

Structure of this Talk

- (Ē
- Motivation: Why Automated Coding?
- Latent Semantic Analysis
- Algorithm I: headcount
- Algorithm II: termcount
- Evaluation
- Conclusion & Future Agenda

- Increased deployment of qualitative methods in marketing
- But: decrease of in-depth interviews due to high costs
- But: qualitative research has advantages: not feeding analysts expectations so much, open ended, spontaneous associations
- Problem: High Human Resource Costs
- Problem: inherent subjectivity in manual coding:
 - More interviews = more errors
 - More coders = more errors

ì

Latent Semantic Analysis

- "Humans learn word meanings and how to combine them into passage meaning through experience with ~paragraph unitized verbal environments."
- "They don't remember all the separate words of a passage; they remember its overall gist or meaning."
- "LSA learns by 'reading' ~paragraph unitized texts that represent the environment."
- "It doesn't remember all the separate words of a text it; it remembers its overall gist or meaning."

(Landauer, 2007)

Ex Post Updating: Folding-In

- SVD factor stability
 - SVD calculates factors over a given text base
 - Different texts different factors
 - Challenge: avoid unwanted factor changes (e.g., bad essays)

 - Solution: folding-in of essays instead of recalculating
- SVD is computationally expensive
 - 14 seconds (300 docs textbase, this machine)
 - 10 minutes (3500 docs textbase, this machine)
 - ... and rising!

Algorithm II: Termcount

- Calculate latent-semantic space from answers
- Fold-in brand name
 e.g. ,Mercedes'
- Fold-in ,seed-terms' for coding construct
 e.g. ,secure safe stability'
- Measure distance between the two vectors = association strength (Pearson's product moment correlation coefficient)

te: $c \times b \mapsto \mathbb{R}$ te = cor (c, b)

Methodology

- Pseudo Experiment to evaluate validity
- External validation: machine findings against human analysis results
- Two real-life data sets:
 - Set 1: Austrian Mobile Phone Market (Marketmind, Soja Ehrenberger, Wolfgang Rejzlik)
 - Set 2: German & US Automobile Sector (for Mercedes, Andreas Strebinger)

- 969 Interviews conducted by MarketMind
- Open questions to activate brand associations:
 - "Which image do you perceive if you consider brand X?"
 "Please imagine brand Z. What do you associate?"

 - "What are your impressions and feelings you relate to brand Y?"
- Up to 10 short answers per interview
- Questions and answers in German
- Short answers (Ø: 103 chars, std. dev.: 61 chars, Ø: 14 words)

Data-Set 2: Automobile Sector

- 24 German interviews about brand ,Mercedes' in USA and Germany
- Each interview had ~ 64 questions
 "If I buy a Mercedes, I have a good feeling because . . . "
 - "Please characterise a typical Mercedes driver!"
 - "Please tell me three things you directly associate with Mercedes!"
- length: long answers (each interview 3500 to 11.500 words, Ø: ~ 3500 words)
- 1624 answers (for 1624 questions)

Results for Algorithm I

Brand	\mathcal{D}	Т	ρ	<i>p</i> -value
A1	0.5	0.6	0.52	0.000
One	0.5	0.6	0.51	0.000
T-Mobile	0.5	0.6	0.40	0.004
Drei	0.5	0.6	0.37	0.008
Tele Ring	0.5	0.6	0.36	0.012
A1	0.5	0.5	0.61	0.000
One	0.5	0.5	0.59	0.000
T-Mobile	0.5	0.5	0.35	0.014
Drei	0.5	0.5	0.46	0.001
Tele Ring	0.5	0.5	0.45	0.001
A1	0.3	0.5	0.55	0.000
One	0.3	0.5	0.52	0.000
T-Mobile	0.3	0.5	0.31	0.030
Drei	0.3	0.5	0.44	0.001
Tele Ring	0.3	0.5	0.37	0.009

D: share of cumulative singular values

- Dete

T: Threshold

8

- p: Spearman's rho
 highly significant
- => correlation with human judgement in a range slightly less than human-human
- interrater correlation
- Expl: TeleRing was very small data-set!

<section-header><section-header><section-header><figure><figure>

Conclusion & Future Work

- Acceptable Validity: near human results
- Eliminates coding subjectivity: High Reliability
- Proposal: headcount for large corpora, termcount for smaller and more lengthy ones
- Future work:
 - fine tuning
 - Test with more data-sets
 - Ease applicability through provision of a software package
 - Ease Coding Construct Exploration: interpretable similarity value! (association strength?)

	(E)
#eof.	

- Educated adult understands ~100,000 word forms
- An average sentence contains 20 tokens.
- Thus 100,000²⁰ possible combinations of words in a sentence
- ∴ maximum of log₂ 100,000²⁰
 = 332 bits in word choice alone.
- 20! = 2.4 x 10¹⁸ possible orders of 20 words
 = maximum of 61 bits from order of the words.
- 332/(61+ 332) = 84% word choice

(Landauer, 2007)

Parameter Settings

- Stopwords filtered
- Minimum word length = 2
- Share of .5/.4/.3 of the cumulative singular values
- No background corpus
- Pearson Correlation as similarity measure
- No weighting