
Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz
Kommunikation in verteilten Systemen 2011

(WowKiVS 2011)

Modeling Process-Related Duties with
Extended UML Activity and Interaction Diagrams

Sigrid Schefer, Mark Strembeck

12 pages

Guest Editors: Horst Hellbrück, Norbert Luttenberger, Volker Turau
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Modeling Process-Related Duties with
Extended UML Activity and Interaction Diagrams

Sigrid Schefer, Mark Strembeck

Institute for Information Systems and New Media
Vienna University of Economics and Business (WU Vienna), 1090 Austria

Abstract:

Business processes are an important source for the engineering of customized soft-
ware systems. In this context, the definition, monitoring, and enforcement of the
duties associated with different tasks in a business process is one important factor to
ensure compliance of an IT system with certain laws and regulations. In this paper,
we present a UML2 extension for an integrated modeling of business processes and
process-related duties. In particular, our extension allows for the modeling of duties
and associated tasks in business process models.

Keywords: business processes, duties, UML, compliance management

1 Introduction

Business processes define an organization’s operational procedures and are performed to reach
the operational goals of the corresponding organization. Therefore, business processes are an
important source for the engineering of customized software systems. In this context, the def-
inition, monitoring, and enforcement of the duties associated with different tasks in a business
process is one important factor to ensure compliance in an IT system. For example, adequate
support for the definition and enforcement of process-related policies, including separation of
duty constraints, is one important part of SOX compliance [CB06, Dam04]. Separation of duty
(SOD) constraints enforce conflict of interest policies (see, e.g., [AS00, LTB07]). Conflict of
interest arises as a result of the simultaneous assignment of two mutually exclusive tasks to the
same subject. However, modeling support for process-related duties is largely missing today.
Especially in distributed environments the joint documentation of business processes and duties
would facilitate their proper implementation and enforcement.

In this paper, we therefore propose an approach for the integrated modeling of duties and busi-
ness processes. In particular, we present a UML extension to model processes, process-related
duties, and responsibilities. An integrated modeling approach yields a number of advantages,
such as allowing for a proper mapping of models to software systems, facilitating communica-
tion between different stakeholders, and detecting separation of duty conflicts. Moreover, on the
one hand an integrated modeling approach for duties and processes allows for tracing duties to
the (regulatory) reasons they exist, and on the other hand it allows to trace duties to the soft-
ware components that have to ensure their monitoring and enforcement. This multi-directional
traceability is also known as forward and backward traceability [DP98, GF94]. As a result, it
is more easy to control and report on a company’s fulfillment of compliance requirements. Fur-

1 / 12 Volume 37 (2011)



Modeling Process-Related Duties with Extended UML Activity Diagrams

thermore, a complete and correct mapping between models and the respective software system
assures consistency between modeling-level specifications and the software system supporting
respective duties and process instances.

The remainder of this paper is structured as follows. Section 2 gives a motivating example for
the definition of duties in a business process context. In Section 3, we present our extension for
UML Activity diagrams and provide bindings to integrate duties into UML Interaction diagrams.
Subsequently, Section 4 discusses related work and Section 5 concludes the paper.

2 A Motivating Example

Check 
application form

Check credit 
worthiness

Negotiate 
contract

Reject
application

[Form ok]
[Check 
passed]

[else]

[else]
[else]

[approved]

credit
application

contract

Approve 
contract

contract

Credit 
application

Credit application process

Figure 1: A simple credit application process

Figure 1 shows an example of a simple credit application process in a distributed environment
modeled as standard UML Activity diagram. Below, we now provide a textual description of a
duty D1 which affects the credit application process. In order to fulfill organisational compliance
requirements, each duty defines an action which must be performed by a certain subject [Str05].
A subject may either be a human user or a software-based system. A role is a subject abstraction
containing the tasks, associated permissions, and duties of a certain subject-type. In D1, a subject
of the type/role ”bank clerk” is required to discharge the duty ”check applicant rating”.
D1: The bank clerk must check the credit applicant’s rating
within three days after receipt of the application form.

A process-related duty is associated with a task in the corresponding business process. In our
example, the duty ”check applicant rating” needs to be performed when carrying out the ”check
credit worthiness” task (see Figure 1). Moreover, this duty can be refined via sub-duties, resulting
in a duty-hierarchy. In a duty-hierarchy, higher level duties are more abstract duty descriptions
which are refined by more concrete subduties [CDMR01, MS94]. For example, in D1.1-D1.3,
the ”check applicant rating” duty is refined via the three subduties listed below:
D1.1: The bank clerk must check the validity of all data pro-
vided by the credit applicant.
D1.2: The bank clerk must check if the credit applicant is a
black- listed customer.
D1.3: The bank clerk must check the credit applicant’s current
debt obligations.

Proc. WowKiVS 2011 2 / 12



ECEASST

In addition, a duty may be associated with constraints [MS94, Str05]. In our example, D1
is associated with a time constraint which defines that D1 must be completed within three days
after receipt of the application form. Furthermore, a duty may be associated with a compensation
action which is carried out in case the time constraint is violated [ARD07]. In our example, D1
may be associated with the compensation action CD1 ”forward duty to another bank clerk” if D1
is not completed in time:
CD1: If D1 is not discharged within three days after receipt of
the application form, forward this duty to another bank clerk.

In this context, it is also possible to define so called review duties. A review duty describes
the goal of controlling the enforcement of an (ordinary) duty [SM02, SM04]. For example, the
review duty RD1 ”confirm applicant check” could be applied for the duty D1 if the special event
”applicant has been rejected twice” occurs:
RD1: If an applicant has been rejected twice, a second bank
clerk must confirm the credit applicant checks.

This simple example already shows that it is difficult to describe all connections and impli-
cations of process-related duties in a textual manner. Therefore, a graphical representation for
process-related duties is useful to facilitate their integration into process models and to support
the elicitation and definition of separation of duty constraints (see, e.g., [BE01, SM10, WS07]).

3 Modeling Duties in a Business Process Context

Business process modeling and software system design is usually done via graphical modeling
languages [RAHW06, WDHR06]. The Unified Modeling Language (UML) [OMG10b] offers a
comprehensive and well-defined modeling framework and is the de facto standard for modeling
and specifying information systems. Providing modeling support for duties in business process
models using a standard notation like UML is intended to serve as a common language to bridge
the communication gap between software engineers and non-technical stakeholders (see, e.g.,
[MJ10]). This means, integrated modeling of duties, responsibilities, and processes allows to
document and communicate how duties are implemented in which parts of a business process
and who is responsible for enforcing them.

To achieve the above, we model duties via extended UML Activity diagrams and propose a
refinement via UML Interaction models to model bindings between duties and the classes im-
plementing the duties’ behavior. We use the Object Constraint Language (OCL) [OMG10a] to
formally define the semantics of our newly introduced UML elements. Our UML extension can
be applied to supplement other UML-based approaches and can be integrated in UML-based
software tools. However, note that our general approach does not depend on the UML and may
also be applied to extend other process modeling languages.

3.1 Extending UML2 Activity Diagrams

We introduce the DutyNodes package as a UML2 metamodel extension for modeling process-
related duties (see Figure 2). This extension supplements the BusinessActivity extension in-
troduced in [SM10]. Table 1 depicts corresponding notation elements. The associated OCL
constraints defining the semantics for the new elements are found in Appendix A.

3 / 12 Volume 37 (2011)



Modeling Process-Related Duties with Extended UML Activity Diagrams

Activity
(from FundamentalActivities)

BusinessActivity
(from BusinessActivities)

Classifier
(from Kernel)

ActivityNode
(from FundamentalActivities)

BusinessAction
(from BusinessActivities)

Action
(from BasicActions)

0..1 *

+activity +node

Subject
(from BusinessActivities)

Role
(from BusinessActivities)

*

RoleToSubjectAssignment
(from BusinessActivities)

DirectedRelationship
(from Kernel)

1..*

1

*

*

{subsets owner} {subsets ownedElement}

*

Duty

subDuty

0..*

DutyTimeConstraint

*

DutyToDutyAssignment
0..*

superDuty

10..*

TimeConstraint
(from SimpleTime)

Classifier
(from Kernel)

1

Package DutyNodes

Operation
(from Kernel)

Property
(from Kernel)

leaveOperation

enterOperation

state

0..*

1

1

0..*

0..*

1
1

1

Figure 2: UML metamodel extension for DutyNodes

A BusinessActivity (from the BusinessActivity package specified in [SM10]) is a special UML
Activity which can include all elements available for UML Activities in addition to our newly
introduced elements (see OCL constraints 1, 2 and 3 in Appendix A). A BusinessAction corre-
sponds to a task in a business process. Each instance of a BusinessAction may have an own state
and a history, for example including attributes to capture how often the action instance has been
executed, which subjects and roles executed the action instance, etc. In addition, SoD and BoD
constraints can be defined for BusinessActions [SM10].

Node Type Notation Explanation

Duty D

Duty name

A Duty is shown as a rectangle. The compart-
ment in the upper right corner includes a ”D”.

DutyToDuty
Assignment

S
U
B

A DutyToDutyAssignment relation is shown as
an arrow with a triangle arrowhead including the
uppercase letters SUB indicating the end of the
relation which points to the subduty.

DutyTimeConstraint {t...t+n}

A DutyTimeConstraint is shown as graphical as-
sociation between a TimeInterval and a Duty.

Table 1: Graphical representation of DutyNodes in UML Activity diagrams

Proc. WowKiVS 2011 4 / 12



ECEASST

Our Duty element is defined as a special UML Classifier and is used in a UML Activity dia-
gram to model that an action must be performed by a Subject which is assigned to this Duty (see
Figure 2). Each Duty is linked to exactly one BusinessAction indicating that the Duty needs to
be performed when carrying out the BusinessAction in order to fulfill compliance requirements.
Moreover, Duties can be refined by subduties (see Section 2) and are linked to the Operation and
Property metaclass (see Section 3.2). Role and Subject elements are linked to BusinessActions
and Duties (see Figure 2 and OCL constraints 5 and 6). Furthermore, a Duty may be linked to
a DutyTimeConstraint which is a specialised UML TimeConstraint (from the SimpleTime pack-
age, see [OMG10b]). If a DutyTimeConstraint has expired, a Compensation Action is triggered.

<<stereotype>>

Compensation
<<metaclass>>

Action

Package DutyNodes

associatedDuty:Duty

trigger:DutyTimeConstraint

Figure 3: Stereotype for Compensation Action

In our extension, a Compensation Action is defined as a stereotype extending the semantics of
the existing Action metaclass (see Figure 3). It is used in a UML Activity diagram to define ac-
tions which must be called if a Duty has not been performed in time (see OCL constraint 7 and 8).
For this purpose, it specifies two properties. The associatedDuty property links a Compensation
Action to its related Duty and the trigger defines a triggering time event for a Compensation Ac-
tion. Examples for Compensation Actions are reassigning a Duty to another person, or sending
a reminder email.

3.2 Defining Duty States

In our metamodel extension, a Duty is defined as special kind of Classifier (see Figure 2). Ac-
cording to [OMG10b], each Classifier may include an arbitrary number of Property attributes
(from Kernel, AssociationClasses, Interfaces). In particular, each Duty contains a state Property.
The state property refers to the actual state of a Duty and can take one of the following val-
ues: passive, pending, discharged, or compensationActionCalled. State descriptions are given in
Table 2. In Appendix A, associated invariants are defined in OCL constraints 9 and 10.

State Explanation
passive The Duty is not activated.
pending The Duty is activated but has not been discharged, yet.
discharged The Duty has been successfully discharged in time.
compensationActionCalled The Duty has not been successfully discharged in time.

Thus, the corresponding Compensation Action was called.

Table 2: States of a Duty

5 / 12 Volume 37 (2011)



Modeling Process-Related Duties with Extended UML Activity Diagrams

 
Passive

leaveOperation

invoked
 

Pending
 

Discharged

 
Compensation
ActionCalled

Duty
defined

enterOperation

invoked

DutyTimeConstraint expired

DutyTimeConstraint expired

Duty states additional Operation
invoked

Figure 4: Duty state transitions

A Duty also defines at least two mandatory Operations: an enterOperation and a leaveOp-
eration (see Figure 2). In addition, each Duty may include an arbitrary number of additional
Operations. A Duty’s enterOperation and leaveOperation define which Operation is invoked as
soon as the corresponding Duty is entered or left. They can only be executed if the corresponding
DutyTimeConstraint has not expired.

3.3 Modeling Duties from Different Perspectives

As mentioned above, integrating the specification of duties into business process models fa-
cilitates the communication and enforcement of compliance requirements. However, business
process models need to express many different aspects. Capturing all of them in one model
will presumably overload it. In our approach, the graphical representation of relations regarding
our newly introduced elements can be limited to the most important modeling information. As
each UML model needs to conform to its OCL constraints, the formally defined relations exist
independent of their actual graphical representation (see [OMG10b, OMG10a]). Therefore, the
graphical notation shown here primarily serves as a presentation option. For the graphical mod-
eling of Duties, we propose four complementary perspectives (see Figure 5). Table 3 indicates
which of the newly available modeling elements is used in which perspective.

Action A

Action B

a) Process Perspective

B

Duty: D1

Duty D1.1

D

Duty D1.2
D

{t...t+n}

Duty D1
D

CA: Compensation 

       Action X

R
Role R1

Task: Action A
 

Duty: D1

SUB

b) Duty Hierarchy Perspective c) Responsibility Perspective

R
Role R2

Task: Action C
 

Duty: D2, D3

Figure 5: Modeling perspectives on a BusinessActivity with Duties

Proc. WowKiVS 2011 6 / 12



ECEASST

Perspective Duty Business
Action

Compensation
Action

DutyTime
Constraint

Subduties Roles

Process
√ √ √

Duty Hierarchy
√ √ √ √

Responsibility
√ √ √

Sequence
√ √

Table 3: Modeling elements shown in different perspectives

3.4 Integrating Duties into UML2 Interaction Diagrams

We propose the refinement of extended Activity Diagrams via Interaction models providing a Se-
quence Perspective on Duties. Here, Interaction models define the detailed invocation sequence
of messages for Duties which allows for the mapping of process definitions and related duties to
the corresponding software system.

sd Example

a) Duty Hierarchy Perspective

Duty1.1
D

Duty1.2
D

{t...t+n}

SUB

Duty1
D

CA: Compensation 

       Action X

SUB

b) Sequence Perspective

methodA()

methodB()

result

start()

result result

end()

:Duty1
D

:Duty1.1
D

methodX()

methodY()
result result

:Duty1.2
D

Figure 6: Modeling Duties in Interaction diagrams

Figure 6a) shows the Duty Hierarchy Perspective on a simple Duty hierarchy. The Interaction
diagram in Figure 6b) presents the Sequence Perspective specifying the detailed invocation se-
quence of methods that occurs when these Duties are executed at runtime. In particular, it shows
that an object of Duty1 receives an invocation of an enterOperation called start. Subsequently,
methodA and methodX trigger the execution of methodB and methodY in the subduty objects
Duty1.1 and Duty1.2. Finally, the leaveOperation end is executed. In UML2, each Lifeline head
has the shape based on the Classifier that this lifeline represents (see [OMG10b]). Therefore, a
Lifeline head node representing a Duty-Classifier is visualized by a rectangle including the name
of the corresponding Duty and a small upper case letter D displayed in the upper right corner
(see Table 1).

Due to the page restrictions, we had to cut the detailed example from this paper. On our
webpage we provide an extended version of this paper where we re-inserted the text we had to

7 / 12 Volume 37 (2011)



Modeling Process-Related Duties with Extended UML Activity Diagrams

cut from the paper.

4 Related Work

Recent approaches emphasize the importance of ensuring compliance on a business process level.
For example, in [LRGD10], Ly et al. present a framework allowing for integrated compliance
support with regard to the process lifecycle. The framework also provides formal trace-based
compliance criteria for static compliance validation and for dealing with process changes. Other
approaches for modeling compliance aspects either use informal annotations or formal languages
(see, e.g., [GK07]). In [SGN07], an approach for achieving compliance by design is introduced
by providing a formal representation of control objectives. Approaches using visual patterns
and languages are presented, e.g., in [LMX07] or [FESV07]. The importance for ensuring com-
pliance not only at the design level, but also at runtime, is, e.g., emphasized in [LRD08]. The
approach presented in this paper also provides support for ensuring compliance aspects on design
and runtime level.

A number of different approaches exist that use methods and techniques from model-driven
development to include business rules in the software development processes. However, these
approaches concentrate on the modeling of authorization constraints or other security require-
ments (see, e.g., [J0̈5a, J0̈5b, WS07]). To the best of our knowledge, this work represents the
first attempt to address process-related duties from a business process perspective. As each
duty holder also needs sufficient authority to perform the assigned duties [SM02, Str05], our
approach complements existing approaches in the compliance and security-related context (see
also [SM10]).

5 Conclusion

The need for integrated modeling of business processes and process-related duties to fulfill com-
pliance requirements has been repeatedly identified in research and practice. However, standard
process modeling languages do not provide corresponding language elements. To overcome this
limitation, we introduced an integrated approach for modeling business processes and process-
related duties.

In particular, we presented a UML meta-model extension for Activity and Interaction dia-
grams. In our extension, duties are modeled in extended Activity diagrams, classes are used to
define the behavior for each duty, and UML Interaction diagrams model the detailed invocation
sequence of messages for executing duties. Moreover, we apply the Object Constraint Language
to formally define the semantics of the newly introduced UML metaclasses and stereotypes.
Therefore, our extension can be integrated with other UML-based approaches or tools.

In our future work, we will investigate how to model other aspects of process-related duties,
such as delegation of duties. Providing suitable modeling primitives for delegating duties is
especially important, as flexibility is demanded in many information systems in order to leave
some room for individual decisions of users in the course of a business process.

Proc. WowKiVS 2011 8 / 12



ECEASST

Bibliography

[ARD07] W. M. P. van der Aalst, M. Rosemann, M. Dumas. Deadline-based escalation in
process-aware information systems. Decision Support Systems 43(2), 2007.

[AS00] G. Ahn, R. Sandhu. Role-based Authorization Constraints Specification. ACM
Transactions on Information and System Security (TISSEC) 3(4), November 2000.

[BE01] R. A. Botha, J. H. Eloff. Separation of duties for access control enforcement in
workflow environments. IBM Systems Journal 40(3), 2001.

[CB06] J. Cannon, M. Byers. Compliance Deconstructed. ACM Queue 4(7), September
2006.

[CDMR01] J. Cole, J. Derrick, Z. Milosevic, K. Raymond. Author Obliged to Submit Paper
before 4 July: Policies in an Enterprise Specification. In Proceedings of the Inter-
national Workshop on Policies for Distributed Systems and Networks. 2001.

[Dam04] M. Damianides. How does SOX change IT? Journal of Corporate Accounting &
Finance 15(6), September/October 2004.

[DP98] R. Dömges, K. Pohl. Adapting traceability environments to project-specific needs.
Communications of the ACM 41(12), 1998.

[FESV07] A. Forster, G. Engels, T. Schattkowsky, R. Van Der Straeten. Verification of Busi-
ness Process Quality Constraints Based on Visual Process Patterns. In Proceedings
of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engi-
neering. IEEE Computer Society, 2007.

[GF94] O. C. Z. Gotel, A. C. Finkelstein. An analysis of the requirements traceability prob-
lem. In Proceedings of 1st International Conference on Requirements Engineering.,
IEEE Computer Society Press. 1994.

[GK07] A. Ghose, G. Koliadis. Auditing Business Process Compliance. In Service-Oriented
Computing – ICSOC 2007. Lecture Notes in Computer Science 4749. Springer
Berlin / Heidelberg, 2007.

[J0̈5a] J. Jürjens. Secure Systems Development with UML. Springer Verlag, 2005.

[J0̈5b] J. Jürjens. Sound Methods and Effective Tools for Model-based Security Engineer-
ing with UML. In Proc. of the 27th International Conference on Software Engineer-
ing (ICSE). 2005.

[LMX07] Y. Liu, S. Müller, K. Xu. A static compliance-checking framework for business
process models. IBM Syst. J. 46, April 2007.

[LRD08] L. T. Ly, S. Rinderle, P. Dadam. Integration and verification of semantic constraints
in adaptive process management systems. Data Knowl. Eng. 64, January 2008.

9 / 12 Volume 37 (2011)



Modeling Process-Related Duties with Extended UML Activity Diagrams

[LRGD10] L. Ly, S. Rinderle-Ma, K. Göser, P. Dadam. On enabling integrated process compli-
ance with semantic constraints in process management systems. Information Sys-
tems Frontiers, 2010.

[LTB07] N. Li, M. Tripunitara, Z. Bizri. On Mutually Exclusive Roles and Separation-of-
Duty. ACM Transactions on Information and System Security (TISSEC) 10(2), May
2007.

[MJ10] H. Mouratidis, J. Jürjens. From Goal-Driven Security Requirements Engineering to
Secure Design. International Journal of Intelligent Systems 25(8), 2010.

[MS94] J. D. Moffett, M. S. Sloman. Policy Conflict Analysis in Distributed System Man-
agement. Journal of Organizational Computing 4(1), 1994.

[OMG10a] OMG. Object Constraint Language Specification. available at:
http://www.omg.org/technology/documents/formal/ocl.htm, February 2010.
Version 2.2, formal/2010-02-01, The Object Management Group.

[OMG10b] OMG. Unified Modeling Language (OMG UML): Superstructure. available at:
http://www.omg.org/technology/documents/formal/uml.htm, May 2010. Version
2.3, formal/2010-05-03, The Object Management Group.

[RAHW06] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, P. Wohed. On the Suit-
ability of UML 2.0 Activity Diagrams for Business Process Modelling. In Proc. of
the Third Asia-Pacific Conference on Conceptual Modelling (APCCM). 2006.

[SGN07] S. Sadiq, G. Governatori, K. Naimiri. Modeling Control Objectives for Business
Process Compliance. In 5th International Conference on Business Process Man-
agement (BPM07). 2007.

[SM02] A. Schaad, J. D. Moffett. Delegation of Obligations. In Proceedings of the 3rd Inter-
national Workshop on Policies for Distributed Systems and Networks (POLICY’02).
2002.

[SM04] A. Schaad, J. Moffett. Separation, review and supervision controls in the context
of a credit application process: a case study of organisational control principles. In
SAC ’04: Proceedings of the 2004 ACM Symposium on Applied Computing. ACM,
New York, NY, USA, 2004.

[SM10] M. Strembeck, J. Mendling. Modeling Process-related RBAC Models with Ex-
tended UML Activity Models. Information and Software Technology, 2010.
doi:10.1016/j.infsof.2010.11.015

[Str05] M. Strembeck. Embedding Policy Rules for Software-Based Systems in a Require-
ments Context. In Proc. of the 6th IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY). June 2005.

Proc. WowKiVS 2011 10 / 12

http://dx.doi.org/10.1016/j.infsof.2010.11.015


ECEASST

[WDHR06] P. Wohed, M. Dumas, A. H. M. T. Hofstede, N. Russell. On the Suitability of BPMN
for Business Process Modelling. In In Proceedings 4th International Conference on
Business Process Management (BPM 2006), LNCS. 2006.

[WS07] C. Wolter, A. Schaad. Modeling of Task-Based Authorization Constraints in
BPMN. In Alonso et al. (eds.), Business Process Management. Lecture Notes in
Computer Science 4714. Springer Berlin / Heidelberg, 2007.

A Invariants for the DutyNodes package
OCL Constraint 1 If a BusinessAction node is used in an Activity diagram, this Activity is always of the type Busi-
nessActivity:

context Activity inv:
if self.node->exists(n |

n.oclIsKindOf(BusinessAction) then
self.oclIsKindOf(BusinessActivity))

else true endif

OCL Constraint 2 In order to unambiguously identify different instances of the same BusinessActivity, we require
that each BusinessActivity defines an attribute called processID:

context BusinessActivity inv:
self.instanceSpecification->forAll(i |

i.slot->exists(s |
s.definingFeature.name = processID))

OCL Constraint 3 Each Duty instance defines an attribute called associatedProcessInstance and needs to be dis-
charged in the context of an instance of the corresponding BusinessActivity:

context Duty
inv: self.instanceSpecification->forAll(i |

i.slot->exists(s |
s.definingFeature.name = associatedProcessInstance ))

inv: self.instanceSpecification->forAll(i |
self.businessAction.activity.instanceSpecification->exists(a |

i.slot->select(si |
si.definingFeature.name = associatedProcessInstance
a.slot->select(sa |

sa.definingFeature.name = processID and
si.value = sa.value))))

OCL Constraint 4 Each Duty defines an attribute called isReviewDuty stating if a special Duty is a review-duty or
not (see Section 2):

context Duty inv:
self.instanceSpecification->forAll(i |

i.slot->exists(s |
s.definingFeature.name = isReviewDuty))

OCL Constraint 5 Each Duty defines an attribute called responsibleSubject to assign an instance of a Duty to a Sub-
ject that is responsible for executing this particular Duty. Therefore, the responsibleSubject must refer to a Subject
that is allowed to execute this Duty (due to its role membership):

context Duty inv:
self.instanceSpecification->forAll(i |

i.slot->exists(s |
s.definingFeature.name = responsibleSubject and

11 / 12 Volume 37 (2011)



Modeling Process-Related Duties with Extended UML Activity Diagrams

(self.role->exists(r |
r.roleToSubjectAssignment->exists(rsa |

rsa.subject.name = s.value)))))

OCL Constraint 6 Each Duty defines an attribute called responsibleRole to assign an instance of a Duty to the ex-
ecuting Role of this particular Duty. Therefore, the responsibleRole must refer to a Role that is directly associated
with the corresponding Duty:

context Duty inv:
self.instanceSpecification->forAll(i |

i.slot->exists(s |
s.definingFeature.name = responsibleRole and
(self.role->exists(r |

r.name = s.value))))

OCL Constraint 7 If a Duty is associated with a DutyTimeConstraint, a Compensation Action needs to be defined.
Thus, a Compensation Action only exists if an associated Duty and a triggering DutyTimeConstraint are defined (see
Section 2):

context Compensation inv:
if self.trigger->exists() then

self.associatedDuty.oclIsKindOf(Duty) and
self.trigger.oclIsKindOf(DutyTimeConstraint)

else true endif

OCL Constraint 8 Each DutyTimeConstraint defines an attribute called currentDate which defines the current date
when a process instance is executed:

context DutyTimeConstraint inv:
self.instanceSpecification->forAll(i |

i.slot->select(s |
s.definingFeature.name = currentDate))

OCL Constraint 9 Each Duty is associated with the state property taking one of the predefined values:

context Duty inv:
self.instanceSpecification->forAll(i |

i.slot->exists(s |
s.state.value = "passive"|"pending"|"discharged"| "compensationActionCalled" ))

OCL Constraint 10 The enterOperation and the leaveOperation of a Duty can only be executed if the corresponding
DutyTimeConstraint is not expired:

context Duty
inv: self.enterOperation->forAll(e |

if e.duty.dutyTimeConstraint.notEmpty then
e.duty.dutyTimeConstraint.currentDate <

e.duty.dutyTimeConstraint.specification.max)
else true endif

inv: self.leaveOperation->forAll(e |
if e.duty.dutyTimeConstraint.notEmpty then

e.duty.dutyTimeConstraint.currentDate <
e.duty.dutyTimeConstraint.specification.max)

else true endif

Proc. WowKiVS 2011 12 / 12


	Introduction
	A Motivating Example
	Modeling Duties in a Business Process Context
	Extending UML2 Activity Diagrams
	Defining Duty States
	Modeling Duties from Different Perspectives
	Integrating Duties into UML2 Interaction Diagrams

	Related Work
	Conclusion
	Invariants for the DutyNodes package

