
An Overview of the Next Scripting Toolkit

Gustaf Neumann and Stefan Sobernig
Tcl/Tk 2011 Conference, October 2011

WU Vienna, University of Economics and Business
Vienna, Austria

Topics of this Presentation
Basic ideas of the Next Scripting Framework (NSF)

The support for Language-Oriented Programming (LOP)

Scripting object systems

Behavioral feature composition: Method aliasing, traits

The design goals of the Next Scripting Language (NX)

Robust object construction: Object parameters and initialization scripts

Hierarchical method interfaces: Method ensembles

Module encapsulation: Method call protection

Performance, features, status, availability

Motivation
Programming in the large:

Mio LOCs, varying programmer teams

Millions of objects, hundred thousands of classes

Running in a seriously multithreaded environment (e.g. on average 30 threads)

Several thousand concurrent users

"Web scaled" systems

Today: up to 200 view per seconds, every view 10+ SQL queries, 5 mio page
views/day

Focus on dynamically evolvable systems:

Dyamnically extend systems without reboot

Increase number of participants in design, somewhat similar to "Wisdom of the
crowds"

Instruments: Domain Specific Languages, reflective systems, interceptors

Next Scripting Framework (NSF)
The name is derived from the universal method combinator "next", as introduced by XOTcl.

Framework: implemented in C, loadable as a Tcl package ::nsf
Object systems are fully scripted, organized as Tcl packages: e.g. ::xotcl, ::nx

NSF can host multiple object systems in a single Tcl interpreter

Scripted Object Systems
The Next Scripting Framework is the toolbox for the object-system implementor:

Create an object system with the base classes named "myObject" and "myClass"
nsf::objectsystem::create myObject myClass

The base classes are created with no methods defined.
#
Provide methods to create and delete objects/classes based on
predefined methods set using arbitrary names

nsf::method::alias myClass + nsf::methods::class::create
nsf::method::alias myObject - nsf::methods::object::destroy

Create an application class and an instance using the method "+":
myClass + C
C + c1

Delete the instance using the method "-":
c1 -

Next steps:

Define selected relations between the core meta-objects (e.g., meta-class/class,
class/instance, mixin relationships)

Populating object system with behavior offered in a Tcl- and Tcl/C-implemented method
pool.

Design Goals of NX
The Next Scripting Language (NX) is a descendant of XOTcl

The design goals of NX shaped the feature set of NSF

Many NX features are available for XOTcl 2 as well

NX differs from XOTcl in the following respects:

1. Stronger Encapsulation:

Goal: Easing reuse, encouraging the definition of explicit interfaces

By default, NX does not provide any general instance variable accessor
method (set), nor any universal variable importer (instvar).

Instead: NX provides access to instance variables via variable resolvers

Method redefinition protection, method call protection

Approach: Encapsulation by convenience

2. Framework supporting Feature Composition:

Method aliasing, traits

Extensible method ensembles

Design Goals of NX (2)
3. Orthogonal Parameterization:

Same parametrization mechanisms for methods and objects

A single argument parser is used for

Scripted Methods

C-implemented methods and Tcl commands

Object Parametrization

Highly orthogonal parameter value checking

Orthogonal introspection: same interface to query (introspect) C-implemented and
scripted methods/commands.

4. Robust Object Initialization

Integrated object parametrization

Tclish scripted init-blocks instead of the vararg dash-commands in XOTcl

Design Goals of NX (3)
5. Flattening the Learning Curve:

Introducing mainstream naming conventions

Smaller naming footprint: The number of methods in NX is approx. a third of the
interface size in XOTcl

6. Better Debugging and Profiling Support:

Integrated profiler

DTrace support

Method Aliasing
Method Aliasing

… is a composition technique to

bind freestanding, shareable method implementations (Tcl procs, Tcl/C
commands, methods, objects)

… as method members to arbitrary objects/classes,

… via an arbitrary name.

… realizes an important kind of behavioral implementation reuse (e.g. when
specifying the behavior of an object system).

Method aliases

… are transparent for method introspection, i.e., the method parameter
specification of the alias target are returned.

… provide the infrastructure for realizing

… support for advanced feature composition, e.g., traits.

… method ensembles

Example for Method Aliases in NX
Method aliases and method forwarders can bind C-implemented or scripted
implementations to methods (including arbitrary Tcl commands)

Methods aliases can make use of certain features of NSF such as method protection or
return value checking for these implementations

nx::Class create C {
 :property {a 0}

 # scripted method
 :public method add {x:integer y:integer} -returns integer {
 return [expr {$x + $y}]
 }

 # Method alias and method forward
 :public alias incr -returns integer -frame object ::incr
 :public forward plusOne -returns integer ::expr 1 +
}

C create c1 ;# create instance c1
c1 incr a ;# increments instance variable "a" to 1
c1 incr a ;# increments instance variable "a" to 2

puts [c1 a] ;# outputs 2
puts [c1 plusOne [c1 a] * 100] ;# outputs 201
puts [c1 a] ;# outputs 2

Support for Advanced Feature Composability:
Traits

NX supports per-object, and transitive per-class mixins (like XOTcl)

Traits provide an alternative composition mechanism for method reuse which overcomes
the "total composition ordering" limitation of mixins

Traits are like "partial classes" defining required missing pieces

Traits provide more fine-grained control over composition

Traits can be simple or complex (nested traits)

Robust Object Initialization
Objective: Robust object construction by protecting against

constructor anomalies (e.g., method shadowing, interruption of next chains), and

argument parsing ambiguities (dash-methods in XOTcl)

NX constructs an object in four steps:

a. Creation: Providing for object storage

b. Parametrization: using a flattened object parameter specification (including
defaults)

c. Init-block; One-time evaluation of a nested script for the scope of the constructed
object.

d. Constructor: The init method chain is processed

The object parameter specification is computed from the object properties and the object
variables defined.

Object parameters leverage the parameter type checkers available (e.g., string is value
classes).

A Constructor Anomaly
Consider an example of a constructor anomaly, as found in literature, coded in XOTcl:

1. Define a base class A:

xotcl::Class create A
A instproc init args {
 my m
}
A instproc m {} {
 # ...
}

2. Define a subclass B, possibly defined by a different Tcl package:

xotcl::Class create B -superclass A -parameter {b}
B instproc init {s} {
 next ; # dispatching A.init()
 my instvar b
 set b $s
}
B instproc m {} {
 my instvar b
 return $b
}

B create b1 "ZAP!"; # --> can't read "b": no such variable while executing "return $b"

Issue: Method m is called from constructor of class A before the instance variable b is set, breaking
the assumption in method m of class B.

Avoiding the Constructor Anomaly in NX
Use required object parameters (properties) instead of passing arguments into the
constructor

nx::Class create A {
 :method init {} {
 :m
 }
 :public method m {} {
 # ...
 }
}

nx::Class create B -superclass A {
 :property b:required
 :public method m {} {
 return ${:b}
 }
}

B create b1 -b "ZAP!"
B create b2; # --> required argument 'b' is missing, should be: ::b2 configure -b ...

Method Ensembles
Resemble Tcl’s idiom of sub-commands and namespace ensembles

Objective: Bind heterogeneous methods (i.e., having distinct signatures) under common,
composite method names

Avoids the need for complex conditional branching, e.g., extensive switch threading, and
custom argument parsing

Benefits:

Supported by method introspection

Integrated with standard unknown handling

Accessible to method combination (i.e., mixins and filters)

Method ensembles are extensible via subclasses, mixins etc.

Implemented as a special kind of object delegation hierarchies, using method aliases

Method Ensembles without Language Support
Define a method foo with sub-methods sub1 and sub2 and an unknown handler without language
support (e.g., in XOTcl):

Object create o
o instproc foo {sub args} {
 #
 # Define sub-methods behavior via "switch" statement
 #
 switch -exact -- $sub {
 sub1 {
 # ensemble method 'foo sub1': provide a custom parser for "args"
 }
 sub2 {
 # ensemble method 'foo sub2': provide a custom parser for "args"
 }
 default {
 # unknown handling
 set m "[current method]: unknown sub-method '$sub'. Available: sub1 sub2"
 return -code error $m
 }
 }
 }
}

o foo sub1 arg1 arg2; # OK
o foo sub2 -np1 arg1 -np2 arg2 arg3; # OK
o foo sub3; # --> foo: unknown ensemble method 'sub3'. Available: sub1 sub2

Method Ensembles with Language Support
Example in NX:

Object create o {
 :public method "foo sub1" {p1 p2} {
 # ...
 }
 :public method "foo sub2" {-np1 -np2 p3} {
 # ...
 }
}

o foo sub1 arg1 arg2; # OK
o foo sub2 -np1 arg1 -np2 arg2 arg3; # OK
o foo sub3;
--> Unable to dispatch sub-method "sub3" of ::o foo;
valid are: foo sub1, foo sub2

Method Call Protection
NX supports stronger means for module encapsulation than XOTcl: no default
setters/getters (e.g., XOTcl’s set or instvar), redefinition protection, and call protection.

An NX object can expose three kinds of callable methods:

public: Methods callable from any client scope (i.e., self-, command- , and next-
calls).

protected: Methods available only for self- and next-calls.

private: Methods available for self-calls issued from within the same class or object
as the call target.

Private methods are important for e.g. feature composition to avoid unexpected shadowing

Method call and redefine protection provided by NSF method-properties

Method Call Protection in NX

nx::Class create A {
 #
 # Public interface of class "A"
 #
 :public method foo args {
 :bar ; # invoke protected method of current object
 }

 #
 # Protected interface of class "A"
 #
 :protected method bar {} {
 : -local baz ; # invoke private method of current object with "-local" flag
 # ...
 }

 #
 # Private interface of class "A"
 #
 :private method baz {} {
 # ...
 }
}
A create ::a1

Performance Improvements
Performance improvements relative to XOTcl 1.6.0 (index = 100):

Summary:

NX is quite fast although it is scripted

On some tests, NX is nearly 5 times faster than XOTcl 1.6.0

Both, NX and TclOO perform better on Tcl 8.5.10 than on Tcl 8.6b2

Performance Improvements (2)
Performance improvements on method dispatches (compared to XOTcl 1.6.0)

Summary:

Same overall picture as for last slide

On some tests, NX is more than 5 times faster than XOTcl 1.6.0

Summary
The major contributions of NSF/NX are:

Improved encapsulation

Improved feature composition

Easier and earlier error detection

Enhancements to the concrete syntax

Parametric objects, method ensembles

Parameter types, parameter options

Improved performance and scalability

Improved Tool Support

DTrace integration

Tcl/C-API generator

Various: * functional testing with nx::test, documentation generation with
nxdoc, profiling, MongoDB/NX binding, …

Available from http://next-scripting.org/

