original goal was to add support for the open source PostgreSQL
database to ACS (supporting only Oracle). Soon it was clear that building de-
manding applications will need more than only the free database, so the com-
munity started to fix problems in the code inherited by ArsDigita, porting 3.x
packages to version 4.0, writing new ones, improving and extending the core
platform, and taking ACS in new directions.
The first important enhancements were two new abstractions, namely the

XQL Query Dispatcher for database independence and the Service Contracts
API to facilitate greater code reuse, application integration, and package exten-
sibility within OpenACS. ACS 3.x and earlier contained pages with embedded
SQL. ACS 4.0 provided named queries and providedAPIs onto them. The new
XQLQueryDispatcher evolved this idea even further by abstracting these APIs
from the application code. The approach involved extracting queries out of the
code, and then eliminating the application’s need to know about specific im-
plementations of the SQL standard. This proved to be very useful during the
porting phase as new RDBMS support could be added on a per-package basis
without editing existing code.
ACS 4.0 was based on a thin object system implemented in the relational

structure in the database, but allowing a veneer of object orientedness by pro-
viding globally unique object IDs, object meta-data, and bundling of data and
methods as an object. While this permitted a level of reuse on an object or
package basis, it required hard-coding the unit of reuse. Inspired by WSDL,
the interface specification for Web services, the Service Contracts API allowed
these objects and packages to also create contracts which define their func-
tional level of reuse and customization as well as register their implementation
of interfaces, in this way, bringing the level of reuse at the contract level.
The current version is OpenACS 5.2, where numerous user interface im-

provements, external authentication, automated testing, improved develop-

5

ment environment, etc. where introduced over the years. And, many appli-
cation packages were added.

2.5 .LRN
As the most general requirements were quite well supported, more specific
needs became addressed by the community. Two important sub-projects star-
ted to emerge, namely .LRN [32] and ProjectOpen [30] (an ERP-system based
on OpenACS, with currently 4,500 installations [5]). We address in this paper
only the case of .LRN.
In 2002,MIT’s Sloan School of Management contracted the company Open-

Force to develop .LRN to replace their aging Course Management solution
(SloanSpace, built on ACS 3.x [27, 13]). The primary goal was to address MIT
Sloan’s specific needs, but the project had a broader vision than internal de-
ployment.
This investment from MIT provided a strong impulse for the community

after such a tumultuous period for the OpenACS project. On the one hand,
.LRN became a full-featured course management system with rich community
support, providing a substantial promotion of OpenACS as a platform. On the
other hand, there was a big part of the OpenACS community comprised of vol-
unteers and developers working on projects, large and small, that had nothing
to do with educational technology. These developers preferred OpenACS like
it was, basing development decisions on general technical needs, and not on
the requirements of the founding project. At the same time, MIT Sloan School
wanted to secure their investments, such that no complete split-off from Ope-
nACS is needed, and that general future versions keep functional with future
versions of OpenACS, so that .LRN can benefit from future enhancements of
OpenACS.
When .LRN 1.0 was released in 2002, some learning management system

(LMS) vendors had already started to disappear from the market. Learning in-
stitutions feared that a relationship with one vendor would not prove to be of a
long-term nature because of the vendors’ inability to stay in the market. Differ-
ent universities had already started to develop learning management based on
OpenACS (e.g. Vienna University of Economics and Business Administration
[1] or UNED in Spain). The perspectives of developing a common community
supported learning management system based on OpenACS was very appeal-
ing.
However, the conflicting goals led to an inevitable governance plan discus-

sion with lead institutions seeking formalized management structures to se-
cure the investments of the funding organizations. The .LRN Consortium was
founded, which is a non-profit organization with a clearly defined governance
and membership structure. The consortium is guided by a board of directors
and sees its mission in “creating and supporting a freely available suite of web
based educational applications to support learning communities”. This can be
seen as a form of ’guarding the commons’ [33]. Furthermore, OpenACS and

6

.LRN becamemore attractive to new people, mainly consultants and organiza-
tions. But still, some feel that it changed the community, as these new people
are not interacting with the community the sameway the old grassroot hackers
did.
Today, .LRN 2.x is the world’s most widely adopted enterprise-class open

source software for supporting e-learning and digital communities [32] and it
is installed at prestigious universities like Sloan School of Management at the
MIT, the JFK School of Government at Harvard University, or the Universities
of Mannheim and Heidelberg in Germany, the Vienna University of economics
and Business Administration in Vienna, or the University of Valencia and the
Open University of Spain (UNED,Universidad de Educacin a la Distancia with
about 200.000 students).

3 The OpenACS Project Management Framework
When OpenACS started as a group on SourceForge to create the ACS port to
PostgreSQL, the lead developer gavewrite permissions to anyone who showed
enough competence to help out. The group soon grew to more than 20 peo-
ple, with about 5 active developers. Organization, collaboration, and feedback
helped produce a quality product but, in recent years, maintaining a stable,
releasable, progressive codebase has become quite a difficult task. We will ad-
dress these reasons in the following paragraphs.
Designing and evolving these structures has been an important aspect of

open source software development for some time. While preconceptions might
think of such projects as completely anarchic, this is most often not the case in
reality. An important point to consider is the balance between anarchy and
control, as Holck and Jorgensen [22] describe in their account of the organi-
zation and process models in the FreeBSD and Mozilla project. They describe
the technological infrastructure, but more importantly, the work organization
which includes top-level management, module owners, reviewers and com-
mitters and the process models for releases (the FreeBSD release process is also
described in more detail in [23]) and contributions. In all aspects, there is an
approach to strive for a balance between openness towards new participants
and contributions, and the need for control, with the acknowledgment that this
balance might shift over time. This point is also emphasized up by the paper
of Ye et al. [44], which stresses the co-evolution between the system and the
underlying community. Using a set of case studies, they define three types of
projects (exploration-oriented, utility-oriented and service-oriented) and evo-
lution patterns between those types. Also Erenkrantz [8] in his account of dif-
ferent release management structures in open source projects stresses the point
of decentralization and controlling authority as important factors, as does Gal-
livan [10] under the aspects of trust and control.

7

3.1 Source Code Management
OpenACS development is maintained in a central source code repository based
on the Concurrent Versions System (CVS2) [6, 9, 37]. Only developers with
write privileges, so called commiters, are allowed to make changes to the repos-
itory. A developer without these privileges will have to go through a commiter
in order to get contributions added to the repository in form of a patch:

To contribute a small fix, if you do not have a developer account, submit a
patch.

The code is divided into packages and for each package, one person is desig-
nated as the package owner or maintainer. In the past, the package owner was
the only one who had the authority to check in changes or elect other program-
mers to do so. Low responsibility for some packages led the OpenACS team to
revise the CVS guidelines:

If you are making many changes, or would like to become a direct contrib-
utor, send mail to the Core Team asking for commit rights. You can then
commit code directly to the repository.

Technically, everyone with CVS commit rights can commit changes to the code
base. This is sometimes required, since OpenACS has nowmore than 200 pack-
ages and not all package owner are always available, but at the same time, this
lowers the perceived responsibility of a package owner. According to the CVS
guidelines, another way to contribute code to the OpenACS is to add a new
package.

Contact the Core Team to get approval and to get a module alias.
The analysis of the public CVS repository shows that over a hundred differ-
ent people had CVS commit rights since the establishment of the repository in
Spring 2001. Rather than requiring developers to coordinate with each other to
synchronize efforts, CVS enables developers to update repository files continu-
ally and in parallel. Today, OpenACS is a complex system despite the seeming
simplicity of its components. A system based on uncontrolled changes to the
source code repository is no longer appropriate for a system of this complexity
as it greatly inhibits integration, release, and regression testing.
The current OpenACS development team is more diverse than the original

team; they live in different time zones, speak different languages, have differ-
ent needs and requirements, and different coding style. A purely CVS based
codebase does not serve the product well in this environment.

3.2 Technical Improvement Proposals (TIPs)
On openacs.org, nearly 10,000 users are currently registered. The website
list currently more than 120 community-sites based on OpenACS (includ-
ing Greenpeace Planet, United Nations Industrial Development Organization

2The repository is reachable via the Internet via http://cvs.openacs.org/ and
http://eye.openacs.org/.

8

(UNIDO), Creative Commons, or AISEC (the world largest student organi-
zation) and lists 58 companies providing commercial support for OpenACS.
The largest sites have up to 2 million users [39]. Since many of the OpenACS
contributors are consultants, often in charge of running sometimes dozens of
sites, code changes that introduce incompatibilities are very expensive.
Therefore the community adopted a guideline [2] about dealing with

changes in the CVS. This guideline requires a so called Technical Improve-
ment Proposal when an update involves any changes the core data model, or
will change the behavior of any core package in a way that affects existing
code (typically, by changing public API), or is a non-backwards-compatible
change to any core or standard package. The first version of the Core Team
governance document was released in May 2003, and serves since then as an
instrument to guard against changes in the core product. Since 2003 there were
between 18 and 25 TIPs accepted per year, about 25% of the TIPs are rejected.3
While the TIPs provide an instrument to secure investments, they effectively
require a sideway development based on coexistence: while changing existing
APIs require a TIP, the development of new functionality does not. Currently
it appears that the only way to make complex architectural changes is to build
a coexisting sub-framework which has certainly disadvantages from the soft-
ware engineering point of view. In any large software systems, evolution tends
to create increasing complexity [4], a fact also acknowledged in studies on open
source systems [41], necessitating architectural repair actions, as described by
Tran et al. [42] in the context of the Linux kernel and the VIM text editor.

3.3 Bug Tracking and Fixes
A common project risk is to remain unaware of the existence of a major prob-
lem beyond the stage at which it can be contained and corrected. OpenACS
addresses this problem by the bug-tracker, a software tool for tracking bugs
and feature requests. The bug tracking tool was developed using OpenACS
and incorporates ideas from BugZilla, Bughost.com, and FogBUGZ.
Figure 2 shows the underlying workflow of the bug management in Ope-

nACS. A bug can be in the state Open, Resolved or Closed and is assigned pri-
ority and severity. In a true open source fashion (“given enough eyeballs, all
bugs are shallow” [38]) everyone can report bugs and everyone is encouraged
to do this. Also Villa [43] describes a bug tracking system based on Bugzilla
in a large open source project, GNOME, and highlights the importance of be-
ing open while applying the necessary triage to control to possibly massive
amount of bug reports.
The OpenACS bug-tracker assigns a bug per default to the package owner.

At this state the bug tracker supports an open discussion of the problem in a
weblog style. Any user can submit candidate patches for this bug. The pack-

3The number of TIPs per year are decreasing. As we show later the number of contributions
peaked in early 2004, and is decreasing since then. However, it cannot be deduced from this data
that the TIPs are responsible for that.

9

Figure 2: OpenACS Bug Tracker Workflow

age maintainer can resolve the bug, maybe by choosing one of the provided
patches. The original submitter of a bug is the person who has to close it.
Note that the only quality assurance step is actually the last step, where

the bug-submitter closes the issue. In practice it turns out that there is a high
number of packages available, where for some of these packages the responsi-
bility seems low, since many reported problems remain open. Also Villa [43]
stresses the importance of closing old bugs. The bug-tracker contains currently
2896 entries, of which 1589 are closed, 422 are marked as resolved, and 886 are
open. It seems as if the bug submitters care more about bug fixes than about
closing the bugs they have opened.

3.4 Code Contributions
At the time of this writing, the CVS repository of OpenACS contains more than
2.5 million lines of code (mostly Tcl, SQL, HTML-templates and documenta-
tion, see Figure 3). In terms of logical units the OpenACS repository contains
more than 200 packages.
In the following we present an analysis of the contents of the CVS reposi-

tory to provide empirical evidence about the development. The CVS repository
contains OpenACS 4.x and 5.x. For these versions 107 distinct committers have
contributed to the CVS repository. 51 (48%) contributors can being classified as
volunteers (non-profit contributors), and 54 (50%) have as well a commercial
motivation (for profit contributors, regularly or at least on several occasions re-
ceiving payment for contributions of code to the OpenACS project or working
for a company offering OpenACS support) and therefore we classify these as
commercial. Two committers remained unclassified. The contributions of the
classified contributors account for 99.97% of the total amount of contributions
(see Figure 4). Since the unclassified contributors have little significance, we

10

Figure 3: Timeline of the Development of the Code Base.

left these out for the further analysis.

Figure 4: Total Number of Contributions.

Certainly, the distinction is not easy to draw, not at least since the status
of a contributor might shift.4 People receiving salaries for maintaining sites
based on OpenACS, but not for participating in developing OpenACS, have
been classified as volunteers. In comparison to the results of several surveys as
described above [26, 11, 18, 21], the amount of commercial background within
the OpenACS team is above the mean.
The top 15OpenACS developers have contributed 72% of the total changes,

80% of these developers are rated as commercial. This highly skewed distribu-
tion is in line with findings from other studies of open source projects: A case
study of the Apache project showed that there 88% of the code was developed
by the top 15 programmers [28], where in the GNOME project, the top 15 pro-

4The classification was performed by the authors who are OpenACS contributers, based on
project knowledge and Internet recherche.

11

grammers were responsible for “only” 48% of the code [25]. A similar distribu-
tion for the lines-of-code contributed to the project was found in a community
of Linux kernel developers [21]. Also the results of the Orbiten Free Software
survey [12] are similar, the first decile of programmerswas responsible for 72%,
the second for 9% of the total code. In a set of 8,621 SourceForge.net projects,
the top decile was found to be responsible for 79% of the contributions[24].
We measure the contributions of the community members by the number

of acts where the community members have committed content to the code
base (checking in a file). About 104,000 contributions have been performed
over the lifetime of the repository. A code contribution can be either a checkin
(providing initial code) or a modification or a removal of a file. Using the policy-
governed text in changelog messages5, an additional classification of different
contributions has been performed: This resulted in about 1,100 contributions
pertaining to a TIP (1.1% of the total), 8,400 being bug fixes (8% of the total) and
1,700 patches (1.6% of the total), defined as being code committed for someone
else without commit privilege. As this number of patches is relatively small,
and the background of the original programmer is unknown, these would not
have a significant effect on the relation between volunteers and commercial
contributors, and this effect is therefore neglected.

Contributions Number Ratio
Commercial 81,828 54 1,515
Volunteer 22,691 51 445

When we compare the non-profit committers with the commercial ones, we
see that the number of contributions of a commercial commiter is more than
three time higher than the contributions of a volunteer. This reflects well the
structure of the OpenACSwhere the initial development was performed by the
company ArsDigita. Also after the end of ArsDigita packages are frequently
developed by companies for profit. Also, professional full time developers can
spend often more time on developing a system than volunteers. Using a rank-
based Mann Whitney U-test ascertains (at p < 0.05) that the commercial group
leads in lines-of-codes, more TIP-related contributions, more bug fixes, more
patches and more different packages worked on.
By distinguishing the contributions between code, documentation and oth-

ers, while the commercial group is responsible for 78% of contributions of
source code, this difference is even more pronounced in their efforts in code
documentation with 82%. They also dominate in the group of TIP-related con-
tributions, where commercial committers are responsible for 89% compared to
78% for non-TIP-related, and for patches, where they are responsible for 87%.
This effect is not visible for bug fixes, where the percentage is mostly even (78%
for non-bug fixes compared to 76%).

5Quoting: CVS commit messages and code comments should refer to bug, TIP, or patch number if
appropriate, in the format ”resolves bug 11”, ”resolves bugs 11, resolves bug 22”, ”implements TIP 42”,
”implements TIP 42, implements TIP 50”, ”applies patch 456 by User Name”, ”applies patch 456 by User
Name, applies patch 523 by ...”.

12

3.5 Analysis by Types of Packages
Next, the contributions for different types of packages are analyzed. OpenACS
provides a division between kernel packages providing the general infrastruc-
ture and application packages, where .LRN is an important subgroup. For
all three categories we distinguish further between optional and non-optional
packages. The results are summarized in Figure 5 showing the contributions
of the two contributor groups by package type.

Figure 5: Contributions per Package Type.

It is interesting to see that the non-profit developers account for only 11%
of the changes in the kernel, whereas in the code of the application packages
or for the .LRN-components the contributions is much stronger (e.g. 57% in
.LRN-extra). This can be explained by the strong usage of .LRN on universities
worldwide, contributing code developed to satisfy their needs.
Furthermore, we observed that kernel packages score significantly higher

in almost all dimensions (Mann Whitney U-test, p < 0.01) than application
packages: They have more committers (both commercial and volunteer), more
contributions (p < 0.05), more bug-fixes and also TIP-related contributions and
patches. Interestingly, the difference in contributions, TIP-related contributions
and bug fixes by volunteers is not significant. Also the percentage of commer-
cial committers within the packages is not different between kernel and ap-
plication packages, as is the amount of activity, measured in contributions per
day of lifetime, i.e. since the initial checkin, although the lifetime itself, and the
number of months there was work on the packages, do differ significantly and
are larger for kernel packages.
Another point to explore is whether a dominance of commercial commit-

ters has any effect on other attributes of packages. We find that the higher the

13

percentage of commercial background is, measured either by the percentage
of committers or contributions, the lower the activity is (Spearman correlation,
p < 0.01). This might be an indication of a form of development in which
new packages are created by commercial committers, checked in and seldomly
changed later on. This is also underlined by a significant negative correla-
tion (-0.375, p < 0.01) between the percentage of commercial background and
the number of months in which contributions to a package were performed.
As there is also a significant correlation to overall lifetime, we computed a
stepwise linear regression with numbers of active months as dependent vari-
able. Lifetime of a package alone reaches an R2-adjusted of 0.338, including
the percentage of commercial background leads to significant increase to an
R2-adjusted of 0.471 and has a negative coefficient, supporting the hypothe-
sis. Also the standard deviation of programmers active within a month with
any activity decreases with the amount of commercial background within a
package (-0.577, p < 0.01). Concluding, we see that a large proportion of com-
mercial background in a package leads to a low number of total and volunteer
developers in this package (-0.473 resp. -0.739, p < 0.01), low activity and small
variations in number of active developers between the periods of activity. It
seems that commercial developers tend to contribute these packages, maintain
them mostly on their own and only seldomly, maybe depending on receiving
respective mandates. Therefore this form of sideways development seemingly
often does not progress in the postulated ’open source’ way, but might consti-
tute a different development mode.

3.6 Changes of Contributions over Time

Figure 6: Distinct Contributors.

The analysis of the CVS data over time shows the shift from primarily com-

14

mercial contributors to more and more volunteer contributers. As shown in
Figure 6 the number of non-profit contributors is constantly growing, while
the number of commercial contributors reached its peak at the end of 2003. It
is also interesting to see that although more than 100 contributors account for
the project, there was no quarter year where more than 38 people have con-
tributed to OpenACS so far. When we look at the number of contributions
instead of the number of contributers, we see that number of contributions of
the volunteers growing and big changes in the contributions of the commercial
group (see Figure 7). The peaks in this diagram reflect the contributions to the
major releases of OpenACS and .LRN.

Figure 7: Number of Contributions over Time by Type of Contributor.

Both of these diagrams hint at the fact that this dominant position of the
commercial group might erode over time. However, in terms of productiv-
ity, it takes several volunteer developers to replace one commercial devel-
oper. Currently the development of OpenACS is performed with quarterly
about 1,700 contributions where the peak rate was in the 4th quarter of 2003
with nearly 10,000 contributions. For comparison, in the early phases of the
GNOME project (1997-1999), a mean number of contributions per quarter of
around 30,000 with peak rate of 38,000 was found [25], the mean within a set
of 8,621 SourceForge.net projects was around 600 [24]. Regarding the number
of participants, 354 distinct contributors were found in an analysis of the CVS
repository of FreeBSD [7], nearly 400 for Apache and 486 for theMozilla project
[28].

15

4 Conclusion
In this paper, we have detailed OpenACS and its community as a case study
of a project between commercial interests, securing investments, and techni-
cal development. The complex history has shaped both the community it-
self, and the practices adopted. We have found that indeed developers with
a commercial interest dominate the history and code base of OpenACS, but
that this fact might be slowly changing. This large amount of commercial in-
terest in the project has led to a governance structure which puts great value on
control and stability by requiring Technical Improvement Proposals for major
changes. On the other hand, this rigidity seems to have affected the way of
work, in that sideway developments might be established creating coexisting
sub-frameworks. From an architectural viewpoint, this would be disadvanta-
geous, and it might also have the effect of preventing true ’open source’ style
development, as the code in these parts would tend to be more specific and
only usable in a certain context. In the empirical data, there seem to be indica-
tions for this happening especially in conjunction with commercial developers:
We have found that packages being to a high degree dominated by commer-
cial background tend to include less developers overall and less volunteers,
and also tend to be changed less often and by the same group of people. If this
trend would be continuing and increasing, a series of mostly isolated ’islands’
could result.
In this respect, OpenACS, with its early and heavy involvement from com-

mercial interests might prove a testbed for developments possibly taking place
in several open source projects. It will be an important issue in the future,
how the different interests of volunteer and commercial contributors in such
projects can be aligned, and how the community is able to cope with demand-
ing changes such as market forces of Web2. Through the strong investments
of companies like ArsDigita and the highly flexible framework approach Ope-
nACS has started with an advantage over competing projects. Over the last
years, both the interest in collaborative web environments but as well the com-
petition in this area increased. Without any doubt, the community, the struc-
tures and processes, and the product itself will and must continue to evolve
and to adapt to new and changing requirements and situations. However, the
project has come too long a way to die out, and its existence and continua-
tion is ensured by a remarkable conglomeration of interests among companies,
NPOs, and volunteers.

References
[1] G. Alberer, P. Alberer, T. Enzi, G. Ernst, K. Mayrhofer, G. Neumann,

R. Rieder, and B. Simon. The learn@wu learning environment. In Proceed-
ings of Wirtschaftsinformatik 2003, 6th International Conference on Business
Informatics, Dresden, Germany, September 2003.

16

[2] J. Aufrecht. TIP #61: Guidelines for cvs committers. OpenACS Im-
provement Proposals, http://openacs.org/forums/message-view?mes-
sage id=185506.

[3] B. Behlendorf. Open source as a business strategy. In C. DiBona, S. Ock-
man, and M. Stone, editors, Open Sources: Voices from the Open Source Rev-
olution. O’Reilly and Associates, Cambridge, Massachusetts, 1999.

[4] L. Belady and M. Lehman. A model of large program development. IBM
Systems Journal, 15(3):225–252, 1976.

[5] F. Bergmann. Who is using OpenACS. OpenACS Q&A,
http://openacs.org/forums/message-view?message id=352641.

[6] B. Berliner. Cvs ii: Parallelizing software development. In Proceedings
of the 1990 Winter USENIX Conference, pages 341–352, Washington, D.C.,
1990.

[7] T. T. Dinh-Trong and J. M. Bieman. The freeBSD project: A replication
case study of open source development. IEEE Transactions on Software En-
gineering, 31(6):481–494, June 2005.

[8] J. Erenkrantz. Release management within open source projects. In Pro-
ceedings of the 3rd Workshop on Open Source Software Engineering, 25th Inter-
national Conference on Software Engineering, pages 51–55, Portland, Oregon,
2003.

[9] K. Fogel. Open Source Development with CVS. CoriolisOpen Press, Scotts-
dale, Arizona, 1999.

[10] M. J. Gallivan. Striking a balance between trust and control in a virtual
organization: A content analysis of Open Source software case studies.
Information Systems Journal, 11(4):277–304, 2001.

[11] R. A. Ghosh. Understanding free software developers: Findings from the
floss study. In J. Feller, B. Fitzgerald, S. A. Hissam, and K. R. Lakhani,
editors, Perspectives on Free and Open Source Software, pages 23–46. MIT
Press, Cambridge, MA, 2005.

[12] R. A. Ghosh and V. V. Prakash. The Orbiten free software survey. First
Monday, 5(7), July 2000.

[13] K. Gilroy. Collaborative e-learning: The right approach. ArsDigita Systems
Journal, March 2001.

[14] P. Greenspun. Introduction to AOLserver. LinuxWorld, September 1999.

[15] P. Greenspun. Philip and Alex’s guide to Web publishing. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

17

[16] M. Hahsler and S. Koch. Discussion of a large-scale open source data
collectionmethodology. In Proceedings of the Hawaii International Conference
on System Sciences (HICSS-38), Big Island, Hawaii, 2005.

[17] J. Hamerly, T. Paquin, and S. Walton. Freeing the source: The story of
Mozilla. In C. DiBona, S. Ockman, and M. Stone, editors, Open Sources:
Voices from the Open Source Revolution. O’Reilly and Associates, Cam-
bridge, Massachusetts, 1999.

[18] A. Hars and S. Ou. Working for free? - Motivations for participating in
Open Source projects. In Proceedings of the 34th Hawaii International Confer-
ence on System Sciences, Hawaii, 2001.

[19] R. E. Hawkins. The economics of open source software for a competitive
firm - why give it away for free? NETNOMICS: Economic Research and
Electronic Networking, 6(2), 2004.

[20] F. Hecker. Setting up shop: The business of open-source software. IEEE
Software, 16(1):45–51, January/February 1999.

[21] G. Hertel, S. Niedner, and S. Hermann. Motivation of software developers
in open source projects: An internet-based survey of contributors to the
Linux kernel. Research Policy, 32(7):1159–1177, 2003.

[22] J. Holck and N. Jorgensen. Do not check in on red: Control meets anarchy
in two open source projects. In S. Koch, editor, Free/Open Source Software
Development, pages 1–26. Idea Group Publishing, Hershey, PA, 2004.

[23] N. Jorgensen. Putting it all in the trunk: Incremental software engi-
neering in the FreeBSD Open Source project. Information Systems Journal,
11(4):321–336, 2001.

[24] S. Koch. Profiling an open source project ecology and its programmers.
Electronic Markets, 14(2):77–88, 2004.

[25] S. Koch and G. Schneider. Effort, cooperation and coordination in an open
source software project: Gnome. Information Systems Journal, 12(1):27–42,
2002.

[26] K. R. Lakhani and R. G. Wolf. Why hackers do what they do: Under-
standing motivation and effort in free/open source software projects. In
J. Feller, B. Fitzgerald, S. A. Hissam, and K. R. Lakhani, editors, Perspec-
tives on Free and Open Source Software, pages 3–22. MIT Press, Cambridge,
MA, 2005.

[27] C. Meeks and R. Mangel. The arsdigita community system education so-
lution. ArsDigita Systems Journal, September 2000.

[28] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of Open
Source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3):309–346, 2002.

18

[29] n.a. Homepage of OpenACS. http://www.openacs.org/.

[30] n.a. Homepage of ProjectOpen. http://www.project-open.com/.

[31] n.a. Homepage of the AOLserver project. http://www.aolserver.com/.

[32] n.a. Homepage of the .LRN project. http://www.dotlrn.org.

[33] S. O’Mahony. Guarding the commons: How community managed soft-
ware projects protect their work. Research Policy, 32(7):1179–1198, 2003.

[34] J. Ousterhout. Free software needs profit. Communications of the ACM,
42(4):44–45, April 1999.

[35] J. K. Ousterhout. Tcl: An embeddable command language. Technical
Report UCB/CSD-89-541, EECS Department, University of California,
Berkeley, 1989.

[36] J. K. Ousterhout. Scripting: Higher-level programming for the 21st cen-
tury. Computer, 31(3):23–30, 1998.

[37] Per Cederqvist et al. Version Management with CVS. Network Theory Ltd,
Bristol, UK, 2002.

[38] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1999.

[39] G. Recco. Who is using OpenACS. OpenACS Q&A, http://openacs.org/
forums/message-view?message id=352641.

[40] G. Robles, S. Koch, and J. M. Gonzalez-Barahona. Remote analysis and
measurement of libre software systems by means of the CVSanalY tool.
In ICSE 2004 - Proceedings of the Second International Workshop on Remote
Analysis and Measurement of Software Systems (RAMSS ’04), pages 51–55,
Edinburgh, Scotland, 2004.

[41] I. Samoladas, I. Stamelos, L. Angelis, and A. Oikonomou. Open source
software development should strive for even greater codemaintainability.
Communications of the ACM, 47(10):83–87, October 2004.

[42] J. B. Tran, M. W. Godfrey, E. H. Lee, and R. C. Holt. Architectural repair
of Open Source software. In Proceedings of the 2000 International Workshop
on Program Comprehension (IWPC’00), Limerick, Ireland, 2000.

[43] L. Villa. Large free software projects and bugzilla. In Proceedings of the
Linux Symposium, pages 471–480, Ottawa, Canada, 2003.

[44] Y. Ye, K. Nakakoji, Y. Yamamoto, and K. Kishida. The co-evolution of
systems and communities in free and open source software development.
In S. Koch, editor, Free/Open Source Software Development, pages 59–82. Idea
Group Publishing, Hershey, PA, 2004.

19

