
Information and Software Technology 49 (2007) 871–891

www.elsevier.com/locate/infsof
Object-based and class-based composition of transitive mixins

Uwe Zdun a,¤, Mark Strembeck b,¤, Gustaf Neumann b

a Distributed Systems Group, Information Systems Institute, Vienna University of Technology, Austria
b New Media Lab, Institute of Information Systems, Vienna University of Economics and BA, Austria

Received 17 February 2006; received in revised form 14 September 2006; accepted 3 October 2006
Available online 27 November 2006

Abstract

In object-oriented composition, classes and class inheritance are applied to realize type relationships and reusable building blocks.
Unfortunately, these two goals might be contradictory in many situations, leading to classes and inheritance hierarchies that are hard to
reuse. Some approaches exist to remedy this problem, such as mixins, aspects, roles, and meta-objects. However, in all these approaches,
situations where the mixins, aspects, roles, or meta-objects have complex interdependencies among each other are not well solved yet. In
this paper, we propose transitive mixins as an extension of the mixin concept. This approach provides a simple and reusable solution to
deWne “mixins of mixins”. Moreover, because mixins can be easily realized on top of aspects, roles, and meta-objects, the same solution
can also be applied to those other approaches.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Mixins; Mixin classes; Software composition; Object-oriented composition

1. Introduction how to deWne “mixins of mixins”. As mixins can be used in
In many object-oriented approaches, the (multiple-)inher-
itance relationship and the type concept are modeled via the
same construct, the class. However, (multiple-)inheritance
primarily aims at the reusability of classes, whereas a class
primarily deWnes the type of its instances, the objects (see also
[8]). These two goals are often contradictory, as, on the one
hand, a unit of reuse should be small and Xexibly composable
with arbitrary kinds of other classes, and, on the other hand,
an object’s type needs to be deWned completely and requires
a Wxed place in the class hierarchy. Mixins are proposed as a
way to solve this problem (see, e.g. [3,5,6,26,29,41]). A mixin is
a small unit of composition that is not necessarily deWned
completely. It can be mixed into a given class hierarchy at
arbitrary places.

An open issue in mixin-based composition is the compo-
sition of multiple mixins in dependency to each other, i.e.,

* Corresponding authors.
E-mail addresses: zdun@infosys.tuwien.ac.at (U. Zdun),
Mark.Strembeck @wu-wien.ac.at (M. Strembeck),
Gustaf.Neumann@wu-wien.ac.at (G. Neumann).
0950-5849/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2006.10.001
arbitrary places of a class hierarchy, it is hard to deWne the
interdependencies between them in the context of composi-
tions in a generic way.

Consider a simple example: an access control handler is
conditionally composed with application logic classes in a
server. The access control handler depends on a number of
other classes: for example the remote objects which have to
be protected, the users and/or roles whose access requests
to objects must be controlled, the permissions of each par-
ticular user or role, and the context constraints for these
permissions.1 As these classes are all together deWning the
access control handler type, and each of them should be
Xexibly composable and reusable in many situations, it
seems to be a good choice to model each of them as a mixin.
In a “Xat” mixin model, however, we are not able to model
the interdependencies among these mixins. Example prob-
lems in such models are that conditional composition based
on runtime state is not possible, the composition order can-
not be speciWed, multiple roles of one type cannot have
diVerent instance-speciWc permissions, or all mixins would

1 The access control example will be discussed in detail in Section 5.2.

mailto: zdun@infosys.tuwien.ac.at
mailto: zdun@infosys.tuwien.ac.at
mailto: Mark.Strembeck@wu-wien.ac.at
mailto: Mark.Strembeck@wu-wien.ac.at
mailto: Mark.Strembeck@wu-wien.ac.at
mailto: Gustaf.Neumann@wu-wien.ac.at
mailto: Gustaf.Neumann@wu-wien.ac.at

872 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
be applied to the user or role instances. Instead, we would
like to be able to explicitly model a kind of “mixin of
mixin” relationship: a role mixin might only be conWgured
for users, a permission mixin only for roles, and a context
constraint mixin only for permissions. In such cases, the
problem arises how these interdependencies among
the classes can be properly modeled while still retaining the
reusable type relationship oVered by the mixin concept.

In this paper, we propose the transitive composition of
mixin classes as a solution to this problem. In particular, in
our basic concept, which is called transitive mixin chains,
each mixin can transitively have other mixins itself, to
model (and arbitrarily reWne) mixin-based compositions.
This way, multiple class hierarchies, expressing orthogonal
concerns, can be (dynamically) composed with the applica-
tion logic in a transitive fashion. Moreover, we also
introduce the more elaborate transitive mixin delegation
concept. It allows each transitive mixin to have its own
(object-speciWc) state. These concepts are deWned in a
generic way using Horn clauses in Section 3.

Our approach applies mixins as a simple basic concept
for reusable types. We used this approach because of the
generality of the mixin concept. Similar concepts are
present in many recent adaptation techniques, including
aspect-oriented programming, meta-object protocols, roles,
message interceptors, interpreters, virtual machines, etc.
That is, our approach can also be implemented as an exten-
sion to these other techniques, and hence we expect a wide
applicability of our concepts.

Section 4 presents a proof-of-concept implementation of
our approach that is based on XOTcl mixins [29,30]. Subse-
quently, in Section 5, we illustrate the practical use of the
concepts with two case studies, a persistence manager com-
ponent and a role-based access control framework. We
present these details, because we feel that – even though the
concept in general and its use are quite simple and straight-
forward – the implementation details are not obvious. We
illustrate the general problems in implementing transitive
mixin classes by explaining the design challenges and deci-
sions of our implementation, as well as the corresponding
case studies. Of course, many design challenges can be
solved quite diVerently in other implementations of our
concepts. In Section 6 we evaluate our Wndings and Section
7 concludes the paper.

2. Discussion of related work

In addition to the related work regarding the area of
mixin-based composition [3,5,6,26,41], mentioned in the
previous section, various other extensions and implementa-
tion concepts for mixins have been proposed.

A number of approaches suggest to add mixins in a type
safe framework. For instance, Flatt, Krishnamurthi, and
Felleisen present a mixin approach for Java [11] that is con-
ceptually similar to mixin-based inheritance.

Van Hilst and Notkin describe an implementation tech-
nique for roles using C++ templates [40]. Here, roles are
composed using inheritance, and the superclass of a role is
speciWed as a template argument. This approach can be
seen as a form of mixin classes that are statically composed
(i.e., composed before runtime).

Smaragdakis and Batory simpliWed and extended the
idea of role mixins into the mixin layers concept [35]. Mixin
layers group multiple mixin classes into a container class.
The parameter (superclass) of the outer mixin determines
the parameters (superclasses) of inner mixins. Thus, the
approach is more structured compared to Van Hilst’s and
Notkin’s approach, and it uses a more simple instantiation
style. In both approaches, however, it can be challenging to
understand how the pieces compose together (mainly due
to the use of templates and other complex C++ language
features).

Traits [34] support the reuse of method collections over
several classes. They are groups of methods that act as units
of reuse from which classes are composed. Thus, traits are
pure units of reuse consisting only of methods (similar to
the per-class mixins presented below).

In all mixin approaches, explained so far, mixins are not
supported as explicit mixin entities, but rather seen as pure
extensions of the inheritance relationship. That means, both
stateful composition of mixin roles and object-speciWc com-
position of mixins is not supported. Moreover, transitive
mixin composition is not supported in any of the
approaches. In this paper, we will extend those other mixin
concepts to support each of these facets as an option that
can be chosen by the developer.

A number of more dynamic, object-oriented environ-
ments, such as CLOS [3], Smalltalk [15], and Self [39], pro-
vide both a programming environment and a runtime
environment, allowing to inXuence the language behavior
from within a program. For this purpose, diVerent language
constructs are supported, such as computational reXection
[25,36], meta-object protocols (MOP) [19], meta-classes
[12], dynamic classes, or delegation constructs [2]. With
these constructs, a given composition and even the compo-
sition mechanism itself can be manipulated and adapted to
a given context. The above mentioned techniques provide a
great expressive power to the developer. Yet, they also
impose a high complexity. To understand an expression, the
current runtime deWnition of the environment has to be
understood (including class relationships, meta-objects and
meta-classes, and even (re-)deWnitions of language ele-
ments). As there is no standard way to express interdepen-
dencies between class relationships, manipulations of these
interdependencies are often hand-built. Thus, they look
diVerent in diVerent applications and are not easy to under-
stand for the developer.

To limit the complexity, but still allow for powerful soft-
ware adaptations, diVerent approaches have been proposed.
A number of these approaches can be classiWed as aspect-
oriented programming (AOP) [21] approaches. AspectJ [20],
for instance, allows to declaratively provide “pointcuts”
which are performing adaptations for a number of prede-
Wned “joinpoints”. Joinpoints are speciWc, well-deWned

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 873
events in the control Xow of the executed program. Aside
from AspectJ, there are many other aspect composition
frameworks. They have in common that they are easier to
understand and apply than meta-programming or reXection.
Also they provide a runtime indirection layer [42], so that an
aspect can react on context changes at runtime. However, as
these mechanisms focus on static adaptation techniques,
they cannot be applied directly for runtime changes of the
aspect conWguration. Therefore, a number of extensions
oVer dynamic aspect composition. For instance, Prose [33]
and Steamloom [4] modify the Java Virtual Machine to
allow for dynamic conWguration of aspects.

JBoss AOP [7] introduces a simple notion of mixins into
an aspect-oriented programming framework. In particular,
a mixin class and a number of additional interfaces are
added to a class using byte-code manipulation. The mixin
class provides the implementation of the methods intro-
duced using the additional interfaces. At runtime, an
instance of the mixin class is created for each instance of
the class that is extended with the respective mixin. JBoss
AOP mixin classes introduce methods that can be used by
interceptor methods. This feature resembles AspectJ’s
inter-type declarations [20].

The AOP approaches discussed above lack a clear solu-
tion for interdependencies of aspects. Aspects of aspects
can be realized by a few research prototypes, such as
Hyper/J [38] or EAOP [10]. In most AOP implementations,
however, it is diYcult to compose aspects of other aspects,
because the aspects are most often composed in a linear
chain with a predeWned order. Inter-aspect dependencies
are thus often hard to model (i.e., only with complex work-
arounds), and resulting solutions are complex and hard to
understand. Furthermore, when aspects have interdepen-
dencies among each other, it is diYcult to determine which
aspects are applied to which composition units in what
order.

The composition of roles has been studied in a number
of approaches. An object is allowed to possess or play one
or more roles. Typically, an object plays the roles which are
associated with the class from which the object was instan-
tiated (see e.g. [1,16,32]). Some of these role approaches dis-
tinguish class and role hierarchies, as for instance [1,16].
This way, roles are diVerentiated into role types and can be
further specialized. This concept is similar to mixin class
hierarchies but oVers no concept for transitive interdepen-
dencies of roles.

Kristensen and Østerbye [23,24] extend the earlier role
concepts with the notion of “roles of roles”. This concept
is transitively applicable, however, it requires manual
casting to a role’s context. For instance, if an instance of a
class C has a role R1, and R1 itself has a role R2, then the
methods of R1 and R2 are not directly available to clients
of the instance of C, but Wrst this instance must be classi-
Wed to R1 or R2, respectively. A problem of this approach
is that changes to clients are necessary to acquire the
mixin behavior, which, again, hinders unanticipated
evolution and reuse.
Zhao and Foster propose to model roles using the Cas-
cade pattern [46]. Cascade uses a tree structure to represent
roles. Each Cascade layer is a Composite pattern [13].
Through the repeated use of the Composite pattern on
diVerent levels, the Cascade pattern achieves an explicit
semantic layering and ordering in whole-part relationships.
Zhao’s and Foster’s approach can be used to model class
interdependencies of Cascade layers, but manual forward-
ing through the Cascade hierarchy is required.

In the Object Teams approach [17], role concepts are
combined with concepts from AOP. Here, a Team is a class
that contains direct inner classes that each implement a
role. Instances of a base class will always be associated to
instances of the role classes in the team. A particular base
class instance can be associated to multiple role objects in
multiple teams. The concept allows for method bindings
between a class and its roles, which enable automated
method forwarding in both directions (so-called CallIns
and CallOuts).

Most approaches explained above provide some special
language construct, such as a dedicated mixin construct,
meta-object, role, or aspect. Even though the composition
approaches are slightly diVerent, they all can be applied to
extend or compose type relationships with the ordinary
inheritance hierarchy. We can distinguish the following
diVerences: in some approaches, the composition can be
changed at runtime, others do not provide this feature.
Some approaches apply the composition per individual
instance (per-object), others do it for classes (per-class).
When the composition is applied, it can retain the identity
of the object onto which it is applied, or there might be a
separate compositional instance (like a role or mixin
instance) having its own (unique) identity. Moreover, the
details of how the composition is actually applied vary, e.g.:
the ordering of the composition; the application of compo-
sitions before, after, or around the execution of an actual
method invocation; the resolution of ambiguities in the
class graph.

In the approach presented in this paper, we aim to rem-
edy the composition problems, identiWed in the related
work especially with regard to transitive mixin composi-
tion. Even though the composition is realized in diVerent
ways, our approach can be applied – with moderate eVort –
on top of most of the other approaches. In Section 6 we will
compare our approach to those other approaches.

3. Transitive mixin classes: concepts

Our goal is to extend the mixin concept with support for
transitive mixins (“mixins of mixins”) – as a way to model
the interdependencies among diVerent mixins. We have
chosen mixins as a conceptual foundation for our approach
because mixin implementations and approaches exist for
many environments, and the mixin concept can be realized
in or on top of many other adaptation techniques, includ-
ing aspect-oriented programming, meta-object protocols,
roles, message interceptors, interpreters, virtual machines,

874 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
etc. Thus, there is a wide potential for a common applicabil-
ity of our results.

In the remainder of this section we deWne the declarative
semantics of two novel mixin concepts, transitive mixin
chains and transitive mixin delegation. We present our con-
cepts in a generic form, expressed via Horn clauses. The
goal is to express a general model that can be used with
many of the approaches explained in the preceding section.
Even though there are slight diVerences in these
approaches, our transitive mixin approach can be imple-
mented on top of other existing approaches, such as mixin,
role, aspect, and MOP approaches. It may, however, require
some modiWcations of concrete mixin implementations to
fully realize our concepts.

To make our approach as general as possible, we do not
presume that a special language construct, such as a dedi-
cated mixin construct, meta-object, or aspect, must be used
to implement mixins. Instead, in our approach, a mixin
must just have the properties of an ordinary class. In our
proof-of-concept implementation explained below, we
indeed use ordinary classes for implementing mixins, how-
ever, this is again no prerequisite. Of course it is also possi-
ble to use more advanced constructs to implement mixins,
such as dedicated mixin constructs, meta-objects, or
aspects.

3.1. Basic type relationships

In this section, we provide declarative semantics for tran-
sitive mixin chains and transitive mixin delegation. We Wrst
deWne the basic type relationships that we presuppose for
the following mixin concepts. Therefore, we deWne the fol-
lowing facts describing basic object-oriented constructs:

• Classes are speciWed via is_class(C).
• Superclass relationships are speciWed via superclass

(C, S). It is not speciWed if a class C can have only a sin-
gle superclass S or multiple superclasses, to cover single
as well as multiple inheritance.

• Instances of classes (i.e., objects) are deWned via
instance_of(O, C).

• The methods provided by a particular class C are speci-
Wed via provides_method(C, M).

Based on these facts, we deWne a set of clauses describing
relationships that are common in most object-oriented lan-
guages (see Fig. 1): each class C deWnes a (custom) type for
its instances (Clause 1). In presence of a class hierarchy, a
class C also provides all types deWned by its superclasses
(Clause 2). An object O is said to be of a type T, if this type
T is provided by a class C, and O was instantiated from C
(Clause 3). This deWnition is suYcient for single and multi-
ple inheritance relationships alike. Clause 4 deWnes which
methods can be invoked on a particular object based on the
predicates is_type_of and provides_method.

Fig. 2 depicts a simple example including two classes,
ASuperClass and AClass, and an instance of AClass named
anObject. Furthermore, the Wgure shows the facts needed to
describe the example and the relations that can be deduced
via the clauses deWned in Fig. 1.

3.2. Declarative semantics of mixins and transitive mixin
chains

As an extension to the basic relationships we now deWne
the semantics of mixins. As motivated above, we simplify
the type semantics of existing mixin concepts, and, at the
same time, make them work in a transitive fashion. For this
reason we assume that a mixin is an ordinary class,
supporting all the relationships deWned in Fig. 1. Again, we
Wrst deWne some basic facts that are then used to deWne
additional mixin related clauses: the fact has_per_object_
mixin(O, P) speciWes that an object O has a per-object mixin
P. And the fact has_per_class_mixin(C, P) deWnes that class
C has a per-class mixin P.

Fig. 3 speciWes that per-object and per-class mixins
extend the is_of_type and provides_type predicates deWned
in Section 3.1:

• Per-object mixins are classes that are applied as mixins
for an individual object, i.e., for an instance of a class
(see Clause 5). They extend the types of an object with
(one or more) per-object mixin classes. Fig. 4 shows an
example of how an object anObject acquires two new

Fig. 2. Class and superclass relationship: example.

is_class(’ASuperClass’)
is_class(’AClass’)
superclass(’AClass’, ’ASuperClass’)
instance_of(’anObject’, ’AClass’)

instance_of

AClass

anObject

ASuperClass

superclass

Facts describing the example:

Deduced relations:
provides_type(’ASuperClass’, ’ASuperClass’)
provides_type(’AClass’, ’AClass’)
provides_type(’AClass’, ’ASuperClass’)
is_of_type(’anObject’, ’AClass’)
is_of_type(’anObject’, ’ASuperClass’)
Fig. 1. Class and superclass relationship.

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 875
types POM_1 and POM_2 via the corresponding per-
object mixins.

• Per-class mixins are classes that are applied as mixins for
a class. Per-class mixins are types for all direct and indi-
rect instances of this class (see Clause 6). Fig. 4 shows an
example of how anObject as an instance of AClass
acquires two additional types PCM_1 and PCM_2, if
these classes are registered as per-class mixins for ASu-
perClass.

Most mixin concepts can be used to realize at least one
of the two relationships, per-object mixins or per-class mix-
ins, and each of the two relationships can be used to “simu-
late” the other. From a practical point of view, however, it
makes sense to deWne both relationships because they both
occur frequently in design situations. Simulating the one
with the other is tedious and error-prone.2

While the example in Fig. 4 only illustrates non-transi-
tive mixins, the clauses provided in Fig. 3 also describe
transitive mixin chains. Transitive mixin chains result
from mixin classes which themselves have one or more
per-class mixins, as illustrated in Fig. 5. In particular, the
example in Fig. 5 shows a mixin class PCM_2 which has
itself a per-class mixin TMix_1, and TMix_1 again has a
per-class mixin TMix_2. The transitive mixin chains con-
cept transitively applies per-class mixins registered on a
mixin class for all corresponding objects. With regard to

2 This problem has been observed in our early XOTcl case studies. Ini-
tially, our XOTcl prototype (see Section 4.1) did only support per-object
mixins. While this construct was very useful for some design situations, in
other design situations we frequently ran into problems when we wanted
to apply a mixin for all instances of a class. Hence, we introduced the per-
class mixin feature to avoid writing per-object mixin generation code into
the constructors of each of these classes.
the example in Fig. 5 this means that the instance anOb-
ject acquires all types obtained by per-class mixins of one
of its mixins.

To realize a transitive mixin chain for a per-object mixin,
we need to deWne one or more per-class mixins for the
respective per-object mixin class. This is only possible
because per-object mixins are assumed to be classes, and
hence per-class mixins can be deWned on them. In other
words, a transitive mixin chain, like the one depicted in
Fig. 5, may also be attached to a class that is used as a per-
object mixin.

The deWnitions given in this section introduce mixins as
classes that support transitive mixin chains, both on a per-
object and per-class basis. The result is a powerful and
simple concept for transitive mixin composition. This
concept has an important characteristic that needs some
more consideration: as a mixin is itself a class of the
object, the mixin retains the identity of the object when it
is applied. Thus, both per-object and per-class mixins
extend the type relationship of the object. Therefore, when
a method deWned on a mixin is invoked, the instance to
which this method is applied must be the same object on
which the original method call was invoked. The concept
of transitive mixin chains is thus applicable for all mixin
implementations that allow to retain the identity of the
instance the mixin is registered for. In other words, the
identity of an object (that often can be referred to using a
language construct called self or this) does not change
when passing a message call to the mixin classes of the
corresponding object.

This is a particular strength of the transitive mixin chain
concept for many typical application scenarios of mixins
because it enables developers to transparently extend an
object using mixins. That is, neither the object itself nor the
class the object was instantiated from need to be altered to
Fig. 3. Mixin relationships (1): transitive mixin chains.
Fig. 4. Per-class and per-object mixins: example.

Deduced relations:
provides_type(’ASuperClass’, ’ASuperClass’)
provides_type(’AClass’, ’AClass’)
provides_type(’PCM_1’, ’PCM_1’)
provides_type(’PCM_2’, ’PCM_2’)
provides_type(’POM_1’, ’POM_1’)
provides_type(’POM_2’, ’POM_2’)
provides_type(’ASuperClass’, ’PCM_1’)
provides_type(’ASuperClass’, ’PCM_2’)
provides_type(’AClass’, ’ASuperClass’)
provides_type(’AClass’, ’PCM_1’)
provides_type(’AClass’, ’PCM_2’)
is_of_type(’anObject’, ’AClass’)
is_of_type(’anObject’, ’ASuperClass’)
is_of_type(’anObject’, ’PCM_1’)
is_of_type(’anObject’, ’PCM_2’)
is_of_type(’anObject’, ’POM_1’)
is_of_type(’anObject’, ’POM_2’)

is_class(’ASuperClass’)
is_class(’AClass’)
is_class(’PCM_1’)
is_class(’PCM_2’)
is_class(’POM_1’)
is_class(’POM_2’)
superclass(’AClass’, ’ASuperClass’)
instance_of(’anObject’, ’AClass’)
has_per_class_mixin(’ASuperClass’, ’PCM_1’)
has_per_class_mixin(’ASuperClass’, ’PCM_2’)
has_per_object_mixin(’anObject’, ’POM_1’)
has_per_object_mixin(’anObject’, ’POM_2’)

Facts describing the example:

 has_per_object_mixin

 instance_of

POM_1

POM_2

 has_per_object_mixin

 superclass

PCM_2

PCM_1

ASuperClass

AClass

anObject

 has_per_class_mixin

 has_per_class_mixin

876 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
extend the object with the new behavior provided by the
mixin, it is suYcient to add a new (mixin) relation.

There are other composition scenarios (such as the one
described in the case study in Section 5.2), however, in
which the transitive mixin chain relationship is not suitable
for expressing complex compositions of mixins because we
require the object identity to change, when a mixin is
applied. This issue also occurs for ordinary object-oriented
composition by inheritance: the inheritance relationship
also retains the object identity. If the identity should or
must change, in ordinary object-oriented approaches, dele-
gation is applied instead of inheritance. Analogously, in
case of a mixin-based composition we apply the concept of
transitive mixin delegation (explained in the following sec-
tion) in such situations. In other words: transitive mixin
delegation provides a concept for transitive mixin composi-
tion based on the concept of delegation.

3.3. Declarative semantics of transitive mixin delegation

A typical example in which the identity of the object
should change when a mixin is applied are stateful roles
modeled as mixins. A stateful role can be seen as a collec-
tion of new behavior added to an object plus some addi-
tional per-role state. It should be possible to add diVerent
roles independently, and the developer of a certain class/
object cannot foresee all possible role extensions, therefore
a mixin implementing a role must somehow realize the per-
role state.

Unfortunately, it is cumbersome to realize such stateful
roles with (transitive) per-class mixins. In particular, we
would need to instantiate helper objects to hold the per-role
state, and there would be no common concept for such
helper objects. Thus, each developer of a stateful mixin
would have to realize this concern from scratch, which is
likely leading to code that is hard to reuse, understand, and
maintain.

For this reason, we introduce the concept of transitive
mixin delegation. This concept has similar type semantics as
the transitive mixin chains explained before, and addition-
ally it deWnes how to automatically delegate the mixin invo-
cation to an object holding the mixin’s state. The additional
declarative semantics is deWned in Fig. 6.

The transitive mixin delegation relationship enables an
object to invoke additional methods via delegation (deWned
on one or more of its mixins). First, we must deWne the gen-
eral semantics of “invoking a method via delegation”. The
can_invoke predicate (from Clause 4) is extended in Clause
7 and 8. The can_invoke predicate with four parameters
speciWed in Clause 7 deWnes that an object (Wrst parameter)
can invoke a method (fourth parameter) on another object
(third parameter) using a delegation that happens when one
of its own methods (second parameter) is invoked. Clause 7
extends the can_invoke predicate from Clause 4 to the four
parameter version. Next, Clause 8 deWnes how a delegated
invocation works: if a method M1 can be invoked on object
O1 and a method M2 can be invoked on object O2, and the
fact delegate(O1,M1,O2, M2) is deWned, then the object O1
can invoke O2’s M2 via its own method M1. In other
words, M1 includes a delegation to M2. Again, the delega-
tion can happen before, after, or around the invocation of
M1.
Fig. 5. Transitive mixin chains: example.

 instance_of

is_class(’AClass’)
is_class(’PCM_1’)
is_class(’PCM_2’)
is_class(’TMix_1’)
is_class(’TMix_2’)
instance_of(’anObject’, ’AClass’)
has_per_class_mixin(’AClass’, ’PCM_1’)
has_per_class_mixin(’AClass’, ’PCM_2’)
has_per_class_mixin(’PCM_2’, ’TMix_1’)
has_per_class_mixin(’TMix_1’, ’TMix_2’)

Facts describing the example: Deduced relations:
provides_type(’AClass’, ’AClass’)
provides_type(’PCM_1’, ’PCM_1’)
provides_type(’PCM_2’, ’PCM_2’)
provides_type(’TMix_1’, ’TMix_1’)
provides_type(’TMix_2’, ’TMix_2’)
provides_type(’TMix_1’, ’TMix_2’)
provides_type(’PCM_2’, ’TMix_1’)
provides_type(’PCM_2’, ’TMix_2’)
provides_type(’AClass’, ’PCM_1’)
provides_type(’AClass’, ’PCM_2’)
provides_type(’AClass’, ’TMix_1’)
provides_type(’AClass’, ’TMix_2’)
is_of_type(’anObject’, ’AClass’)
is_of_type(’anObject’, ’PCM_1’)
is_of_type(’anObject’, ’PCM_2’)
is_of_type(’anObject’, ’TMix_1’)
is_of_type(’anObject’, ’TMix_2’)

AClass

PCM_1

PCM_2

TMix_2

TMix_1

anObject

has_per_class_mixin

 has_per_class_mixin

 has_per_class_mixin

has_per_class_mixin
Fig. 6. Mixin relationships (2): transitive mixin delegation.

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 877
To deWne transitive mixin delegation, we assume the addi-
tional fact transitive_mixin_delegation(P,M1,M2). This fact
means that a transitive mixin delegation is deWned for a par-
ticular per-object mixin P, between methods M1 and M2. If
an object O has a class P registered as a per-object mixin, and
transitive_mixin_delegation is deWned for P’s methods M1 and
M2, then a delegation (deWned via the delegate predicate)
between the method M1, invokable on O, and the method
M2, invokable on P, can be deduced. This relation is
expressed in Clause 9. Here, P is assumed to be a per-object
mixin of the object O because we want to perform an object-
speciWc extension, and in our mixin concept per-object mixins
are used to model object-speciWc extensions (see Section 3.2).

In Clause 8 we assume can_invoke(O1,M1) and
can_invoke(O2,M2). For transitive mixin delegation
can_invoke(O1,M1) is trivially fulWlled because the object O
from Clause 9 of course can invoke its own method M1. The
second part from Clause 8, can_invoke(O2,M2), means that –
in Clause 9 – the per-object mixin P itself can invoke a
method M2. This is a central assumption made by the con-
cept of transitive mixin delegation: mixins themselves must be
able to receive method invocations. In other words, a mixin
must either be an object itself, or it must be represented by
some (proxy) object. In the mixin deWnitions provided above,
mixins were assumed to be classes, however (see Section 3.2).
Thus, we require classes that can receive method invocations.

There are many ways to realize this assumption. In our
proof-of-concept implementation described below (see Sec-
tion 4) we use the concept of class objects: a class object is
an object representing the class at runtime while addition-
ally containing a per-class state (that can also be used to
realize a per-mixin state). Class objects, however, are not
supported by all mainstream programming languages.
Thus, in such situations we use some other object to hold
the per-mixin state. One simple solution are helper objects
for holding a mixin’s state. This solution is equally power-
ful, but less elegant than class objects, because it requires
some additional central management facility for the helper
objects. As an alternative, we can “simulate” the class
object approach: for example, there are many patterns
describing how to implement dynamic object systems where
classes act as objects, such as Object System Layer [14] or
Type Object [18]. These patterns can be realized in almost
any object-oriented programming language. Our approach,
however, does not assume any of these implementation
variants, the only assumption made by our concept is that
mixins are themselves able to receive method invocations.

The consequence of the semantics of transitive mixin
delegation (deWned in Fig. 6) is that per-object mixins can
be used to express stateful composition of mixins (like
stateful roles for instance) and all its direct and indirect
relationships (i.e., ordinary type relationships and other
mixin relationships). To illustrate this feature, consider the
example diagram in Fig. 7. In this example, an object anOb-
ject has a per-object mixin Mix_1 providing a method
aMethod1. For this method a transitive mixin delegation to
a method aMethod2 is deWned which is dispatched on the
class hierarchy the mixin object was instantiated from (here
the method is deWned on Class_1). Moreover, the mixin
class Mix_1 has itself a per-object mixin Mix_2, which has
a transitive mixin delegation from aMethod2 to aMethod3
(here the method is provided by Class_2). As a
Fig. 7. Example for transitive mixin delegation.

anObject

 instance_of instance_of

 has_per_object_mixin has_per_object_mixin

transitive_mixin_delegation(Mix_1, aMethod1, aMethod2)

aMethod2

Mix_2

aMethod1

Mix_1

aMethod2

Class_1

 instance_of

AClass

is_class(’AClass’)
is_class(’Mix_1’)
is_class(’Mix_2’)
is_class(’Class_1’)
is_class(’Class_2’)
instance_of(’anObject’, ’AClass’)
instance_of(’Mix_1’, ’Class_1’)
instance_of(’Mix_2’, ’Class_2’)
provides_method(’Mix_1’, ’aMethod1’)
provides_method(’Mix_2’, ’aMethod2’)
provides_method(’Class_1’, ’aMethod2’)
provides_method(’Class_2’, ’aMethod3’)
has_per_object_mixin(’anObject’, ’Mix_1’)
has_per_object_mixin(’Mix_1’, ’Mix_2’)
transitive_mixin_delegation(’Mix_1’, ’aMethod1’, ’aMethod2’)
transitive_mixin_delegation(’Mix_2’, ’aMethod2’, ’aMethod3’)

Facts describing the example:

Deduced relations:

provides_type(’AClass’, ’AClass’)
...
can_invoke(’anObject’, ’aMethod1’)
can_invoke(’Mix_1’, ’aMethod2’)
can_invoke(’Mix_2’, ’aMethod3’)
can_invoke(’anObject’, ’aMethod1’, ’anObject’, ’aMethod1’)
can_invoke(’Mix_1’, ’aMethod2’, ’Mix_1’, ’aMethod2’)
can_invoke(’Mix_2’, ’aMethod3’, ’Mix_2’, ’aMethod3’)
delegate(’anObject’, ’aMethod1’, ’Mix_1’, ’aMethod2’)
delegate(’Mix_1’, ’aMethod2’, ’Mix_2’, ’aMethod3’)
can_invoke(’anObject’, ’aMethod1’, ’Mix_1’, ’aMethod2’)
can_invoke(’Mix_1’, ’aMethod2’, ’Mix_2’, ’aMethod3’)
can_invoke(’aObject’, ’aMethod1’, ’Mix_2’, ’aMethod3’)

transitive_mixin_delegation(Mix_2, aMethod2, aMethod3)

aMethod3

Class_2

878 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
consequence, three delegated invocations can be deduced
for anObject (using the clauses deWned in Figs. 1, 3, and 6):

• Delegation from aMethod1 to aMethod2: An invocation
of aMethod1 on anObject is automatically delegated to
aMethod2 on the object Mix_1 (Mix_1 is an instance of
Class_1 and can therefore invoke aMethod2 provided by
Class_1).

• Delegation from aMethod2 to aMethod3: An invocation
of aMethod2 on Mix_1 is automatically delegated to
aMethod3 on the object Mix_2 (Mix_2 is an instance of
Class_2 and can invoke aMethod3).

• Transitive delegation from aMethod1 to aMethod3: An
invocation of aMethod1 on anObject is automatically
delegated to aMethod3 on the mixin Mix_2. This transi-
tive delegation is conducted via aMethod2 that can be
invoked by Mix_1 (see Fig. 7). The state of the mixins is
introduced through the object-speciWc delegation
between the mixins. Each mixin is implemented as a class
object, and hence it has its own mixin-speciWc state.

3.4. A decision tree for the modeling of mixin composition

Above we have introduced two novel concepts for mod-
eling mixin interdependencies, transitive mixin chains and
transitive mixin delegation, as well as a number of varia-
tions for the application of these concepts (per-object vs.
per-class; directly applied vs. transitively applied). Now we
take a look at the “big picture” and illustrate when which
of these variants is applicable. To assist developers in a sys-
tematic decision, Fig. 8 provides a decision tree when to
apply which of the concepts.

The class primarily deWnes the type of its instances.
Hence, for deWning ordinary types the standard class rela-
tionship (instance_of) or ordinary inheritance (superclass)
should be used.

In turn, if Xexible reusability of classes is the goal, a
mixin class should be applied. Thus, if an ordinary object or
class is to be extended, we use directly applied mixin classes.
Per-object mixins are used for object-speciWc extensions
that apply to an individual object only, and per-class mixins
for class-speciWc extensions that apply for all instances of a
particular class.

We also use mixin classes for reWning mixin composi-
tions. In this case, however, we apply them transitively (see
Fig. 8). We have to further decide whether the object iden-
tity should be retained or not (i.e., whether stateless or
stateful mixins are needed). If the object identity should be
retained, we apply transitive mixin chains, otherwise we
choose transitive mixin delegation (see Fig. 8).

As transitive mixin delegation is always object-speciWc, it
requires the usage of per-object mixins. Transitive mixin
Transitive Mixin
Chains

Transitive Mixin
Delegation

Per-Class Mixin
on Per-Class Mixin

Per-Class Mixin
on Per-Object Mixin

Type Relationship

define type for instances

Mixin Classes

composition with object or class composition with a mixin

Directly-Applied
Mixin Classes

Transitive
Mixin Classes

Per-Object Mixin

should be applied
per-object

Per-Class Mixin

should be applied
per-class

object identity
should change

object identity
should be retained

should be applied
per-object

should be applied
per-class

Class Relationship/
Inheritance

define flexibly reusable type
Fig. 8. Decision tree for mixin composition.

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 879
chains are always class-speciWc and are thus applied as per-
class mixins. There is, however, the choice whether an
object-speciWc mixin relationship should be extended (per-
class mixin on a per-object mixin), or if a class-speciWc
mixin relationship is to be extended (per-class mixin on a
per-class mixin). The options are summarized in the deci-
sion tree depicted in Fig. 8.

4. Proof-of-concept implementation: transitive mixins in
XOTcl

As discussed in Sections 1 and 2, many variations of the
mixin concept exist. Most of them can, in principle, be used
to implement the concept of transitive mixin classes as
described in Section 3. In our examples we use XOTcl mixin
classes for illustration and as a proof-of-concept implemen-
tation. In this section, we provide the essential implementa-
tion details, because we found them to be non-obvious and
still necessary for a successful realization of the concepts.
Our implementation is close to the concepts deWned in Sec-
tion 3. However, other implementations based on other
existing frameworks (like existing mixin implementations
or AOP frameworks, see Section 2) may of course choose
other ways to implement these concepts. For instance, we
follow the distinction of per-object and per-class mixins.
Most other realizations of mixin concepts do not support
both variants. Thus, one of the two has to be simulated
using the other, before the concepts presented in Section 3
can be fully realized.

4.1. Proof-of-concept implementation and XOTcl details

For our proof-of-concept implementation we have used
an object-oriented extension of the scripting language Tcl
[31], called XOTcl (eXtended Object Tcl) [29]. XOTcl is a
C-library that can be dynamically loaded into every Tcl
compatible environment such as tclsh or wish and is
embeddable in C programs. As a Tcl extension, all Tcl com-
mands [31] are directly accessible in XOTcl. XOTcl is open
source and publicly available from [30].

The code for our proof-of-concept implementation,
described below, is implemented in C (about 3000 lines of
code of the XOTcl C implementation are relevant for the
mixin and transitive mixin implementations). In this paper,
we will, however, not explain the details of the C reference
implementation, rather we describe transitive XOTcl mix-
ins and their application in software development situa-
tions – please refer to [30] for the XOTcl source code and a
language reference.

Moreover, to show the generality of our results, we have
done a second implementation of our concepts in a Java
extension, called Frag [44,45]. Basically, this implementa-
tion extends the Java-library Jacl [9] with the same mixin
concepts as XOTcl. Here, AspectJ [20] is used to connect
the dynamic mixin-based object system to existing Java
classes (see [43] for details). We will not explain the details
of Frag because the XOTcl implementation of the transi-
tive mixin concepts is more advanced and from a user-level
view both are very similar. Only the internal implementa-
tion details of the XOTcl C implementation and the Frag
implementation diVer. The source code of the Frag refer-
ence implementation can be obtained from [44].

XOTcl is based on the object system of OTcl [41]. This
object system enables us to deWne objects, classes, and
meta-classes. Here, classes are special objects with the pur-
pose of managing other objects. In this context, “manag-
ing” means that a class controls the creation and
destruction of its instances and that it contains a repository
of methods accessible for the instances. Every object may
be enhanced with object-speciWc methods.

XOTcl supports single and multiple inheritance. All rela-
tionships in XOTcl, including class and superclass relation-
ships, are completely dynamic. Furthermore, XOTcl oVers
a rich introspection mechanism which allows to inquire
nearly all characteristics of XOTcl objects and classes at
runtime.

Through the superclass-relation classes are arranged in a
directed acyclic graph. XOTcl deWnes a linearized prece-
dence order for class and mixin hierarchies to avoid poten-
tial conXicts during the name resolution (for details see
Section 4.3).

In XOTcl every object (and class) may contain other
objects (or classes). Objects can be aggregated dynamically
by another object at runtime. An aggregation constitutes a
part-of-relationship between the corresponding objects.

4.2. XOTcl mixin classes

XOTcl mixin classes are a dynamic message interception
technique based on the general mixin concept. They allow
to deWne extension classes in addition to the inheritance
hierarchy of the target object a mixin is registered for. For
method resolution, mixin classes are searched prior to
searching the object’s class itself (and the corresponding
inheritance hierarchy). XOTcl supports both, per-object
mixins (POM) and per-class mixins (PCM), following the
generic semantics deWned in Section 3.

In XOTcl any “ordinary” class can be registered as a
mixin. This design is chosen because developers should not
have to learn new features of advanced constructs (such as
aspects, meta-classes, or meta-objects) to use mixins. Addi-
tionally, this also eases the composition of any existing (e.g.
third party) classes, because – provided that there are no
name conXicts on the classes – the classes can be composed
as mixins without modiWcation.

The predeWned instmixin3 method accepts a list of
classes to be registered as per-class mixins, whereas the
predeWned mixin method registers classes as per-object
mixins.

3 “instmixin” is a short form of “instance mixin”, meaning that a corre-
sponding mixin is applied for all instances of the class the mixin was regis-
tered for. XOTcl uses a similar naming convention for methods: a method
applying to all instances of a class is called “instproc”.

880 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
XOTcl mixins may be dynamically added and removed
at any time. To keep track of these dynamic relationships,
info instmixin and info mixin provide introspec-
tion functions for mixins. Thus, at runtime one can always
determine the current mixins of an object or class.

4.3. Method resolution order of class and mixin hierarchies in
XOTcl

The concepts introduced in Section 3 allow for the deW-
nition of type extensions for an object using mixins. An
important implementation facet, when realizing these con-
cepts, is how mixins aVect the method resolution order
deWned by the corresponding object-oriented language –
i.e., which methods of which classes are dispatched in what
order. In general, many solutions are possible and it is
advisable to use a solution that follows the method resolu-
tion rules of the respective object-oriented language as close
as possible so that developers can apply mixins in a natural
way without having to learn semantics that are signiWcantly
diVerent from the rest of the language.

In XOTcl, the method resolution order is given by a sim-
ple linearization of the class and mixin hierarchies that
apply for a certain object. Here, linearization means that
duplicates in the method resolution order are eliminated.
First, we illustrate this for ordinary class hierarchies and
subsequently for mixin classes.

Conceptually, all methods in XOTcl are mixin methods,
meaning that they can mix-in the next, same-named
method on the class-graph. Let us consider an example: in
Fig. 9, a method aMethod is dispatched, Wrst on the object
anObject,4 then on its class (here: AClass), and Wnally
on each of the corresponding superclasses (here: ASuper-
Class). Each method named aMethod that is found
somewhere in this method resolution order is executed. An
XOTcl code skeleton for this situation looks as follows:

Class ASuperClass

ASuperClass instproc aMethod args {
code of aMethod

ƒ
}
Class AClass -superclass ASuperClass

AClass instproc aMethod args {
code of aMethod

ƒ
}
instantiation of anObject
AClass create anObject

method invocation of aMethod
anObject aMethod

4 In XOTcl objects might have object-speciWc methods which is a spe-
cialty of the XOTcl object system. For completeness, we show “methods
deWned on the particular object” in the method resolution order diagrams
(see also Fig. 10), but this language feature is not relevant for realizing the
concepts presented in this paper.
We can model before, after, and around behavior of a
method call using the placement of the next command
within the source code. That means, code after the invoca-
tion of next is executed after the invocation of the next
same-named method (as shown in the example below), and
code before the execution of next is executed before the
invocation of the next same-named method. Before and
after code is implemented as a variant of around behavior
(as also provided in CLOS [3] or AspectJ [20] for example).
When omitting next, the originally called method is the
only method that is executed – i.e., the method call is not
forwarded along the method resolution order. The follow-
ing code is a skeleton of an XOTcl method with next:

AClass instproc aMethod args {
instructions before ‘next’
(might be omitted)
ƒ
invocation of ‘next’
(might be omitted)
next

instructions after ‘next’
(might be omitted)
ƒ

}

XOTcl’s per-object and per-class mixins use the next
command to forward messages to the mixin chain that is
registered for a particular object and to Wnally pass it to the
“original” class hierarchy the object was instantiated from.
For instance, we can deWne two classes POM_1 and POM_2
(POM_1 and POM_2 are ordinary classes):

Class POM_1
POM_1 instproc aMethod args {ƒ}
Class POM_2
POM_2 instproc aMethod args {ƒ}

In XOTcl, any class may be assigned the role to act as a
mixin class (simply by registration as a mixin class). For
instance, we can register these classes as per-object mixins
for the object anObject. This means that only this

Fig. 9. Method resolution order for an invocation.

method
invocation

(of aMethod)

AClass

aMethod

anObject

ASuperClass

aMethod

 next

 next instance-of

 superclass

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 881
particular object is extended with the functionality of the
two mixin classes:

anObject mixin {POM_1 POM_2}

In contrast to a per-object mixin (as motivated above), a
per-class mixin operates on all instances of a class and all
instances of its subclasses. For example, the following invo-
cation registers two ordinary classes PCM_1 and PCM_2
dynamically for all instances of ASuperClass (which
means that they are also applied for anObject which is an
instance of AClass – see Fig. 10):

ASuperClass instmixin {PCM_1 PCM_2}

To avoid conXicts, XOTcl applies an unambiguous
method resolution order: before the class hierarchy of an
object is searched, XOTcl searches the mixins that are regis-
tered for this particular object. Moreover, per-object mixins
are applied before per-class mixins (see Figs. 10 and 11).
Subsequent to the mixins, the object’s own heritage is
searched in the following order: object, class, and super-
classes (mixins are applied in the same order). All classes
(mixins and ordinary classes) in the method resolution
order are linearized, and each class may only appear once
on a method resolution order because duplicates are elimi-
nated. If a class can be reached more than once, the last
occurrence in the linearized list is used.

Each time this method resolution order is used in a
method invocation, the method resolution order is searched
for the Wrst implementation of the respective method. This
particular implementation is then invoked by XOTcl’s mes-
sage dispatcher. Moreover, if this implementation invokes
next, the next occurrence of this particular method is
searched and mixed into the current invocation, and so on.

The registration lists of mixin classes are “order-sensi-
tive”, i.e., the order of the mixin classes determines the result-
ing method resolution order. Fig. 11 depicts the method
resolution order for an invocation of a method called
aMethod on an object anObject (using the example mixin
registrations from above). The mixins POM_1, POM_2,
PCM_1, and PCM_2 can be reached from anObject, as well
as its class AClass and the superclass ASuperClass.

4.4. Transitive mixin chains in XOTcl

As explained in Section 3, transitive mixin chains can be
applied to deWne a mixin composition. For example,
Fig. 10. Method resolution order in XOTcl.

Method resolution order

Methods defined on associated
Per-Object Mixins (POMs)

Methods defined on associated
Per-Class Mixins (PCMs)

Methods defined on the object’s
Class / Class Hierarchy

Methods defined on
the particularObject
Fig. 11. Method resolution order with per-object and per-class mixins.

per-object-mixin

 instance-of

per-object-mixin

 superclass

ASuperClass

AClass

anObject

PCM_1

aMethod

PCM_2

aMethod

POM_2

aMethod

POM_1

aMethod

 per-class-mixin

anObject

Per-Class Mixins Class / Class HierarchyObjectPer-Object Mixins

Method resolution order

POM_2POM_1 PCM_2PCM_1 AClass ASuperClass

 per-class-mixin

882 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
consider a situation where we would like to conWgure the
composition of a per-class mixin PCM_2 with a facet imple-
mented in a class TMix_1,5 while the original composition
of mixins should stay unaVected. Moreover, TMix_1 itself
should be reWned by another mixin TMix_2 (see Fig. 12).

In XOTcl this is solved by adding the corresponding per-
class mixins to the method resolution order of the aVected
object. This means that all per-class mixins of the mixin
itself (and their superclasses) are searched before the
method resolution order proceeds to the next mixin, result-
ing in a transitive mixin chain (see also Fig. 12). This scheme
is applied recursively, because mixins might themselves
have per-class mixins, which again might have per-class
mixins, and so on.

In a transitive mixin chain the original target object of a
method invocation – in XOTcl referred to as self – does
not change. This means that a referral to self from any
mixin contained in a speciWc transitive mixin chain refers to
the target object of the original method invocation (for the
example shown in Fig. 12 self would always refer to
anObject).

Fig. 12 also shows the method resolution order resulting
from a aMethod invocation to an object anObject which
has two mixins (PCM_1 and PCM_2) registered as per-class
mixins on its class AClass. Moreover, the per-class mixin
PCM_2 has itself a per-class mixin TMix_1, and TMix_1 is
again extended with another per-class mixin TMix_2.

5 We use “TMix” as an abbreviation for “transitive mixin” in this exam-
ple.
4.5. Transitive mixin delegation in XOTcl

To realize transitive mixin delegation, per-object mixins
are used. As explained in Section 3, transitive mixin delega-
tion is applied when the self reference should change in
case a per-object mixin is applied. In XOTcl, this is solved
by delegating the mixin invocation to the class object of the
respective per-object mixin. Classes in XOTcl are objects
with all object-speciWc characteristics (see also [29]). Thus,
at runtime, a class can be treated as an instance (i.e., as an
individual object). Class objects are deWned using a special
type of class, a so-called meta-class. In XOTcl, all objects
need to have a class. A meta-class is a special kind of class
whose instances are (ordinary) classes.

Meta-classes (see also [12]) are only one of many possi-
ble concepts to deWne the properties of classes. Other con-
cepts that might be used equivalently are meta-object
protocols (MOPs) [19], aspect-oriented programming [21],
or patterns like Object System Layer [14] or Type Object
[18]. To fully realize the concept of transitive mixin delega-
tion, we still need to enable the transitive application of the
mixin delegation relationship for the respective target
object. For instance, in Fig. 13, the per-object mixin rela-
tionship of a class Mix2 to a class Mix1 refers to the corre-
sponding target Mix1 only, and not to the object
anObject. Thus, in the example in Fig. 13, an invocation
to anObject is intercepted and automatically forwarded
to Mix1, however it is not transitively sent to Mix2.

We solve this problem using a simple and automatically
generated delegator method. This delegator method realizes
Fig. 12. Example of transitive per-class mixins.

anObject

AClass

aMethod

TMix_1

aMethod

TMix_2

aMethod

PCM_2

aMethod

 instance-of

 per-class-mixin

PCM_1

aMethod

 per-class-mixin

Method resolution order

PCM_2TMix_1TMix_2PCM_1 anObject AClass

Per-Class Mixins Class / Class HierarchyObjectPer-Object Mixins

 per-class-mixin

 per-class-mixin

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 883
the transitive_mixin_delegation relationship as deWned in
Section 3.3. The resulting delegation behavior is deWned by
the meta-class.

Fig. 14 depicts the method resolution order resulting
from the object-speciWc transitive mixin delegation in
more detail. In order to forward a call of aMethod
invoked on anObject from class Mix_1 to its per-object
mixin Mix_2 (or to another transitive mixin), we need to
invoke a corresponding method in Mix_1 which is again
forwarded along its own linearized method resolution
order. Therefore, each mixin class (Mix_1 , ƒ , Mix_n)
implements a delegator method for aMethod (or for any
other method which should be forwarded during the
method resolution using next). This delegator method
simply forwards the call to the meta-class (which imple-
ments the respective method).

To realize this concept in XOTcl we deWne, in a Wrst step,
a meta-class (in XOTcl this is done by specifying Class as
superclass) and implement aMethod on this class:

Class Mix1_Meta -superclass Class
Mix1_Meta instproc aMethod args {

code of aMethod
ƒ

}
The methods implemented on a meta-class deWne the

methods applicable on all individual classes that are instan-
tiated from this meta-class. We automatically generate a
delegator method on the mixin classes (i.e., the meta-class’
instances) for each method of the meta-class that should be
(transitively) available to the objects which are associated
with the respective mixin classes at runtime. Typically this
is done in the constructor of the meta-class. The following
code snippet contains a meta-class constructor (the init
method) of the Mix1_Meta class that generates a delegator
method aMethod:

Mix1_Meta instproc init args {
next

[self] instproc aMethod args {
eval [self class] aMethod $args
return [next]

}
}

When instantiating Mix1_Meta the [self] call in
[self] instproc aMethod args is replaced with the
name of the new Mix_1Meta instance (see also Fig. 14).
Within the delegator method, the [self class] call is
replaced at runtime with the name of the mixin class
instance. That means, when aMethod is invoked on anOb-
ject, the invocation is intercepted by the delegator
method on Mix_1 which then invokes the implementation
on Mix_1’s class that is deWned in Mix1_Meta.

At this point, the scheme described above gets automati-
cally applied in a transitive fashion: before the invocation
of aMethod is executed for Mix_1, all per-object mixins of
Mix_1 are invoked. As the same scheme is executed on
Mix_2, Mix_3, and so on (see Fig. 14), a call of aMethod
on anObject automatically invokes all (direct and transi-
tive) per-object mixins associated with anObject.

Even though this recursive scheme might look quite com-
plex at Wrst glance, the use of this mechanism is relatively sim-
ple (see the case study in Section 5.2 for instance). The
developer only has to deWne the delegator method template.

Fig. 15 shows an example of the typical developer per-
spective on transitive mixin delegation. A number of arbi-
trary class hierarchies can be composed, and all inter-class
hierarchy composition issues are automatically handled
using transitive mixin delegation in conjunction with the
next mechanism. In particular, this means the program-
mer is released from implementing a method/mixin lookup
procedure on her own. Fig. 15 shows a characteristic exam-
ple of a resulting method resolution order. In this example,
an aMethod invocation is forwarded from Mix_1 to the
last mixin class in the transitive mixin chain (here: Mix_n).
Subsequently, the respective invocation follows the method
resolution order shown in Fig. 15 before it Wnally reaches
aMethod provided through AClass.

5. Case studies

5.1. Transitive mixin chains: conWguring a persistent storage

In XOTcl, every object can be made persistent using a
simple API. In essence, this persistence property is added
using a mixin class. For instance, the following code adds
the eager persistence strategy to an object (here “eager”
means that changes of variable values are directly written
Fig. 13. Per-object mixins which are themselves conWgured using per-object mixins.

anObject

 instance_of instance_of

 per-object-mixin per-object-mixinMix_2 Mix_1

Mix1_Meta

 instance_of

AClassMix2_Meta

884 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
into the persistence store. XOTcl also implements a lazy
persistence strategy):

anObject mixin PersistentEager

Using a per-class mixin we can add the same functional-
ity to a class. Thus, the persistence mixin is applied for all
instances of that class, for instance:

AClass instmixin PersistentEager

However, in this situation we face the problem that the
persistence relationship needs to be further conWgured and
reWned: the persistence storage type has to be chosen and its
functionalities need to be accessed. In XOTcl, multiple stor-
age types are supported (a GDBM database, an SDBM
database, a memory storage, and a plain Wle storage). All
these storages can be accessed using a uniWed storage inter-
face.

Thus, to access these storages from anObject or
instances of AClass (which have the persistence logic
mixed in using the per-class mixin on AClass), we only
require the additional storage functionalities. This con-
Wguration is a stateless conWguration that just adds the
storage type behavior. That is, even though there might
be multiple objects and classes that are made persistent,
Fig. 14. Method resolution order for transitive mixin delegation.

...

...

 instance-of instance-of

 per-object-mixin per-object-mixin

 instance-of

aMethod

Mix2_Meta

 pom

 instance-of instance-of

aMethod

Mixn_Meta

aMethod

Mix_n

aMethod

Mix1_Meta

aMethod

Mix_2

aMethod

Mix_1

Method resolution order for "anObject"

anObject AClass

PCMs Class / Class HierarchyObjectPOMs

Mix_1 ---

Method resolution order for "Mix_1"

Mix_1 Mix1_Meta

PCMs Class / Class HierarchyObjectPOMs

Mix_2 ---

 instance-of

aMethod

Mixn-1_Meta

aMethod

Mix_n-1 pom
anObject

AClass

. . .

Method resolution order for "Mix_n-1"

Mix_n-1 Mixn-1_Meta

PCMs Class / Class HierarchyObjectPOMs

Mix_n ---

Method resolution order for "Mix_n"

Mix_n Mixn_Meta

PCMs Class / Class HierarchyObjectPOMs

--- ---

transitive
mixin delegation

transitive
mixin delegation

transitive
mixin delegation

transitive
mixin delegation

 per-object-mixin

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 885
usually all objects should be written into the same (type
of) persistence store. In such cases, it is tedious to conWg-
ure each object and class on its own. Instead, we can use
the transitive mixin chain feature and conWgure the
PersistentEager strategy with a certain storage
type:

PersistentEager instmixin StorageGdbm

Now all objects are made persistent (using the eager
strategy) and are written into a GDBM persistence store.

A strength of this approach is that it is still possible to
further conWgure and reWne persistence for individual
objects if needed by an application. We can for instance
conWgure the two mixin compositions above individually,
by registering persistence as a second mixin.

anObject mixin StorageGdbm

ƒ
AClass instmixin StorageMem

The central beneWt of using transitive mixin chains for
persistence storage conWguration is the increased Xexibility
without compromising reuse or simplicity. Just consider the
eight example conWgurations in Fig. 16, which all can be
easily conWgured, without changes to any of the respective
classes (these eight examples are shown for demonstration
purposes and do not show all possible conWgurations). In
diVerent design situations, each of these conWgurations
makes sense:

1. One speciWc object is made persistent with the eager
strategy, using the GDBM storage.

2. One speciWc object is made persistent with the eager
strategy, and all objects associated with the eager strat-
egy are written to a GDBM storage.

3. All instances of a class are made persistent with the eager
strategy using the GDBM storage.

4. All instances of a class are made persistent with the eager
strategy, and all objects written eagerly are written to a
GDBM storage.
5. One speciWc object is made persistent with the eager
strategy, and all instances of that class, if they are made
persistent, are written to the GDBM storage.

6. All instances of a class are made persistent with the eager
strategy. The storage is conWgured object-speciWcally: for
the example object GDBM is chosen.

7. All instances of a class are made persistent and written
to the GDBM storage. All instances written to the
GDBM storage are written eagerly.

8. One speciWc object is made persistent and written to the
GDBM storage. All instances written to the GDBM
storage are written eagerly.

Using transitive mixin chains the deWnition of other per-
sistence conWgurations simply results in a diVerent mixin
registration, whereas in many other approaches, some of
these variants would mean that internal changes are
required to some of the classes. This is just a simple exam-
ple with two mixins realizing one concern, persistence, con-
Wgured on one object and one class. The transitive mixin
chain works equally well for more behavioral concerns real-
ized by a bigger number of mixins and applied for more
complex hierarchies of classes and on arbitrary numbers of
objects.

In the persistence example, ordering of the mixin classes
does not matter. If the order of mixin classes matters (i.e.,
with respect to the example: whether PersistenceEa-
ger or StorageGDBM is applied Wrst), then not all exam-
ple conWgurations are exchangeable, because they yield
diVerent orders of the two mixins. In general, it is a strength
of the transitive mixin chain approach that ordering can be
controlled by the developer, if this is required.

5.2. Transitive mixin delegation: implementing the xoRBAC
component

xoRBAC [27,28] is a software component that provides
a role-based access control (RBAC) service. xoRBAC is
implemented in XOTcl and, among other things, uses per-
object mixins to implement the checkAccess method
which renders xoRBAC access control decisions. We have
Fig. 15. Method resolution order for transitive mixin delegation with multiple mixin hierarchies.

anObject

instance-of

per-object-mixin

method
invocation

(of myMethod)

pom interception

Mix_n

aMethod per-object-mixinper-object-mixin

AClass

aMethod

Mix_1

aMethod

Mix_2

aMethod

transitive
mixin delegation

transitive
mixin delegation

886 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
applied the transitive mixin delegation feature of XOTcl to
facilitate the implementation of role-, permission-, and con-
straint-lookup procedures.

Fig. 17 depicts the high-level relations between xoR-
BAC objects: permissions are assigned to roles, roles are
assigned to subjects, and roles may be arranged in a
role-hierarchy (a directed acyclic graph). Furthermore,
xoRBAC allows for the deWnition of context constraints
[37]. A context constraint speciWes a number of
conditions that must hold simultaneously to grant a
certain access request. On the implementation level, we
use per-object mixins to associate subjects with roles,
roles with permissions, and permissions with context
constraints.

An example for the method resolution order of a
checkAccess call is shown in Fig. 18. Here, permission1
Fig. 16. Example conWgurations of two persistence mixin classes.

 per-class-mixin

per-object-mixin

StorageGDBM

PersistenceEager

 instance-of

anObject

AClass

per-object-mixin
 instance-of

per-object-mixin

anObject

StorageGDBM

PersistenceEager

AClass

 instance-of

anObject

PersistenceEager

 per-class-mixin
AClass

per-object-mixinStorageGDBM

 instance-of

anObject

StorageGDBM

 per-class-mixin
AClass

per-object-mixinPersistenceEager

 instance-of

anObject

PersistenceEager

StorageGDBM

 per-class-mixin

 per-class-mixin
AClass

 instance-of

anObject

AClass

 per-class-mixin

 per-class-mixin

PersistenceEager

StorageGDBM

1 2

3 4

5 6

7 8

 instance-of

anObject

PersistenceEager

StorageGDBM
 per-class-mixin

 per-class-mixin
AClass

 per-class-mixin

per-object-mixinStorageGDBM

PersistenceEager

 instance-of

anObject

AClass

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 887
is assigned to role1, and role1 is assigned to subject1.
Moreover, permission1 is linked to two context con-
straints constraint1 and constraint2. Regarding the
checkAccess method, the instances of Role and Per-
mission (and ContextConstraint) form a Chain of
Responsibility [13]. Thus, a checkAccess call is passed
via the method resolution order until a Permission
object declares itself responsible and grants the access
request by returning true. If, however, the respective per-
mission is associated with one or more context constraints
(as in Fig. 18 for example), the permission must check its
context constraints Wrst. In other words, to grant a certain
access request it is not suYcient for a subject to own a cor-
responding permission, but, at the same time, all context
constraints associated with this permission must be ful-
Wlled.

We chose transitive mixin delegation to associate context
constraints with permissions, permissions with roles, and
roles with subjects. The source code for the automatic gener-
ation of the checkAccess delegator method for Role
objects is shown below. An access request is represented by
the triple �Subject, Operation, Object� which again is repre-
sented through the su op ob parameters passed to the
checkAccess method (the source code of the respective
delegator method for Permission objects is quite similar,
while context constraints, in contrast, return false if the
constraint is violated and forward the call using next
instead of returning true if the constraint is fulWlled).
Fig. 17. High-level relations between xoRBAC objects.

* *1.. **1..**1..
 assigned to assigned to linked to PermissionSubject Role

* *

 Hierarchy

Context
Constraint
Fig. 18. Method resolution order for the call of checkAccess.

 instance-of instance-of

 per-object-mixin per-object-mixin

 instance-of

checkAccess

constraint1
subject1

 per-object-mixin

checkAccess

permission1

checkAccess

role1

 instance-of

checkAccess

Permission

checkAccess

Role Subject

checkAccess

checkAccess

constraint2

checkAccess

ContextConstraint

 per-object-mixin

Method resolution order for "subject1"

subject1 Subject

PCMs Class / Class HierarchyObjectPOMs

role1 ---

Method resolution order for "permission1"

Permssion

PCMs Class / Class HierarchyObjectPOMs

---constraint2 permission1constraint1

Method resolution order for "role1"

role1 Role

PCMs Class / Class HierarchyObjectPOMs

permission1 ---

transitive
mixin delegation

transitive
mixin delegation

 instance-of

888 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
Role instproc init args {
next

[self] instproc checkAccess {su op ob} {
if {[[self class] checkAccess E

$su $op $ob]} {
 return 1
}else {
 return [next]
}

}
}

Fig. 19 shows a sequence diagram for the return of
false (checkAccess returns false if the correspond-
ing access request cannot be granted). The sequence dia-
gram thus provides an alternative view of the action and
event sequence resulting from a checkAccess call (see
also Fig. 18).

Transitive mixin delegation oVers a number of advanta-
ges in this case. One of the most important beneWts is that
the unambiguous method resolution order of the check-
Access method always includes all roles, permissions, and
context constraints which are registered as per-object mix-
ins on a speciWc Subject (directly as well as transitively).
Thereby, xoRBAC does not need to implement separate
lookup-methods for roles, permissions, or context con-
straints. Rather, a checkAccess method invocation fol-
lows the method resolution order to automatically visit all
roles, permissions, and context constraints which are
(potentially) relevant to the corresponding access request.
6. Evaluation

Our approach has a number of unique properties, com-
pared to the other approaches discussed in Section 2. The
main contribution of our approach is a clear concept for
the transitive composition of mixins. This way we can
express extensions to a class, superclass, or mixin using one
and the same reusable programming technique: the transi-
tive mixin class. From a conceptual point of view, mixin
roles [40] and mixin layers [35] are heading to a similar
direction as they also provide some additional composition
mechanism using the mixin concept. However, the realiza-
tion using static C++ templates is completely diVerent and
not well suited for expressing dynamic mixin interdepen-
dencies.

Even though some approaches, such as AOP and role
concepts, can express class interdependencies quite well, it
is usually diYcult to apply these concepts transitively – like
for instance “an aspect of an aspect”. Aspects of aspects are
only realized by a few prototypes, such as Hyper/J or
EAOP. Our approach especially adds a clear precedence
order that helps to easier understand aspect interdependen-
cies. As aspects can be used to realize mixins, our concepts
for transitive mixin composition can also be used as a con-
cept to add transitivity to the other AOP approaches.

In a similar way, our approach can be used to extend
role concepts with the notion of transitivity. Kristensen and
Østerbye [23,24] have proposed a notion of “roles of roles”
before. Nevertheless, as explained in Section 2, in their
approach changes to clients are necessary to acquire the
pom interception
checkAccess

checkAccess

checkAccess

checkAccess

true
next

falsefalse

false
false

false
false

pom interception

false

checkAccess

pom interception

Transitive mixin delegation Transitive mixin delegation

role1 constraint1subject1 permission1 constraint2
Fig. 19. Sequence diagram of a checkAccess call for the return of false.

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 889
mixin behavior. Our approach, in contrast, transparently
composes transitive mixins. Thus, our approach is more
suited for unanticipated evolution and reuse.

A similar problem occurs in Zhao’s and Foster’s
approach [46]: manual forwarding through the Cascade
hierarchy is required to compose Cascade layers (see also
Section 2) to achieve the same eVect as oVered by our tran-
sitive mixin concepts. In our concept, automatic composi-
tion via the next-primitive and a linear precedence order are
supported.

Object Teams [17] support automated method forward-
ing for method bindings between a class and its roles. That
is, regarding transparent composition support, this concept
is closer to our transitive mixins than the mentioned role
approaches. However, Object Teams do not support transi-
tive roles.

Our approach introduces one and the same construct for
direct and transitive composition: the mixin class. Many of
the related approaches introduce diVerent constructs for
mixin (or, for example, aspect/role/meta-object) and class.
Thus, in our approach, developers only have to learn a sin-
gle language feature to perform all kinds of composition.
Only a few additional (implementation-dependent) facets
have to be understood. Any class can be used as a mixin
class through registration – without further modiWcation of
that class. This is supported by an automatic forwarding
mechanism that also handles type conversions and argu-
ment passing transparently, the method resolution order.
This results in a simple, unambiguous ordering scheme.

In AOP approaches, like AspectJ or JBoss AOP, mixins
often need to be introduced as inter-type declarations. In
contrast, our approach directly applies mixins as message
interceptors (see also Section 4). As virtually all aspect com-
position frameworks support some kind of message inter-
ceptor (see [42] for a discussion) and some automatic
forwarding mechanism (such as AspectJ’s “proceed” [20]
for instance), mixin classes can be realized using most AOP
approaches with moderate eVorts.

A major composition problem in many AOP approaches
is the so-called fragile pointcut problem [22]. Many point-
cuts have dependencies into the base program. Hence sim-
ple changes like renaming a method in the base program
can break the pointcut. This problem is only a minor prob-
lem in our prototype, because we use explicit mixin registra-
tion on classes. Hence there is a direct relation between the
mixin class and the base program that it extends. Only
changes to base class names or method names that are
intercepted by the mixin can potentially be the cause of a
fragile mixin composition. In most cases, such a change
directly causes an error (and can thereby easily be detected).
If AOP approaches are used to implement our approach,
however, fragile pointcuts might cause massive debugging
problems, because transitive mixin composition leads to
complex aspect interdependencies which might get hard to
understand and trace if arbitrary pointcuts can be used.
Our solution in the Frag prototype [44,45], which uses
AspectJ to compose Frag mixin classes with Java base clas-
ses, is to use only simple, explicit pointcuts that are limited
to the expressive power of mixin registration (see [43] for
details). To ensure that this limitation is not violated by
developers, it is advisable to use a program generator to
automatically create the pointcuts.

In contrast to the model used in more dynamic object-
oriented environments, such as CLOS, Smalltalk, or Self, as
well as in programming techniques such as reXection, MOP,
or meta-classes, transitive mixins provide a Wrst-class entity
for expressing the interdependencies of mixins. Method
invocations on mixins are always resolved in an unambigu-
ous, linear method resolution order – instead of a complex
graph of meta-objects or other delegators with diVerent
responsibilities. Our mixins provide a very simple interface
allowing for registration and introspection of mixins only.
Thus, compared to more complex approaches such as
MOPs they are very simple.

When conWguring elements of an object-oriented soft-
ware system, it is often not enough to provide conWgura-
tion options on a per-class level. Many object-oriented
adaptation techniques, however, perform adaptations on
a per-class level only, making it cumbersome to apply
these techniques for object-speciWc composition. On the
other hand, when class-speciWc composition is required,
having only an object-speciWc conWguration option is
tedious as well. Thus, our approach supports both vari-
ants: it can be applied using per-object and per-class
mixins.

Some of the approaches discussed in Section 2 are static
composition techniques meaning that the core composition
mechanism cannot be used for dynamic composition. For
instance, AOP approaches, like AspectJ or JBoss AOP,
focus on static adaptation techniques. Therefore, in con-
trast to our approach, they cannot be directly applied for
runtime changes of the aspect conWguration. There are
some workarounds to these problems (for instance, aspects
that can be turned on and oV using thisJoinPoint in
AspectJ), but these are hand-built solutions that are not
optimized for performance and without further composi-
tion support. This problem is resolved by dynamic AOP
approaches. Our concept of transitive mixins can be applied
in both a static as well as in a dynamic fashion, yet our
examples (and prototype implementation) are focused on
dynamic mixin conWguration. The dynamic AOP
approaches are closer to the examples in this paper than
more static approaches like AspectJ. To implement our
concepts on top of an AOP framework, it is thus advisable
to reuse a dynamic AOP framework if possible, because this
allows for the reuse of existing dynamic aspect composition
means.

A sub-problem of dynamic composition is the dynamic
ordering of aspects, which might be needed in some appli-
cation scenarios. Mixin classes are dynamically composed
and the order can be provided at runtime as a mixin list.
Our mixin class concepts can also be used as a simple and
intuitive conceptual foundation to add dynamics to static
approaches.

890 U. Zdun et al. / Information and Software Technology 49 (2007) 871–891
Nevertheless, our approach is not limited to languages
and environments that support mixins. The mixin con-
cept is a rather simple extension of the basic object-ori-
ented type concept and similar concepts can be found in
many other adaptation techniques, such as aspect-ori-
ented programming, meta-object protocols, roles, mes-
sage interceptors, interpreters, virtual machines, etc.
Therefore, our approach can be applied on top of those
other approaches and usually reuse large parts of their
implementation.

In our proof-of-concept implementation we describe the
dynamic mixin classes of XOTcl. If dynamic composition is
not required (i.e., if compile time or load time approaches
are suYcient), the concepts presented in this paper can also
be implemented using static mixin approaches. All imple-
mentation approaches for static mixins support some of the
properties of transitive mixin classes. Essentially, to imple-
ment our concepts using one of these approaches, it is nec-
essary to generate delegator methods to simulate the
transitive “next” behavior and automatic forwarding
(including type conversions, parameter adaptation, etc.).
For programming languages without support for dynamic
method generation, such as Java, many code generators
exist that ease this task.

Even though our approach is easy to use and simple
from a developer’s perspective, the internal use of meta-
classes and interceptors is far from being simple (as the dis-
cussion in Section 4 indicates). Thus, implementing our
approach completely from scratch for another program-
ming language or framework requires some eVort that
might be too much an eVort for a small project.

Runtime composition techniques always impose an
overhead in terms of runtime performance (for dynamic
indirections). Even though XOTcl message interceptors are
optimized for performance, they should not be applied for
problems that do not require dynamic adaptations. Here,
static techniques usually have a superior performance.
However, this is, of course, only a potential drawback of
our prototype implementation, not of the transitive mixin
concepts in general.

7. Conclusion

In this paper, we have presented a practical approach to
model mixin interdependencies. By applying mixin classes
transitively, we are able to use the concept of mixin classes
to deWne composition relationships of ordinary classes and
mixins. Problems similar to the problem to deWne “mixins
of mixins” are present in many other composition
approaches as well – such as in aspect-oriented program-
ming, meta-object protocols, roles, message interceptors
etc. Hence, there is a broad applicability of the transitive
mixin approach. The mixin concept is a rather simple exten-
sion to the basic type concepts of object-oriented lan-
guages, and is thus well suited to explore the problems of
class relationships and interdependencies generally and
conceptually – apart from the implementation details of the
other composition approaches. We did two proof-of-con-
cept implementations, XOTcl and Frag, which are both
available as open source.

Moreover, our mixin concepts have been successfully
applied in a number of projects (including the two case
studies presented in this paper). As future work, we plan to
implement the concepts as an extension of an existing AOP
framework. In this paper, we focused on the extension of
programming frameworks or languages by transitive mixin
classes. As further work we also plan to provide modeling
support for the concepts presented in this paper, for
instance using a UML 2 extension.

References

[1] A. Albano, R. Bergamini, G. Ghelli, R. Orsini, An Object Data Model
with Roles, in: Proceedings of the 19th International Conference on Very
Large Data Bases (VLDB), Morgan Kaufmann Publishers Inc., 1993.

[2] L. Bettini, S. Capecchi, B. Venneri, Extending Java to dynamic object
behaviors, in: Proceedings of the Workshop on Object-Oriented
Developments (WOOD), Electronic Notes in Theoretical Computer
Science (ENTCS), vol. 82, 2003.

[3] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales,
D.A. Moon, Common Lisp Object System SpeciWcation, ACM SIG-
Plan Notices 23 (SI) (1988).

[4] C. Bockisch, M. Haupt, M. Mezini, K. Ostermann, Virtual Machine
Support for Dynamic Join Points, in: Proceedings of the International
Conference on Aspect-Oriented Software Development (AOSD),
ACM Press, 2004.

[5] G. Bracha, W. Cook, Mixin-based inheritance, in: Proceedings of the
Conference on Object Oriented Programming Systems, Languages,
and Applications (OOPSLA), Proceedings of the European Confer-
ence on Object-oriented Programming (ECOOP), 1990.

[6] G. Bracha, G. Lindstrom, Modularity meets inheritance, in: Proceed-
ings of IEEE International Conference on Computer Languages, 1992.

[7] B. Burke, JBoss Aspect Oriented Programming, <http://
labs.jboss.com/portal/jbossaop/>, 2006.

[8] W.R. Cook, W. Hill, P.S. Canning, Inheritance is not subtyping, in:
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), 1990.

[9] M. DeJong, S. Redman, The Tcl/Java Project, <http://tcljava.source-
forge.net/>, 2006.

[10] R. Douence, M. Suedholt, A model and a tool for Event-based
Aspect-Oriented Programming (EAOP). TR 02/11/INFO, Ecole des
Mines de Nantes, french version accepted at LMO’03, second ed.,
December 2002.

[11] M. Flatt, S. Krishnamurthi, M. Felleisen, Classes and mixins, in: Pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), January 1998.

[12] I.R. Forman, S.H. Danforth, Putting Metaclasses to Work – A new
Dimension to Object-Oriented Programming, Addison-Wesley, 1999.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[14] M. Goedicke, G. Neumann, U. Zdun, Object system layer, in: Pro-
ceedings of the European Conference on Pattern Languages of Pro-
grams (EuroPlop), July 2000.

[15] A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison-Wes-
ley Longman Publishing, 1989.

[16] G. Gottlob, M. SchreX, B. Röck, Extending object-oriented systems
with roles, ACM Transactions on Information Systems 14 (3) (1996).

[17] S. Herrmann, Sustainable architectures by combining Xexibility and
strictness in Object Teams, IEE Proceedings Software 151 (2) (2004).

[18] R. Johnson, B. Woolf, Type object, in: R. Martin, D. Riehle, F. Busch-
mann (Eds.), Pattern Languages of Program Design 3, Addison-Wes-
ley, 1998.

http://labs.jboss.com/portal/jbossaop
http://labs.jboss.com/portal/jbossaop
http://labs.jboss.com/portal/jbossaop
http://tcljava.sourceforge.net
http://tcljava.sourceforge.net
http://tcljava.sourceforge.net

U. Zdun et al. / Information and Software Technology 49 (2007) 871–891 891
[19] G. Kiczales, J. des Rivieres, D. Bobrow, The Art of the Metaobject
Protocol, MIT Press, 1991.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G. Gris-
wold, Getting started with AspectJ, Communications of the ACM 44
(10) (2001).

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M.
Loingtier, J. Irwin, Aspect-oriented programming, in: Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP), Lecture Notes in Computer Science (LNCS), vol. 1241,
Springer-Verlag, June 1997.

[22] C. Koppen, M. Störzer, PCDiV: attacking the fragile pointcut prob-
lem, in: Proceedings of the European Interactive Workshop on
Aspects in Software (EIWAS), September 2004.

[23] B. Kristensen, Object-Oriented Modeling with Roles, in: Proceedings
of the International Conference on Object-Oriented Information Sys-
tems, Springer-Verlag, 1996.

[24] B. Kristensen, K. Østerbye, Roles: conceptual abstraction theory & prac-
tical language issues, Theory and Practice of Object Systems 2 (3) (1996).

[25] P. Maes, Concepts and experiments in computational reXection,
ACM SIGPLAN Notices 22 (12) (1987).

[26] D. Moon, Object-oriented programming with Xavors, in: Proceedings
of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), SIGPLAN Notices, vol. 21,
Portland, November 1986.

[27] G. Neumann, M. Strembeck, Design and implementation of a Xexible
RBAC-service in an object-oriented scripting language, in: Proceed-
ings of the 8th ACM Conference on Computer and Communications
Security (CCS), November 2001.

[28] G. Neumann, M. Strembeck, An approach to engineer and enforce
context constraints in an RBAC environment, in: Proceedings of the
8th ACM Symposium on Access Control Models and Technologies
(SACMAT), June 2003.

[29] G. Neumann, U. Zdun, XOTcl, an object-oriented scripting language,
in: Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Feb-
ruary 2000.

[30] G. Neumann, U. Zdun, XOTcl Homepage, <http://www.xotcl.org/>,
2006.

[31] J.K. Ousterhout, Tcl: an embeddable command language, in: Proceed-
ings of the 1990 Winter USENIX Conference, January 1990.

[32] B. Pernici, Objects with Roles, in: Proceedings of the Conference on
OYce Information Systems, ACM Press, 1990.
[33] A. Popovici, T. Gross, G. Alonso, Just in time aspects: eYcient dynamic
weaving for Java, in: Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), ACM Press, 2003.

[34] N. Schärli, S. Ducasse, O. Nierstrasz, A. Black, Traits: composable
units of behavior, in: Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), Lecture Notes in Com-
puter Science (LNCS), vol. 2743, Springer-Verlag, 2003.

[35] Y. Smaragdakis, D. Batory, Implementing layered designs with mixin
layers, in: Proceedings of the European Conference on Object-Ori-
ented Programming (ECOOP), Lecture Notes in Computer Science
(LNCS), vol. 1445, Springer-Verlag, 1998.

[36] B. Smith, ReXection and semantics in lisp, in: Proceedings of the
ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL), January 1984.

[37] M. Strembeck, G. Neumann, An integrated approach to engineer and
enforce context constraints in RBAC environments, ACM Transac-
tions on Information and System Security (TISSEC) 7 (3) (2004).

[38] P. Tarr. Hyper/J, <http://www.research.ibm.com/hyperspace/HyperJ/
HyperJ.htm/>, 2006.

[39] D. Ungar, R.B. Smith, Self: the power of simplicity, in: Proceedings of
the Conference on Object Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), October 1987.

[40] M. VanHilst, D. Notkin, Using role components in implement
collaboration-based designs, in: Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 1996.

[41] D. Wetherall, C.J. Lindblad, Extending Tcl for dynamic object-ori-
ented programming, in: Proceedings of the USENIX Tcl/Tk Work-
shop, July 1995.

[42] U. Zdun, Pattern language for the design of aspect languages and
aspect composition frameworks, IEE Proceedings Software 151 (2)
(2004).

[43] U. Zdun, Using split objects for maintenance and reengineering tasks,
in: Proceedings of the European Conference on Software Mainte-
nance and Reengineering (CSMR), March 2004.

[44] U. Zdun, Frag, <http://frag.sourceforge.net/>, 2006.
[45] U. Zdun, Tailorable Language for behavioral composition and con-

Wguration of software components, Computer Languages, Systems
and Structures: An International Journal 32 (1) (2006).

[46] L. Zhao, T. Foster, Modeling roles with cascade, IEEE Software 16
(5) (1999).

http://www.xotcl.org/
http://www.xotcl.org/
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://frag.sourceforge.net/
http://frag.sourceforge.net/

	Object-based and class-based composition of transitive mixins
	Introduction
	Discussion of related work
	Transitive mixin classes: concepts
	Basic type relationships
	Declarative semantics of mixins and transitive mixin chains
	Declarative semantics of transitive mixin delegation
	A decision tree for the modeling of mixin composition

	Proof-of-concept implementation: transitive mixins in XOTcl
	Proof-of-concept implementation and XOTcl details
	XOTcl mixin classes
	Method resolution order of class and mixin hierarchies in XOTcl
	Transitive mixin chains in XOTcl
	Transitive mixin delegation in XOTcl

	Case studies
	Transitive mixin chains: configuring a persistent storage
	Transitive mixin delegation: implementing the xoRBAC component

	Evaluation
	Conclusion
	References

