
An Optimal Distributed Constraint Optimisation Algorithm
for Efficient Energy Management

Yoseba K. Penya
Department of Information Systems
Vienna University of Economics and

Business Administration, Austria.
yoseba.penya@wu-wien.ac.at

Nicholas R. Jennings
School of Electronics and Computer Science

University of Southampton
Southampton, UK.

nrj@ecs.soton.ac.uk

Gustaf Neumann
Department of Information Systems
Vienna University of Economics and

Business Administration, Austria.
gustaf.neumann@wu-wien.ac.at

Abstract

The deregulation of the electricity industry in Europe has
created a number of marketplaces in which producers and
consumers can operate in order to more effectively man-
age and meet their energy needs. To this end, in previous
work we introduced a new market design where consumers
market the supply of the energy they need in a number of
simultaneous reverse combinatorial auctions. To do this ef-
ficiently, each consumer needs to coordinate and optimise
the use of its various appliances to achieve the best possi-
ble consumption schedule according to the received bids.
In particular, this paper models each client’s constellation
of devices as a distributed constraint optimisation problem
(DCOP) and we develop a novel optimal algorithm (COBB
- Constraint Optimisation By Broadcasting) for solving it.
We also evaluate COBB, prove its optimality and show how
it outperforms other comparable algorithms.

1. Introduction

The deregulation of energy has changed the face of Eu-
ropean electricity markets. From the traditional national
monopolies has emerged a marketplace model where cus-
tomers can choose the providers that best fit their needs. In
this context, in [10] we redefined market relationships to
help clients and utility companies (UCs) benefit from the
new situation. The model we developed is based on a sys-
tem of simultaneous reverse combinatorial auctions that al-
low customers to drop the cost of their electricity consump-
tion and allows providers to foresee the demand they have
to cope with.

However, there is still an aspect of this solution that de-
mands more attention. In fact, we presented the general ar-
chitecture of the energy market and an algorithm to find an
optimal allocation according to the received bids and hourly
needs. But the system lacks a procedure that coordinates
these needs to provide an optimal (cheapest) solution. That
is, a method that brings a consumer’s appliances to work to-
gether in order to achieve the most convenient consumption
schema (on a per consumer basis). In this way, the algo-
rithm introduced in [10] would become thefitness(or util-
ity) function invoked in the system to evaluate each possible
global consumption schema.

Moreover, assessing one of these complete solutions
would be a trivial task if UCs bid by offering a simple tariff
(e.g. x e/Kilowattt from 8 to 9 am,y e/Kilowattt from 10
to 11 am, etc.). Yet in this case, UCs would lose the possi-
bility of predicting and controlling the demand by offering
discount for bundles (e.g. if you consume from 6 to 7 am
and from 10 to 11 pm, you get a10% discount). There-
fore, all members have to be integrated in the optimisation
process, since the individual decisions and acts affect the
outcome of the entire system because a single device con-
suming or not at a certain time may involve getting a dis-
count at another time. In other words, this is (yet) another
approach to the so-called scheduling problem, this time ap-
plied to energy management. The goal here is to optimise
the constraints that each device sets when consuming. The
optimal global consumption plan of the system (e.g. flat,
home or factory) is obtained when each device uses the en-
ergy in the cheapest possible time it cans. These character-
istics, together with the fact that the knowledge about each
device’s alternatives of consumption is local, leads us to set
out the problem as a distributed constraint one (DCP). DCPs



have been successfully applied to a wide range of problems,
from resource allocation in a communication network [1] to
distributed scheduling [13].

Further, our problem domain falls within the cate-
gory of DCPs, distributed constraint optimisation problems
(dCOP), where the constraint(s) can only beoptimised(in
opposition to those problems where they can besatisfied,
called distributed constraint satisfaction problems, dCSP).
Unfortunately, current optimal dCOP algorithms cannot be
applied to our problem domain. First, the existence of dis-
counts demands algorithms that work with complete solu-
tions (i.e each energy consuming task has certain time to be
executed). Second, supply-function bidding prevents lin-
earity in the solution space and therefore, heuristics can-
not be used (as explained in section /refevaluation). We ad-
dress both shortcomings in the novel dCOP algorithm Con-
straint Optimisation by Broadcasting (COBB), by combin-
ing a greedy tactic with broadcast (so all agents are involved
in deciding which is the new most promising solution to be
processed).

Against this background, this paper advances the state
of the art in two main ways. First, we introduce COBB, the
only existing optimal algorithm to solve the distributed con-
straint optimisation problem described above. Furthermore,
we prove COBB complete and optimal, and show how it
outperforms other comparable algorithms. Second, COBB
allows us to complete the description of a general market-
based framework to model and solve the energy manage-
ment problem in a more efficient way than another current
ones. The remainder of the paper is organised as follows:
section 2 describes our problem domain: the electricity mar-
ket. Section 3 presents the COBB algorithm and section 4
its evaluation. Finally, section 5 discusses related work and
section 6 draws our conclusions and the avenues of future
work.

2. Electricity Market Design

As explained in the introduction, the deregulation of Eu-
ropean electricity markets hat increased its competitiveness
and dynamism by introducing new players that increase the
offer. Solving such a system efficiently demands integrat-
ing the search of both optimal consumption schedule and
optimal suppliers’ allocation (this is, optimal auction clear-
ing: who supplies how much and when). The consumption
schedule should be adapted to take advantage of the most
convenient tariffs and the suppliers should be chosen taking
the consumption plan into account. Thus, both aspects are
interdependent. In this way, we dealt with the clearing of
the auction in ([10]) and hereby we explain how to achieve
an optimal consumption schedule. But first, let us describe
the features of the electricity market in which this optimisa-
tion must be performed.

A very simple application of the deregulation princi-
ple would allow to choose the UC with the cheapest tariff.
However, why choose one? There is no technical problem

on being supplied by more than one company simultane-
ously ([10]), so the election becomes a Knapsack (and thus,
NP-Hard) Problem ([4]): finding the best allocation ofx
Kilowatts of electricity among the different providers and
their tariffs.

Still, this model is just favourable for the customers,
transformed into auctioneers that sell their future consump-
tion to the highest bid (i.e. cheapest tariff). Combinatorial
auctions are those where bidding for a group of items is typ-
ically valued differently from bidding separately for each
of the constituent items. They maximise the revenue for
the auctioneer ([11] but also allow UCs to influence clients’
consuming behaviour. Bidding for a bundle (for instance,
consuming at 9 am butalsoconsuming at 11 pm is rewarded
with a 10% discount), encourages the client to shift part
of its consumption to 11 pm (off-peak and thus, favourable
for the UC). This is an extension of the traditional “expen-
sive day - cheap night” energy pricing system. Moreover,
giving a monolithic tariff (x e/Kilowattt from 6 to 7 am,
etc.) does not represent two very important dimensions for
UCs: the number of clients consuming simultaneously and
the quantity consumed by each one. This is, the price does
only approximately depend on how many clients consume
simultaneously (by setting peak prices higher). And, in
case it staggers the tariff according to the amount of energy
consumed, it expresses it in a coarse manner (by setting a
threshold above which it becomes more expensive). We try
to remove these shortcomings by allowing to bid with linear
supply functions ([12, 3, 10]). This policy helps consump-
tion be spread among many energy providers and therefore,
furthers away the risk of a blackout.

The disadvantage of this approach is the complexity of
clearing a combinatorial auction (i.e. finding the wining bid
or the amount allocated to each winner), increased by us-
ing supply function bidding. This problem has been tackled
in [2] with an algorithm that runs in polynomial time (but
is not guaranteed to find the optimal solution), in [3] with
an optimal algorithm, and in [10], a less complex optimal
clearing algorithm tailored to electricity supply functions.
Furthermore, it is not enough to find the optimal allocation
of one client’s consumption if her energy consumers, ap-
pliances or machines, cannot follow it. To this extent, de-
vices can be divided in three categories regarding whether
they can control their own consuming behaviour [9]:Ac-
tive, those who can adapt their consumption schedule (e.g.
a dishwasher that, switched on in the morning looks for the
cheapest time until the afternoon to wash the dishes),in-
formative, those who cannot control their consumption but
at least may issue a prognosis (e.g. a fridge that knows
how much energy will it need in the next hours to keep the
same temperature) andnon-informative, neither able to is-
sue prognoses nor to adapt their consumption schedule (e.g.
a vitroceramic hob that must start working on demand).
With these premises, the goal of this work is to bring active
devices to work together, take into account the prognoses
of informative devices, and achieve an optimal consump-



tion plan (meaning cheap for the customer and predictable
in beforehand for the UC).

3. The COBB Algorithm for Energy Manage-
ment

With this market design in mind, the next step is to de-
sign an optimal algorithm that finds the cheapest way to
consume the energy needed in the system. To this end,
we have chosen an architecture with two main parts. First,
the energy market involving customers and suppliers. The
arrangement of customers’ electricity supply from multiple
UCs should be achieved by having contracts that specify
the provision of an amount of energy for a certain period of
time (say one hour). These contracts should not necessarily
be exclusive and, thus, customers may achieve agreements
with different companies for the same hour if this is the best
thing to do. Finally, we assume customers auction, on a
daily basis, their next 24 hours consumption divided into 24
items (representing one hour each). They subsequently re-
ceive bids from the UCs and make their decision for the next
24 hours. The second part is the multi-agent system corre-
sponding to each private customer. It executes the algorithm
that finds the optimal schedule, meaning which devices con-
sume how much and, designed by the fitness function, when
and which UCs will provide how much energy and when.
For the sake of simplicity, each agent solely represents one
consuming task. Moreover, there exist constraints between
any pair of agents (since any local decision about consum-
ing or not affects the whole system) and we suppose all
agents interconnected. In opposition to the simultaneous
auction market, where bidderscompeteto be selected, the
agents of the dCOP systemcollaborateto achieve the com-
mon goal (the cheapest possible consumption).

3.1. The Algorithm

Since all possible solutions must be analysed, we have
chosen a brute-force greedy strategy to develop the COBB
algorithm (Constraint Optimisation by Broadcasting), de-
tailed in Figure 1. Basically, it is a distributed constraint
optimisation algorithm where agents broadcast their values
and choose the answer proposing the best solution to con-
tinue with the algorithm. Note that the COBB always starts
with a current solution as a basis for the comparison, so
each local change automatically produces a new solution
(that can be better or worse than the current one).

The greedy strategy allows COBB to always choose the
best available solution. This tactic, however, could lead it
to eventually get stuck in a local maximum but the fact of
broadcasting (i.e. includingagainall the other agents in the
next step) helps preventing it. Essentially, COBB is a recur-
sive algorithm that in each recursive call does the follow-
ing. First, improve the solution received with local changes.
Then, for each possible local change (sorted out descend-

COBB(candidatesolution){
newsol list = improve (candidatesolution)
if (new sol list != null) {

foreach newsolution in newsol list {
answers = broadcast (newsolution)
}

} else{
answers = broadcast (candidatesolution)

}
sort desc (answers)
foreach solution in answers{

if (fitness(solution)< fitness(bestsolution)){
bestsolution = solution

} COBB(solution)
}

}

Figure 1. The COBB algorithm

ing) broadcast the solution and finally, compare each an-
swer (sorted out descending) with the current best solution
and keep it in case it is better.

3.2. Worked Example

Let us illustrate this process with an example. Suppose
an agent A starts the scheduling process: it takes the current
solution and calculates possible improvements by selecting
a different value for its own variable (e.g. “if the task can be
performed at 9 or 10 am, and the current solution includes
it’s task at 9 am, the agent will asses the whole solution but
with it’s task at 10 am”). Then, it will broadcast the cheap-
est of both solutions. The other agents will afterwards carry
out exactly the same process that agent A has done so far:
calculate whether any local change improves the solution
and reply. Further, Agent A chooses the cheapest (say best)
solution received and restarts the process until no agent re-
sponses; in that case it will come back to the second best
solution and continue as usual. The recursive nature of the
algorithm assures that, given enough time, all possible so-
lutions are processed and, therefore, the algorithm always
finds the optimal solution.

3.3. Properties

The complexity of COBB is2n ·m, wheren is the num-
ber of agents (or tasks) andm the average number of alter-
natives for a task to be placed. In our system, the minimum
allocation unit is the hour and all tasks can be placed at 1
am, 2 am, 3 am ... 12 pm. Thus, in a worst case scenario
where tasks can be placed all over the day,m will be 24
and the complexity2n · 24. Finally, it is not possible to
skip some candidate solutions heuristically since the dis-
count for combinations and the linear supply function bid-
ding requires that all possible solutions are processed. For



instance, at first sight it can seem economical to place agent
A’s consumption at 11 instead of at 12, if all bids submit-
ted to 11 are much cheaper than those to 12. However, they
may exist discounts rewarding the consumption on 12 that
make it, at last, cheaper.

4. Evaluation of the COBB algorithm

As detailed in section 5, there exist other optimal al-
gorithms for distributed constraint optimisation problems
but, unfortunately, the dimensions of the application do-
main are not the same. Both ADOPT [5] or SynchBB
[6], for instance, require a framework including variables
with discrete values and binary or ternary cost functions
and a kind of linearity in the solutions that makes heuris-
tic work (either best-first search in ADOPT or branch and
bound in SynchBB): this is, the capacity of abandon some
solutions before processing them (i.e. being able to deter-
mine whether a solution is better or worsebeforeevaluating
it). For instance, in a similar problem domain but without
supply-function bidding and bundle discounts, an algorithm
could use any heuristic to directly choose the cheapest con-
sumption alternative for a certain task before processing the
rest. It would know all other variants worsefor sure. This
is not the case of our domain. A task consuming or not at a
certain time slot may involve choosing one UC for supply-
ing more or less, or not at all, at another time slot. And this
fact cannot be foreseen. Moreover, both algorithms work
with partial solutions, whereas our problem demands work-
ing with complete solutions (because of the discount combi-
nations and the linear supply bidding). Therefore, in order
to illustrate the pros and contras of the COBB algorithm
and translate it into a framework where it can be compared
to some counterparts, we will use a well-known problem
modeled as a DCSP: the n-queens problem.

4.1. The N-Queens Problem as a DCSP

The n-queens problem has been traditionally a paradigm
of combinatorial problems. We have chosen it since, as
in our problem, there exist constraints between any pair of
agents (say queens). The challenge consists in, having ann
x n draughtboard, placingn queens so that no two queens
threaten each other. Thus, no two queens can be on the
same row, column or diagonal. If the problem (modeled as
a DCP) is finished when one combination is found, where
no queen is threaten, then it is a distributed constraintsat-
isfactionone. In case the objective is to list all combina-
tions, where no queen is threaten, then it is a distributed
constraintoptimisationproblem. We will use it as a DCSP;
therefore, the goal is to find just one solution. Furthermore,
we have chosen two classical and simple dCSP Algorithms
that could be adapted to our domain (by making them work
with whole solutions and not partial ones) and are, there-
fore, counterparts.

4.2. Algorithm Execution Comparison

Figure 2 shows the execution steps followed by one of
the algorithms presented in [17] (an asynchronous weak-
commitment search), until no queen is threatened. Having
four queens, there are subsequently four agents, each one
having a variable with values from 1 to 4 (represented as a
row in the draughtboard). The start situation for this exam-
ple is with all variables having same value 1 (i.e. all queens
lined up on the left column).

Figure 2. Example of the Asynchronous Back-
tracking algorithm execution ([17])

Figure 3 presents the execution steps of the COBB algo-
rithm, starting with the same initial situation. In each cycle,
COBB first considers local changes and then broadcasts the
most convenient of the solutions obtained (with these local
changes). In this case, the possible local changes are having
the first queen in position 2, 3 or 4 of the first row. Position
2 is still violating a constraint (threatened in the diagonal
by queen in row 2) and therefore, it chooses position 3 (4
would be also acceptable) and broadcasts the solution, be-
ing the one depicted in the middle draughtboard the best of
the answers received (the queen of the third row gets value
4). In the next cycle, it does not issue any local change
and broadcasts the solution as it is, obtaining a combination
where no queen is threatened.

Figure 3. Example of the COBB algorithm ex-
ecution
Figure 4 illustrates the execution of the asynchronous

weak-commitment search ([17]), faster than its counterpart,
depicted in figure 2. The start situation is this time slightly
different, with three constraints violated: queen of row 1
in the same diagonal as queen of row 4, and this one in the
same column as queen of row 2. Finally, figure 5 depicts the
execution of COBB starting from the same initial situation
as in Figure 4. The COBB algorithm is faster again.

4.3. Performance Comparison

The execution steps shown in Figures 2 to 5 show just
some examples about how COBB’s tactic helps to faster
find the solution. For the evaluation, we have tested COBB
with the distributed n-queens problem varying fromn 10



Figure 4. Example of the Asynchronous
Weak-Commitment algorithm execution ([17])

Figure 5. Example of the COBB algorithm ex-
ecution

to 50 (as in [16]). The results are summarised in table 1.
For eachn, we have averaged the results of testing 100 ran-
domly generated different start situations. One cycle cor-
responds to a loop of the COBB algorithms or, in case of
the other two, a series of agent actions, in which an agent
recognises the state of the world, decides its response to
that state and communicates it [16]. We also assume that
a message sent at timet arrives at timet + 1, so we can
analyse the performance in terms of cycles needed to find
an optimal solution. Finally, following [16] we have set a
time limit for solving the problem (1000 cycles), soratio
expresses the average of runs that successfully completed
the problem on time.

Table 1. Performance comparison in the Dis-
tributed N-Queens Problem).

n 10 50
Asynchronous ratio 100% 50%

backtraking [16] cycles 105.4 325.4
Asynchronous ratio 100% 56%

weak-commitment [16] cycles 41.5 59.1
COBB ratio 100% 100%

cycles 15.36 35.5

As it can be seen, COBB clearly outperforms both algo-
rithms. It is not only faster but also most efficient, since it
always found the solution without exceeding the time limit.
The reason is that, as shown in the previous section, the
greedy tactic helps COBB to quickly come to better solu-
tions and broadcasting enables it to escape from local min-
ima, since all agents participate in each decision. This is, in
the other algorithms the view of problem space in each loop
is restricted to one agent and it’s neighbour. In COBB, this
restriction disappears with the broadcast, so any agent can
contribute to a better solution.

The cost of broadcasting can be, however, prohibitively
high in large systems. In case of a DCSP, the network over-
head is alleviated by the fact that the algorithm stops as
soon as one solution is found (so the number of messages

broadcasted is compensated by the messages that other al-
gorithms interchange in the cycles where COBB is already
finished). It does become a problem when the algorithm
has to analyse all the possible solutions. The next section
explains how to lighten this shortcoming.

4.4. Loosely-coupled Neighbour Networks

Using broadcast in the COBB is a double-edged sword.
On the one hand, it helps find a very good solution (if not
the best) very fast but on the other, it requires a high amount
of exchanged messages. There are, however, some of these
messages that do not need to be sent. Although all agents
are virtually neighbours (i.e. can contact each other) they
can be in differentneighbourhoods. With a monolithic tar-
iff this fact means that agents whose consumption alterna-
tives overlap are neighbours (e.g. one consuming at 9 am
and 10 a, another at 10 am and 11 am, share 10 am). In
our problem domain, the notion of neighbourhood involves
more factors. It not only entails the possibility of consum-
ing energy at the same time-slot but also consuming at a
time-slot associated by a discount to any other of the neigh-
bouring agent. For instance, suppose that UC1 offers a 3%
discount if consuming at 8 am and 11 am. In case Agent A
can place its consumption at 8 am and 9 am, neighbour will
be every agent potentially consuming at 8, 9 and 11 am.

There are two reasons for this phenomenon. First, if
Agent A consumes at 9 and not at 8 am, Agents consum-
ing at 11 am will be affected by this fact since the discount
could not take place, or viceversa, agents consuming at the
same time slot will have to take into account A’s consump-
tion to plan their’s. In this way, non-neighbouring agents do
not need to interchange messages or be part of the broadcast
since their local changes will not affect each other. There-
fore, determining neighbourhoods will help reduce the net-
work overload by converting broadcast intoselective multi-
cast. Unfortunately, this reduction can only be exactly eval-
uated with real data because the composition of neighbour-
hoods totally depends on the number of discounts, the time
slots they include and the number of time slots that each
task has on average as alternative to consume energy.

5. Related Work

There has been a lot of work both in distributed con-
straint problems and energy management with multi-agent
systems. However, these two strands of work have not been
brought together before. The work of Yokoo is seminal in
the area of distributed constraint problems. His formalisa-
tion of the DCSPs can be found in [16], as well as clas-
sical and new algorithms in [17]. Modi provides the gen-
eral formalisation of DCOPs and a new optimal algorithm,
called ADOPT (Asynchronous Distributed Constraint Opti-
misation with Quality Guarantees) to solve it in [5, 7] out-
performing previous DCOP algorithms. ADOPT is unfor-
tunately unable to work within our problem domain since it



does not evaluate all possible solutions (condition needed,
as already explained, due to the use of combinations and
linear supply function bidding).

Energy management research is usually grouped under
the general banner of Demand-Side Management. Its main
goals are finding the cheapest consumption plan for the
clients and the smoothest one for the suppliers. There have
been some original attempts of solving the energy schedul-
ing problem as for instance in [8], through a multi-agent
system carrying out a genetical algorithm. The application
domain is different, since the multi-agent system can only
count with very limited resources: nodes of some hundreds
Kilobytes memory interconnected by very slow field area
networks. Further, the work of Ygge ([14, 15]) takes the
leading role in this area. Specifically, he combines power
load management with market-oriented programming. He
introduces a hierarchical structure ofHomeBots, intelligent
agents that represent every load in the system and buy the
energy in a system of forward non-combinatorial auctions.
His approach places all the initiative on theHomeBotsso
the UC cannot express its preferences for having more or
less demand at a certain time. We address this shortcoming
by allowing combinatorial bidding. Moreover, this system
does neither offer the possibility of having more than one
supplier simultaneously, as we do, and therefore does not
take advantage of current deregulated markets.

6. Conclusions and Future Work

The deregulation of energy markets in the European
Union has drawn a new draughtboard where players can
extend their traditional roles and thereby, maximise their
revenues. While UCs are enabled in recent research to ex-
press more complex aims, and thus, increase their influence
on customers ([10]), these customers are simultaneously al-
lowed to choose cheaper ways of buying the energy they
need. Still, within each client’s system the consumption of
this energy must be achieved efficiently, in a coordinated
manner between all devices and according to the bids re-
ceived.

Against this background, this paper presents, for the first
time, a constellation of energy consumers designed as a
multi-agent system carrying out COBB, an optimal distrib-
uted constraint optimisation algorithm, to find the best con-
sumption plan. Moreover, we describe how this system fits
into a bigger deregulated energy market that assures both
customers and suppliers higher revenues than in the current
classical market. Furthermore, we prove COBB optimal
and show that it performs better than potential counterparts,
even in different problem domains as the one, it has been de-
signed to. Finally, we describe effective ways to attenuate
the network overhead caused by COBB, in order to make it
applicable in real-life scenarios. Future work will focus on
developing a simulator to test the energy system with real
values. This will lead us to an accurate assessment of the
whole system under concrete and realistic conditions.

References

[1] S. Conry, K. Kuwabara, V. Lesser, and R. A. Meyer.
Multistage negotiation for distributed constraint satisfac-
tion. IEEE Transactions on Systems, Man and Cybernetics,
21(6):1462–1477, 1991.

[2] V. D. Dang and N. R. Jennings. Polynomial algorithms for
clearing multi-unit single item and multi-unit combinatorial
reverse auctions. InProceedings of ECAI ’02 (Lyon France),
pages 23–27, Lyon France, 2002.

[3] V. D. Dang and N. R. Jennings. Optimal clearing algorithms
for multi-unit single item and multi-unit combinatorial auc-
tions with demand/suppy function bidding. InProceedings
of ICEC’03, pages 25–30, Pittsburgh PA, 2003.

[4] S. Martello and P. Toth.Knapsack Problems, Algorithms
and Computer Implementations. John Wiley and Sons Ltd,
England, 1990.

[5] P. J. Modi.Distributed Constraint Optimization for Multia-
gent Systems. PhD thesis, University of Southern California,
2003.

[6] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asyn-
chronous complete method for distributed constraint opti-
mization. InProceedings of the Second International Joint
Conference on Agents and Multiagent Systems (AAMAS-03).

[7] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asyn-
chronous complete method for distributed constraint opti-
mization. InProceedings of the Second International Joint
Conference on Agents and Multiagent Systems (AAMAS-03).

[8] P. Palensky.Distributed Reactive Energy Management. PhD
thesis, Vienna University of Technology, 2001.

[9] Y. Penya, P. Palensky, and L. Lobashov. Requirements
and prospects for consumers of electrical energy regarding
demand-side management. InProceedings of the IEWT’03,
pages 101–102, Vienna Austria, 2003.

[10] Y. K. Penya and N. R. Jennings. Combinatorial markets
for efficient energy management. InProceedings of the
IEEE/WIC/ACM Intelligent Agent Technology (IAT), pages
626–632, Compigne, France, 2005.

[11] T. Sandholm. Algorithm for optimal winner determination
in combinatorial auctions.Artificial Intelligence, 135:1–54,
2002.

[12] T. Sandholm and S. Suri. Market clearability. InProceed-
ings of the IJCAI’01, pages 1145–1151, Seattle WA, 2001.

[13] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed con-
strained heuristic search.IEEE Transactions on Systems,
Man and Cybernetics, 21(6):1446–1461, 1991.

[14] F. Ygge. Market-oriented programming and its applica-
tion to power load management. PhD thesis, Department
of Computer Science, Lund University, 1998.

[15] F. Ygge, H. Akkermans, A. Andersson, M. Krejic, and
E. Bortjes. The homebots system and field tests: A multi-
commodity market for predictive load management. InPro-
ceedings of the PAAM’99, pages 363–382, London UK,
1999.

[16] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization
and algorithms.IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, September 1998.

[17] M. Yokoo and K. Hirayama. Algorithms for distributed
constraint satisfaction: A review.Autonomous Agents and
Multi-Agent Systems, 3(2):185–207, 2000.


