XoWiki Content Flow — From a Wiki to a
Simple Workflow System*

Gustaf Neumann

Institute of Information Systems and New Media,
Vienna University of Economics and Business Administration
Augasse 2-6, A-1090 Vienna, Austria
gustaf.nemann@wu-wien.ac.at

Abstract. This paper introduces XoWiki Content Flow, which is a sim-
ple workflow component based on a state transition system. This work-
flow component is used as an extension of the XoWiki framework [1, 2],
a wiki based environment for content management applications. The pri-
mary application focus is on managing state and transitions of content
together with an application specific set of attributes. A user can define
with the system different kind of application objects (such as shared on-
line documents, or multiple choice questions and answers) that behave
differently depending on their state. Technically, the content flow package
is defined as a sub-package of XoWiki and inherits all its functionality of
XoWiki. The paper focuses on the the basic principles and design criteria
of the package and will present a simple application example.

1 Introduction

During the last years various XOTecl [3, 4] based components were developed for
the OpenACS Framework. The flagship components are xotcl-core (the basic
functionality) and XoWiki (a wiki based content management system developed
with a Web 2.0 mindset; see e.g. [1,2]. While XoWiki started out as a basically a
wiki system, it developed during the last year into a flexible content management
framework [5], where many of its agile concepts can be reused in other contexts
as well. Examples are e.g. the sb package (available via the public CVS system
of OpenACS) or iLogue and Mupple [6].

This paper introduces a workflow component for the XoWiki framework,
which extends the functionality of plain XoWiki. Current XoWiki versions al-
low already to define application specific classes with arbitrary meta-data via
XoWiki forms. XoWiki allows to create instances for these application specific
classes via web. For example, one can create a survey as an application spe-
cific class, where the instance data of the survey entered by the participants is
seen as instances (entries) of the form. Similarly, one can create multiple choice
questions, or shared documents with more meta-data etc. via the same inter-
face. The XoWiki Content Flow package extends this functionality by adding

* Published in: “Proceedings of 7th OpenACS / DotLRN Conference”, Valencia, Spain,
Nov. 18-19 2008.



2 Gustaf Neumann

explicit state and transition management to it. The implemented package is a
sub-package of XoWiki and implements workflows via mixin classes [7, 8] for the
XoWiki classes. In the following sections we will first focus on the basic princi-
ples and design criteria. Then we will present a simple application example and
finish with conclusions and related work.

2 Workflows and State Transition Systems

Modeling of process aware information systems has a long tradition especially
in the area of workflow systems. When designing a general purpose workflow
engine the first question concerns typically its formal foundation. Most of the
workflow literature is based on Petri nets (also called place transition networks)
which are a mathematical modeling language for describing discrete concurrent
systems with non-deterministic execution (in cases, where multiple transitions
can fire). The Petri net formalism is frequently used to provide a formal basis
for higher level workflow semantics, as for example for the workflow patterns [9)].

Another formalism for providing exact process semantics are algebraic meth-
ods, such as the process calculus (also called 7 calculus [10]), which is a suc-
cessor of the calculus of communicating systems [11]. A central aspect of these
approaches is to model parallel behavior by modeling the communication be-
tween the participants. These algebraic specification languages are lately often
presented as an alternative to Petri nets and vice versa (see e.g. [12]). Formal
models like Petri nets and 7 calculus are required to provide formal semantics
and analysis methods. However, as van der Aalst argues, there are unfortunately
only a few cases where the formal models are used to actually improve the quality
and applicability of the workflow languages [12].

We are in this paper less interested in process semantics (how different pro-
cesses are synchronized), but more on defining state specific behavior of appli-
cation objects and the modeling of actions leading to transitions. The presented
approach is best described by an formalism developed for operational seman-
tics of dynamic systems, namely on labeled state-transition systems (see e.g.
[13]). Informally, a labeled state-transition system is based on a set of states S
with labeled transitions. The labels on the transitions represent actions. Labeled
state-transition systems are defined by a ternary relation of the form

p>yq

where p and ¢ are elements of S and « is from a set of labels A. Labeled state-
transition systems differ from finite state automata by allowing an infinite set of
states S and an infinite set of labeled transitions A.

Labeled state-transition systems can be used to model state changes in an
information system explicitly. So, the focus of this paper is more on modeling
state aware information systems rather than process aware information systems,
but there is certainly a duality between these approaches. The term state aware
information systems actually means that the systems handles application specific
state changes in an explicit manner.



XoWiki Content Flow — From a Wiki to a Simple Workflow System 3

3 State Aware Objects and State Traces

In our approach the state awareness is realized via state aware application spe-
cific classes which model states and actions leading to transitions explicitly. We
call these classes shortly state aware classes and the instances of these classes
state aware objects.

For every state aware class we define a finite set of state objects and a finite
set of actions (causing transitions). When a state aware class is instantiated, a
state aware object is created in some initial state. The full state of the state
aware object is defined by the state object and additionally by an application
specific set of attributes A. These attributes might be modified and extended
by the actions a. Every action can be programmed with application specific
semantics and can behave differently depending on the state objects and the
attribute set A. When some action of a state aware object are executed (e.g. via
user input or an external event) a new state can be reached. For every reachable
state a sequence of transitions starting from the initial state can be derived. We
refer to such a sequence of transitions as a state-trace. Every state of the state-
trace consists essentially of a state object s; and the set of application specific
attributes A, where the subscript denotes n-th transition.

ai,0 ai,1 a1,n
az.o ay a2 1 sz Qan a.n
S0 S1 Sn

Note that the sequence of transitions might contain iterations (loops) and that
it is possible that e.g. two subsequent execution states might use the same state
object s. Every state-trace represents a concrete flow of actions or the concrete
control flow of a workflow instance. In the developed system all state-traces are
stored persistently in the database to make it possible (a) to introspect at any
point in time the sequence of transitions leading to the current state, (b) to
change the change the workflow to go back to an earlier state and continue from
there and (c¢) to perform mining techniques to analyze traces ex-post and to
visualize e.g. collaboration graphs [1].

4 State Specific Behavior

The State Design Pattern [14] is a behavioral design pattern which was developed
to implement state specific behavior of objects. The State Pattern allows to
extend and influence the behavior of an object in a state specific way without
forcing a developer to add case statements to all methods which should behave
differently depending on the state. Therefore new states can be introduced in an
easy maintainable way.

Figure 1 shows the basic class structure of the State Pattern as suggested
by [14]. The state is embedded in some context and different concrete states use
the same interface as the abstract state. Many variants of this design pattern



4 Gustaf Neumann

Context Abstract State
o——————————
request handle
Concrete State 1 Concrete State 2
handle handle

Fig. 1. Structure of the State Design Pattern [14]

were suggested over the last years, such it is today appropriate to speak about
a family of state patterns.

For the XoWiki Content Flow, we need three aspects to be handled which
are not part of the original State Design Pattern:

1. Since the applicable actions of state aware objects are state dependent these
should be properties of the state objects. This is needed to implement the
flow of labeled state-transition system.

2. The actions are either triggered by the user via forms or via external events.
The applicable forms are as well state dependent and should be as well
properties of the state. These forms provide the user interface to state aware
objects with their application attributes.

3. Since the properties actions and form might be different these must be stored
for every state explicitly. Therefore it is more straightforward to implement
states as state object and not as classes (as in Figure 1). Note that we have
already referred to state objects in the previous section.

Context

current_state State
request Oo————————

form handle
actions

. N
instance of instance of

I
4 ! N
. 1 N
. | N
1
1

initial: State final: State
proposed: State

form form

actions form actions
actions

Fig. 2. Realization of State-Pattern with State Objects and Object Specific Methods

To implement the state objects, XOTcl’s facility of providing object specific
methods is very useful. So, instead of using classes for the concrete states as in



XoWiki Content Flow — From a Wiki to a Simple Workflow System 5

class structure in Figure 1, an XOTcl implementation can use state objects with-
out loosing expressiveness. Figure 2 shows an example with three state objects
named initial, proposed and final. Typically when instances of the class Context
try to determines the applicable user interface form or actions, they delegate
this invocation to the current state. Note that e.g. the state property form can
be implemented in XOTcl either as an attribute or as a method with the same
interface.

5 Workflow Definitions

So far we have described how state aware objects are processed, but not, how
the application specific state changes are modeled. Figure 3 shows a simple mo-
tivating example describing the TIP process of the OpenACS community. A TIP
(abbreviation of a technical improvement proposal) is initially proposed, later it
might be accepted or rejected, and finally, if accepted, it might be implemented.
At any time a TIP document might be edited by a user with sufficient rights.

initial _Dsave

}ropose

proposed save

accepted save rejected Jsave

imrk_inplemented

implemented Dsave

Fig. 3. State Graph for the TIP Workflow

The XoWiki Content Flow system uses essentially three kinds of constructs
to define a workflow. These are the classes State, Action and Condition as shown
in Figure 4. An actual workflow definition consists essentially of named XOTcl
objects for these classes. The State objects contain primarily the information
about applicable actions and user interface definitions (forms). Action objects
know their next state and can contain a method activate for application spe-
cific program code. Named Conditions are primarily for conditional control flow



6 Gustaf Neumann

branches (like guard conditions in UML’s activity diagrams). Condition objects
can be be displayed in the workflow graph. In addition to these basic func-
tionalities, XoWiki Content Flow provides means for expressing context-specific
behavior. So it is e.g. possible to express in the workflow definition that e.g. in
a certain state an administrator (a user with administration rights) is provided
with a different user interface (with a different form) than an ordinary user. Sim-
ilarly, it is possible to define which actions should be offered to users in which
kind of roles. Figure 4 shows the actual class structure for work flow definitions
as used in the XoWiki Content Flow package.

Context

workflow_definiton

current_state —

default_form WorkflowConstruct

object label

in_role ﬂargst .

in_contex

S(re?ps::){)erty get_cond_values

form property

form_loader set_property

get_actions

as_graph
State Condition Action

next_state

actions expr roles
view_method activate
form get_next_state
form_loader roles
form_constraints
assigned_to

Fig. 4. Basic Workflow Classes

In order to define a workflow for the TIP example (Figure 3) we define the
state objects initial, proposed, accepted, rejected and implemented as well
as objects for actions named propose, accept, reject, mark_implemented and
save. The definition of the default form is used for all states, unless a state
provides its own form. Forms are as well named objects and are stored in the
OpenACS content repository as objects of the type ::xowiki::Form.

set default_form "en:tip-form"

Action save -roles admin

Action propose -next_state proposed

Action accept -next_state accepted

Action reject -next_state rejected

Action mark_implemented -next_state implemented

State initial -actions {save propose}
State proposed -actions {save accept reject}
State accepted -actions {save mark_implemented}



XoWiki Content Flow — From a Wiki to a Simple Workflow System 7

State rejected -actions {save}
State implemented -actions {save}

In the current implementation, the workflow definition is entered via the
XoWiki form interface. For this purpose, a form field type of the class workflow is
provided. When a workflow definition is edited, a text editor is opened, when the
definition is viewed, the text is transformed into a state graph (see e.g. Figure 3).
By using XoWiki forms, the workflow definitions are as well stored with revisions
in the OpenACS content repository.

When a workflow definition is provided, it can be used to create a work-
flow instance of it. This workflow instance is a state aware object as defined in
Section 3. State aware objects can be typically viewed, edited or be deleted by
users having sufficient rights. When a state aware object is edited the actions
defined by the workflow definition for the current state (fulfilling the context
constraints) are presented to the user as HTML FORM buttons. When an ac-
tion button is pressed the actual form data is used for an update and a tran-
sition to a potentially new state is recorded. In general, actions can not only
be activated via form buttons, but as well programmatically by remoting calls
(via method call_action) or via scheduled calls at a certain time (via method
schedule_action).

Since every action activation leads to a new revision in the database, the
state-trace is recorded automatically by the underlying framework. The state-
trace can be introspected by looking at the revision history of the workflow
instance. By making an old revision current, it is possible to jump back to earlier
states of the workflow. Note that the workflow definitions, the user interface
definitions (the default form in the example above) and the workflow instances
are stored in the OpenACS content repository. All these objects are revisioned
with exactly the same mechanisms. Since all these objects are actually XoWiki
objects, the methods provided by the XoWiki framework can be used these
objects as well (e.g. export, tagging, categories, collaboration graphs [15], etc.)

6 Related work

We concentrate in this section on the related work in OpenACS. The OpenACS
system has already two workflow systems. The OpenACS 4.5 acs-workflow pack-
age is a Petri net based Workflow implementation, which is deprecated in Ope-
nACS but used some OpenACS application such as Project Open [16]. Lars Pind,
the author of the original workflow package rewrote the original workflow pack-
age to reduce its complexity and developed the OpenACS workflow package [17],
which is strictly based on finite state machines. While the basic execution mech-
anism between OpenACS workflow package and XoWiki Content Flow is quite
similar, the used framework is very different. XoWiki Content Flow is object
oriented (states, actions and conditions can be subclassed) and fully integrated
with the content repository (workflow definitions, forms, instances are stored in
the content repository with revisions). This allows for redoing certain actions



Gustaf Neumann

by making an earlier revision of the workflow instance the current revision. Fur-
thermore XoWiki Content Flow is tightly integrated with XoWiki (in particular
with XoWiki forms), such that (a) it inherits all properties of a wiki and that
(b) it is possible to develop applications with application specific attribute sets
just via the web interface. The XoWiki Content Flow package is available via
git://alice.wu-wien.ac.at/xowf.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

Neumann, G.: XoWiki — towards a generic tool for web 2.0 applications and social
software. In: OpenACS and .LRN Spring Conference, International Conference
and Workshops on Community Based Environments, Vienna (April 2007)

. Neumann, G.: Xowiki documentation. http://media.wu-wien.ac.at/download/

xowiki-doc/

Neumann, G., Zdun, U.: XOTcl, an object-oriented scripting language. In: Pro-
ceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas (February
2000

Neurzlann, G., Zdun, U.: XOTcl home page. http://www.xotcl.org

Neumann, G.: Development the oo-framework for openacs: Improving scalability
and applicability. In: International OpenACS and DotLRN Conference: Interna-
tional Conference and Workshops on Community Based Environments, Guatemala
(February 2008)

Neumann, G., Sobernig, S.: Learning XoWiki: A tutorial to the xowiki toolkit.
In: Tutorial at the International OpenACS and DotLRN Conference: Interna-
tional Conference and Workshops on Community Based Environments, Guatemala
(February 2008)

Bracha, G., Cook, W.: Mixin-based inheritance. In: Proc. of OOPSLA/ECOOP’90.
Volume 25 of SIGPLAN Notices. (October 1990) 303-311

Neumann, G., Zdun, U.: Enhancing object-based system composition through per-
object mixins. In: Proceedings of Asia-Pacific Software Engineering Conference
(APSEC), Takamatsu, Japan (December 1999)

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(3) (July 2003)

Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK (1999)

Milner, R.: A Calculus of Communicating Systems. volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin (1980)

van der Aalst, W.: Pi calculus versus petri nets: Let us eat humble pie rather than
further inflate the pi hype. BPTrends 3(5) (May 2005)

Manna, Z., Pnueli, A.: The temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, Berlin (1992)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

Neumann, G., Erol, S.: From a social wiki to a social workflow system. In: post-
proceedings of BPM 2008 - 1st Workshop on BPM and Social Soaftware, Milan,
Italy (September 2008)

Bergmann, F.: Project Open home page. http://www.project-open.org/

Pind, L.: Package developer’s guide to workflow. http://cvs.openacs.org/cvs/
openacs-4/packages/workflow/www/doc/developelr-guide.html?revision=1.
3



