
Integrity and Confidentiality Annotations for Service Interfaces in SoaML Models

Bernhard Hoisl1,2

1 Secure Business Austria Research Center
Vienna, Austria

bernhard.hoisl@sba-research.org

Stefan Sobernig2

2 Institute for Information Systems and New Media
Vienna University of Economics and Business

stefan.sobernig@wu.ac.at

Abstract—This paper presents an approach for incorporating
data integrity and data confidentiality into the model-driven
development (MDD) of process-driven service-oriented archi-
tectures (SOAs) based on the OMG SoaML. Specifications for
service interfaces are extended by UML activities to model invo-
cation protocols. An invocation protocol makes the control and
the object flows between service invocations explicit. Integrity
and confidentiality attributes are used to annotate the object
flows. The annotations serve for generating security-aware
execution artefacts (e.g., interface description documents, de-
ployment descriptors, and middleware configurations). We
applied the approach prototypically in a Web Services platform
environment (WS-BPEL, WSDL, WS-SecurityPolicy).

Keywords-Service-Oriented Architecture, Security Engineer-
ing, UML, Web Services, SoaML, Model-Driven Development

I. INTRODUCTION

A service-oriented architecture (SOA) is an architectural
style which organises a software system as a composition
of distributed software components, or services. Services
require and provide callable functions at announced net-
work endpoints. Processable interface descriptions serve
for implementing the service interfaces in consumer and
provider applications; independent from the communication
middleware, the invocation protocols, and the transport
protocols used. Modelling support for systems adhering to
the SOA architectural style is provided, e.g., by the UML
extension SoaML [1]. In a process-driven SOA, one or more
components act as process engines and orchestrate service
interactions in order to implement business processes [2].

Business processes executed by a process-driven system
involve data assets (e.g., personnel or financial records) re-
quiring protection against, e.g., unauthorized or inadvertent
disclosure and modification. The need for enforcing security
properties required by data assets (e.g., data confidentiality,
data integrity) arises also from compliance requirements
with legislation (e.g., privacy laws), with industry regulations
(e.g., the Basel II Accord), and with security engineering
frameworks (e.g., the SOA Security Compendium). There-
fore, representing security properties explicitly in business
process models based on EPCs [3], BPMN [4], and UML
([5]–[7]) have been proposed. In an earlier contribution [8],
we introduced first-class support for expressing integrity and
confidentiality properties of object flows in UML activities.

Nevertheless, business process models including security
properties must be integrated with design and implementa-
tion models of the process-executing software system. For
the scope of this paper, we look at the various invocation
data processed for realising interactions among services and
process engines: endpoint references, the operation names,
as well as input and output parameters [9]. Process execution
turns data assets into serialised invocation data exchanged
between service endpoints. For example, if data assets in a
business process require the integrity property, a modeller
must express corresponding message integrity constraints
over service interfaces. With this, integrity-verifying code
(e.g., message interceptors for fingerprinting and signing)
and/or configuration data (e.g., for a security component)
can be generated. Such a multi-stage mapping helps maintain
consistency with corresponding business process models and
contributes to a compliant system implementation.

To facilitate the complex mapping task, model-driven
development (MDD) approaches ([3]–[7]) have combined
modelling support for security properties in business process
models, model integration with structural and behavioural
views of a process-driven SOA, and automated generation
of execution models (and code). However, many existing
MDD approaches fall short in two respects:

Common multi-view meta-model — The support for SOA,
process, and security property modelling is not based on
a meta-modelling environment providing several modelling
views (e.g., a process flow view, a composition view, a
data flow view) for reducing the overall mapping complexity
[10]. Even if adopting a multi-view environment based on a
common meta-model, such as the UML, standard extensions
providing or refining these views are not adopted; e.g., the
SoaML for the UML.

View accuracy — Security concerns are orthogonal to
concerns such as service composition, transport handling
etc. [9]. Modelling data integrity and data confidentiality
properties should not lead to model interactions violating
this separation of concerns. For instance, expressing security
properties of invocation data at the level of process execution
models (e.g., service activities [11]) bears the risk to inter-
weave process flow and invocation handling details which
are otherwise orthogonal to each other.

In this paper, we present an approach for modelling

integrity and confidentiality properties of invocation data
for standard SoaML models. For this, we constrain ser-
vice interfaces through UML activities. These activities
specify invocation data dependencies as object flows with
integrity and confidentiality annotations [8]. By adopt-
ing the standard UML and the SoaML extension, ex-
isting tool support can be reused for generating execu-
tion models (WS-BPEL, WSDL). For the integration of
the UML package SecureObjectFlows [8] with the
SoaML, we provide both, a UML meta-model extension
(SecureObjectFlows::Services) and a profile ex-
tension (SOF::Services), with bi-directional mappings
available.1

The paper is structured as follows: In Section II, we
give an overview of MDD for process-driven SOAs and the
UML extensions used. The integration steps necessary for
modelling secure flows of invocation data in SoaML are
elaborated on in Sections III and IV. We proceed by con-
trasting our approach with closely related work on model-
driven security in Section V. In Section VI, we conclude
by summarising our contribution and by pointing to future
work.

II. OVERVIEW

In relevant MDD approaches ([3]–[7]) computational in-
dependent models (CIMs) are considered first (e.g., informal
process descriptions, structured architectural descriptions,
and security engineering guidelines). In a next step, CIMs
are formalised into platform independent models (PIMs),
providing structural and behavioural views on the technical
services and their process-driven composition. PIMs offer
different, yet integrated views to capture a SOA, a process
description, and security properties. From these different
views, model transformations produce a set of platform-
specific models (PSMs).

In our approach, we employ the UML for modelling
various PIM views on a process-driven SOA. A SOA’s
structure (e.g., services, service interfaces) is depicted as
a set of SoaML/UML models (see Section II-A). Data
dependencies between invocations, including their integrity
and confidentiality properties, are defined for a given service
interface by secure object flows [8] (see Section II-B).
Rule-based PIM-to-PSM translation is achieved by operating
on the models’ XMI representations. The XMI documents
are processed into an intermediate object model, to bridge
between the graph-based PIMs and the block-based PSMs
[12]. Process-oriented transformation steps are supported
by the existing Eclipse-based MDD4SOA plugin [13]. The
targeted PSMs are interface descriptions (i.e., WSDL) and
process execution descriptions (i.e., WS-BPEL 2.0).

1All modelling and implementation artefacts are available from http://
nm.wu.ac.at/bhoisl.

For the transformation of the security property elements,
we extended the MDD4SOA plugin. Additional transfor-
mation steps add WS-SecurityPolicy fragments to the gen-
erated interface descriptions and deployment descriptors.
In addition, our approach allows for specifying parts of
invocation data (e.g., single parameters or message elements)
to be annotated. These parts turn into selection expres-
sions over messages in WS-SecurityPolicy descriptions (e.g.,
EncryptedElements, SignedParts). The attributes
of secure property elements specifying the integrity and
confidentiality details map to identifiers for algorithm suites
as defined by the WS-SecurityPolicy specification. Due to
the space limitations, we do not elaborate further on PSM
generation in this paper.

 Package

Services

Participant

EncapsulatedClassifier

(from Ports)

Port

(from Ports)

Request

Service

0..1

*

Component

(from BasicComponents)

...

+protocol

{redefines TypedElement::type}

+protocol

{redefines TypedElement::type}

0..1

0..1

BehavioredClassifier

(from BasicBehaviors,

Interfaces)

...

InterfaceRealization

(from Interfaces)
*

+ interfaceRealization

1

+ implementingClassifier

Interface

(from Interfaces)

+ contract

*

1

Behavior

(from BasicBehaviors)

Activity

(from BasicActivities, ...)

+ ownedBehavior0..*

+/ ownedPort/+ provided

+/ required

**
* *

ActivityNode

(from BasicActivities, ...)

Package

SecureObjectFlows

ServiceInterface

+node
{subsets ownedElement}

*

+activity
{subsets
owner}

0..1

Pin

(from BasicActivities)

ObjectNode

(from BasicActivities)

SecureNode

CentralBufferNode

(from IntermediateActivities)

ActivityParameterNode

(from BasicActivities)

DataStoreNode

(from CompleteActivities)

SecurePinSecureDataStoreNodeSecureActivityParameterNode

Classifier

(from Kernel)

Figure 1: Relevant excerpts from the SoaML and Secure-
ObjectFlows meta-models

A. SoaML Concepts

The Service-oriented architecture Modeling Language
(SoaML) extends the UML to model SOAs from struc-
tural and behavioural viewpoints (see Figure 1). As for
the composition of service consumers and providers, the
SoaML describes a SOA as a set of interacting components
referred to as Participants, each announcing interaction
capabilities and needs by means of Service and Request
ports, respectively. For this, Service and Request ports
expose required and provided Interfaces realising the
port’s protocol. This port protocol can be further specified by
a ServiceInterface. Participants are connected
via their protocol-compliant ports. Protocol compliance is
expressed by either sharing a ServiceInterface be-
tween corresponding Request and Service ports; or by
mating their required and provided Interfaces directly.

ServiceInterfaces allow the modeller to express be-
havioural details of port protocols explicitly. Protocol roles
taken by two or more interacting ports for realising a Ser-
viceInterface can be modelled, along with behavioural
specifications such as UML activities. An excerpt of a
SoaML model is depicted in Figure 3 for later reference.

B. SecureObjectFlows Concepts

The SecureObjectFlows meta-model extends UML
activity models with abstract syntax and semantics for
modelling data integrity and data confidentiality properties
for object flows. Essentially, the SecureObjectFlows
package specialises three types of ObjectNodes with
integrity and confidentiality properties: SecurePin, Se-
cureDataStoreNode, and SecureActivityParam-
eterNode (see also Figure 1). These specialised nodes in-
herit all behaviour from their corresponding ObjectNodes
and the SecureNode classifier. The abstract Secure-
Node meta-class allows for specifying additional properties
(e.g., cryptographic hash functions, encryption algorithms,
encryption key lengths) for its indirect instances and pro-
vides model integrity constraints.

III. A PROFILE FOR SECURE OBJECT FLOWS

In [8], the SecureObjectFlows package is introduced
as a UML meta-model extension to the UML Complete-
Activities package. For integration with the SoaML,
it is necessary to provide a UML profile variant of the
SecureObjectFlows meta-model. This is because, on
the one hand, the SoaML is provided both as a meta-
model and as a profile, with explicit correspondences defined
for them. Both variants are binding compliance points for
modellers, CASE tool providers, and extension engineers
[1]. On the other hand, a UML profile extension provides
immediate advantages. Most importantly, the CASE tool
integration available for SoaML can be reused.

<<profile>> SOF

<<metaclass>>

ObjectNode
(from BasicActivities, CompleteActivities)

/ isConfidentialityEnsured:Boolean
/ isIntegrityEnsured:Boolean
+ confidentialityAlgorithm:Classifier
+ confidentialityKeyLength:Integer
+ integrityAlgorithm:Classifier

<<stereotype>>

secure

Figure 2: The «secure» stereotype

The profile variant of the SecureObjectFlows pack-
age provides a single stereotype «secure» extending the
ObjectNode meta-class (see Figure 2). This stereotype
provides all integrity and confidentiality attributes available
for the SecureNode meta-class. The OCL constraints
originally defined for the SecureObjectFlows meta-
model were adapted for the context of the «secure» stereo-
type. The correspondences between the meta-model and the
profile are depicted in Table I as instance specifications at
the UML level M1.

M1 model (profile extension) M1 model (meta-model
extension)

:Pin :secure

extension_secure

base_ObjectNode

:SecurePin

:DataStoreNode :secure

extension_secure

base_ObjectNode

:SecureDataStoreNode

:ActivityParameterNode :secure

extension_secure

base_ObjectNode

:SecureActivityParameterNode

Table I: Mappings between the SOF profile and the Se-
cureObjectFlows meta-model extension

IV. SECURE INTERFACES IN SOAML

The SecureObjectFlows extension permits mod-
elling the integrity and confidentiality properties as an-
notations for object nodes in UML activities. We aim at
modelling invocation data (e.g., input and output parameters)
requiring the integrity and the confidentiality property. In
the compositional view of a SoaML model, service in-
vocations are represented by ServiceInterfaces. In
Figure 3, AService stipulates the permissible service
invocations (e.g., OperationB1) between a Request
port (requestor) and a Service port (provider).
To describe the behavioural pattern of service invocations
between two (or more) ports, a ServiceInterface as a
kind of BehavioredClassifier can hold instances of
Behavior and, hence, instances of Activities (see the
UML excerpt in Figure 1 and AnInvocationProtocol
in Figure 3).

<<Participant>>

B
<<Participant>>

A

<<ServiceInterface>>

AService

<<Request>>

requestor:AService
<<Service>>

provider:AService

<<type>><<type>>

+OperationA1()
+OperationA2(p5:String):String

<<interface>>

InterfaceA
+OperationB1(p1:String,p2:String):String
+OperationB2(p4:String):String

<<interface>>

InterfaceB

<<use>> roleA:InterfaceA roleB:InterfaceB

roleA roleB

ad: AnInvocationProtocol

Figure 3: Activities on ServiceInterfaces

The availability of an Activity as owned behaviour of
a ServiceInterface provides an important extension
point2 for defining security properties in invocation proto-
cols:

• Invocation data as object nodes: An Activity, with
its actions denoting invocations, allows for object flows
to reflect input and output parameter streams for invoca-
tions. This is the major representational prerequisite for

2Note that the SoaML specification points to the usage of Activities
for modelling control flows between operations which are required or
provided by Interfaces defined on a ServiceInterface [1].

applying the concepts of the SecureObjectFlows
package.

• Protocol roles: ActivityPartitions can be used
for modelling protocol roles. Each ActivityParti-
tion represents an interface-realising role, abstracting
from the actual Participants using or implement-
ing the interfaces. Their compositional correspondences
are the parts defined for the activity-owning Servi-
ceInterface (see roleA and roleB in Figure
3). ServiceInterfaces may refer to more than
two parts (or protocol roles) and can so model multi-
directional invocation flows.

• Duality of invocations: The roles are typed by the
Interfaces required and implemented by the Ser-
viceInterface (i.e., InterfaceA and Inter-
faceB in Figure 3). With ActivityPartitions
denoting these roles, ActivityPartitions reflect
the provider and consumer sides of invocations in
a single model element. The integrity and confiden-
tiality annotations in the Activity can so capture
consumer- and provider-side capabilities (e.g., signature
mechanisms).

• Standalone invocation protocol: A refined Activity
owned by a ServiceInterface and the security
properties specified for its object flows are modelled
independently from the concrete Participants con-
suming or implementing the service endpoints. In Fig-
ure 3, for instance, AService and so AnInvoca-
tionProtocol apply to any pair of Partici-
pants, whether process engines or service providers.

<<metamodel>>

SecureObjectFlows::Services

<<metaclass>>

ServiceInterface
(from SoaML::Services)

+ isStrict:Boolean = false

<<metaclass>>

SecureInterface

<<metaclass>>

SecureActivityParameterNode

<<metaclass>>

SecurePin

<<metaclass>>

SecureDataStoreNode

<<profile>>

SOF::Services

<<metaclass>>

Class
(from Kernel)

+ isStrict:Boolean = false

<<stereotype>>

SecureInterface

<<stereotype>>

secure

<<stereotype>>

ServiceInterface
(from SoaML)

Figure 4: The UML packages for integration

To connect the SecureObjectFlows extension
to ServiceInterfaces in SoaML, we
provide two UML packages (see Figure 4). The
SecureObjectFlows::Services package applies to
the SecureObjectFlows meta-model extension. The
SOF::Services package glues the SOF profile package
and the SoaML profile. In the following, we outline their
additions to the abstract syntax and to the semantics of
secure object flows.

A. Abstract Syntax

As for the abstract syntax, we introduce a specialised
ServiceInterface named SecureInterface. A
SecureInterface adds to the ServiceInterface’s
capabilities by requiring exactly one Activity to be
set as owned behaviour. At the SoaML meta-model level,
SecureInterface extends the ServiceInterface
meta-class. In the profile mapping, the SecureInter-
face meta-class is represented as a distinct stereotype
specialising the ServiceInterface stereotype; and ex-
tending the Class meta-class (see Figure 4; see also OCL
Constraint 1 in the Appendix).

A SecureInterface contracts either a strict or a
permissive mode. In strict mode, all object flows qualifying
as invocation data flows (as specified further below) must
be annotated. The permissive mode, the default, does not
impose a minimum number of secured object flows. The
reader is referred to OCL Constraint 2 for the profile
realisation of the strict/permissive mode.

B. Constraints

The following constraints impose integrity requirements
upon the Activity owned by a SecureInterface.
In addition, they add semantics to model flows of
invocation data more accurately. For the meta-model
integration, the OCL constraints are defined over the meta-
classes SecureDataStoreNode, SecurePin, and
SecureActivityParameterNode. As for the profile,
they apply to the context of the «secure» stereotype. The
OCL constraints for the SOF profile package are given as
listings in the Appendix.

1) Traceability between Invocations and Interfaces: An
Activity may only contain Actions representing Op-
erations owned by the Interfaces implemented or
used by a given ServiceInterface. We realise this
by requiring all Actions to be instances of CallOp-
erationAction. In addition, all CallOperationAc-
tions in an ActivityPartition must link to an
Operation of the Interface represented by this Ac-
tivityPartition (see OCL Constraint 3).

2) Cross-Interface Invocations only: Depending on the
partitioning of an Activity, object flows may occur
within a single partition or between two partitions. In Figure
5, for instance, the object flow between OperationB1
and OperationB2 depicts an output/input dependency
between operations owned by the same Interface. Such
service invocations are traded within the same Service
or Request port and do not travel between two service
endpoints (see also Figure 3). We consider such service
invocations bypassing most steps of invocation processing
and being served within process or machine boundaries [9].

Therefore, we limit the applicability of secured object
nodes to cross-interface invocations (see OCL Constraint

4). To distinguish between inner- and cross-interface object
flows throughout an invocation protocol activity, all object
nodes must be assigned to a single partition (see OCL
Constraint 5). According to these constraints, the object flow
between OperationB2 and OperationA2 in Figure 5
can be annotated, for instance.

3) Activity Parameters for Initial and Intermediary In-
bound Data: An invocation protocol activity captures data
dependencies between invocations, i.e., output data of one
invocation serving as input data for a subsequent invocation.
In two important cases, however, input data originates from
the outside. These cases are initial and intermediary inbound
data.

Initial inbound data is provided by the consumer trigger-
ing the execution of the Activity (see e.g. p1 in Figure
5). Intermediary inbound data is not the result of previous
invocations within the same protocol. The input is rather
provided from the outside, such as from a process engine
holding process control data (see, e.g., p5).

For specifying secure object flows, however, it is manda-
tory to model pairs of secure object nodes [8]. This is
because the security properties required at either end of an
object flow might deviate from each other. Consider, for
instance, two Participants providing different confi-
dentiality algorithm suites. In order to model this hetero-
geneity while maintaining consistency between endpoints,
an additional object node as an explicit counterpart must be
modelled (see OCL Constraint 6). By using ActivityPa-
rameterNodes as counterparts, external input and output
dependencies of the Activity are expressed.

4) Activity Parameters for Intermediary and Final Out-
bound Data: Analogous to initial and intermediary inbound
data, output data can describe external data dependencies,
i.e., dependencies which do not manifest within the in-
vocation protocol. For instance, an invocation’s output is
to be stored as a process-persistent variable by a process
engine. If secured, such object nodes require a corresponding
object node, e.g., an ActivityParameterNode (see
OCL Constraint 6).

5) Streaming-only Activity Parameters: As a result of
the prior two constraint sets, the ActivityParame-
terNodes used to depict the counterparts of intermediary
inbound data (e.g., AInParam2 in Figure 5) and output
data must stand for streaming activity parameters (see OCL
Constraint 7). Streaming parameters represent data which
become available in the context of a given activity, or which
leave this context, during execution of the Activity. Note
that the streaming mode is only mandatory for cases of
secure intermediary Input- and OutputPins (in the
sense of OCL Constraint 6). Corresponding object nodes
of Pins (e.g., AnInParam1) held by the first and the last
CallOperationActions are exempted so that they can
model global start and stop conditions for the invocation
protocol activity.

6) Same Origin for Input Data Flows: Input data for
service invocations, represented by InputPins on Call-
OperationActions, must have corresponding object
nodes which all reside in the same ActivityPartition.
By corresponding, we mean the initial source nodes of an
object flow. Different partitions as origins for input data
for an operation are invalid (see OCL Constraint 8). In
Figure 5, for example, we find that the InputPins of
OperationA2 have corresponding object nodes in the
roleB partition.

OperationB1

OperationA2 OperationB2

roleA roleB

p1
p2

p3
p4

p5

<<secure>>

<<secure>>

<<secure>>

(roleA)

<<secure>>

AInParam1

<<secure>> (roleB)

<<secure>>

AInParam2

{stream}

{ integrityAlgorithm = Sha256 }

{ integrityAlgorithm = Sha256 }

Figure 5: An invocation protocol activity with secure object
flows

V. RELATED WORK

In [3], Jensen and Feja extend a proprietary MDD soft-
ware tool for modelling SOA security properties (access
control, data integrity, and confidentiality). The target PSMs
are WS-SecurityPolicy specifications. EPCs are used at the
business process modelling level. The security model view,
while sharing the EPC meta-model, is separate from the
process model view. Both are maintained separately and
mapped to each other to form an amalgam model. As for
view accuracy, the security properties are only captured for
the scope of a single process engine (rather than for a
collaboration of service partners).

Wolter et al. present in [4] an approach for modelling
security goals visually, including model transformations
into corresponding security policy specifications. Security-
annotated BPMN process models are mapped to WS-BPEL
service descriptions and WS-Security policies. As the secu-
rity models are specified in the UML, model transformations
must be applied between the UML and the BPMN process
description. A common meta-model for all views is, there-
fore, not realised. The security properties covered are access
control (authentication and authorisation), confidentiality,
and integrity at a per-message level.

Another approach is presented by Basin and Doser [5].
Basing the work on UML 1.4 class models, the authors
integrate their security modelling language (SecureUML)
with a custom defined process language. The SecureUML is
extended to adopt an RBAC scheme, with RBAC constraints
being expressed over process model instances. The PSM
target is code for Java Servlet containers, instrumenting

the container’s access control mechanisms. The approach is
limited in its extensibility because UML M1 class models
define the shared meta-model. The state-transition semantics
of the process models only cover a single view on a process-
driven system. SOA-related views are not provided at all.

Nakamura et al. describe in [6] a toolkit for generating
web services security configurations, covering properties
such as authentication, integrity, non-repudiation, and con-
fidentiality. UML class models provide a structural view
on a SOA, with stereotypes representing selected security
properties. Although using the UML meta-model has poten-
tial for adopting existing UML extensions, the authors limit
themselves to a custom, ad hoc profile definition. Process
views are not considered. The target PSMs are IBM WS-
Security specifications.

In [7], Hafner et al. present a model-driven security
approach for incorporating security requirements (integrity,
confidentiality, and non-repudiation) into PIMs. The UML
is used, on the one hand, to model process descriptions as
activity diagrams and, on the other hand, to add security
annotations to ObjectNodes using OCL-like statements.
Two orthogonal views are presented: a workflow and an
interface view. Although the PIMS are based on a common,
i.e., the UML, meta-model, SOA-related extensions are not
reused. Secure document flows between two participants can
be expressed in the workflow view only, security properties
of object flows between service invocations are not covered.
From the PIMs, transformations generate BPEL, WSDL, and
XACML artefacts.

VI. CONCLUDING

In this paper, we outlined an approach for model-driven
security of invocation data in process-driven SOAs. With an
extension of SoaML service interfaces based on UML activi-
ties, we provide means to model integrity and confidentiality
in invocation protocols. We emphasise the reuse of existing
modelling extensions (SoaML, SecureObjectFlows), as well
as existing MDD software artefacts (MDD4SOA). A UML
profile (SOF::Services), formally described by a suite
of OCL constraints, is available for adoption.

In contrast to likeminded MDD approaches, we provide
separate views for security properties of invocation data, on
the one hand, and process descriptions, on the other hand. As
security requirements are orthogonal to, for instance, service
orchestration requirements, these views should not interfere
with each other. This separation of concerns is achieved for
the UML as a common meta-model.

Future work will focus on integrating the invocation data
view with the process flow and business process views.
Candidates are service activities in UML4SOA [11] and
the process flow models in [14]. Moreover, we plan to
mature and document our adaptations of the Eclipse plugin
MDD4SOA; and then place them into the public domain.

REFERENCES

[1] Object Management Group, “Service oriented architecture
Modeling Language (SoaML) – Specification for the UML
Profile and Metamodel for Services (UPMS) – Version 1.0,
Beta 2,” Available at: http://www.omg.org/spec/SoaML/1.0/
Beta2/PDF, 2009.

[2] C. Hentrich and U. Zdun, “A Pattern Language for Process
Execution and Integration Design in Service-Oriented Archi-
tectures,” Transactions on Pattern Languages of Program-
ming, vol. 1, pp. 136–191, 2009.

[3] M. Jensen and S. Feja, “A Security Modeling Approach for
Web-Service-based Business Processes,” in Proceedings of
the 16th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems. Los
Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 340–
347.

[4] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and
C. Meinel, “Model-Driven Business Process Security Re-
quirement Specification,” Journal of Systems Architecture,
vol. 55, no. 4, pp. 211–223, 2009.

[5] D. Basin, J. Doser, and T. Lodderstedt, “Model Driven Secu-
rity: From UML Models to Access Control Infrastructures,”
ACM Transactions on Software Engineering and Methodol-
ogy, vol. 15, pp. 39–91, January 2006.

[6] Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono,
“Model-Driven Security Based on a Web Services Security
Architecture,” in Proceedings of the IEEE International Con-
ference on Services Computing. Los Alamitos, CA, USA:
IEEE Computer Society, 2005, pp. 7–15.

[7] M. Hafner, R. Breu, B. Agreiter, and A. Nowak, “SECTET:
An Extensible Framework for the Realization of Secure Inter-
Organizational Workflows,” Journal of Internet Research,
vol. 16, no. 5, pp. 491–506, 2006.

[8] B. Hoisl and M. Strembeck, “Modeling Support for Confiden-
tiality and Integrity of Object Flows in Activity Models,” in
Proceedings of the 14th International Conference on Business
Information Systems (BIS2011). Lecture Notes in Business
Information Processing (LNBIP), Springer, forthcoming.

[9] S. Sobernig and U. Zdun, “Invocation Assembly Lines:
Patterns of Invocation and Message Processing in Object
Remoting Middleware,” in Proceedings of 14th Annual Eu-
ropean Conference on Pattern Languages of Programming
(EuroPLoP 2009), A. Kelly and M. Weiss, Eds. Irsee,
Germany, July 8-12, 2009: CEUR-WS.org (Vol-566), March
2009.

[10] H. Tran, U. Zdun, and S. Dustdar, “VbTrace: Using View-
based and Model-driven Development to Support Traceabil-
ity in Process-driven SOAs,” Software & System Modeling,
vol. 10, no. 1, pp. 5–29, 2009.

[11] P. Mayer, N. Koch, A. Schröder, and A. Knapp, “The
UML4SOA Profile,” Available at: http://www.uml4soa.eu/
wp-content/uploads/uml4soa.pdf, 2010.

[12] J. Mendling, K. B. Lassen, and U. Zdun, “On the Transfor-
mation of Control Flow between Block-Oriented and Graph-
Oriented Process Modeling Languages,” International Jour-
nal of Business Process Integration and Management, vol. 3,
no. 2, pp. 96–108, 2008.

[13] P. Mayer, A. Schroeder, and N. Koch, “MDD4SOA: Model-
Driven Service Orchestration,” in Proceedings of the 12th
International IEEE Enterprise Distributed Object Computing
Conference. IEEE Computer Society, 2008, pp. 203–212.

[14] U. Zdun, C. Hentrich, and S. Dustdar, “Modeling Process-
Driven and Service-Oriented Architectures Using Patterns and
Pattern Primitives,” ACM Trans. Web, vol. 1, no. 3, pp. 23–50,
September 2007.

APPENDIX

CONSTRAINTS FOR THE
SOF::SERVICES PROFILE

The following OCL expressions are specific to the Eclipse
3.6.2 MDT/OCL engine.

OCL Constraint 1: A SecureInterface must own an
Activity instance as its owned behaviour.
context SOF::Services::SecureInterface
inv: self.base_Class.ownedBehavior->one(oclIsKindOf(Activity))

OCL Constraint 2: In strict mode all cross-interface object
flows must be secured.
context SOF::Services::SecureInterface
def: allPredecessors(objNode : ActivityNode) : Set(ActivityNode) =

objNode.incoming.source->collect(x |
allPredecessors(x))->asSet()->union(objNode.incoming.source)

inv: self.isStrict implies
self.base_Class.ownedBehavior.oclAsType(Activity).node->select(
oclIsKindOf(ObjectNode))->forAll(objNode |
allPredecessors(objNode)->select(incoming->isEmpty())->forAll(s |
s.inPartition <> objNode.inPartition implies
s.getAppliedStereotype(’SOF::Services::secure’) <> null and
objNode.getAppliedStereotype(’SOF::Services::secure’) <> null))

OCL Constraint 3: All Actions must be instances of
CallOperationAction and each CallOperation-
Action’s operation enclosed by a given partition must
correspond to an Operation owned by the Interface
denoted by this partition.
context SOF::Services::SecureInterface
inv: self.ownedBehavior.oclAsType(Activity).node->

select(oclIsKindOf(Action))->forAll(a |
a.oclIsKindOf(CallOperationAction) and
self.part->any(name = a.inPartition->any(true).name).type.
oclAsType(Interface).ownedOperation->
includes(a.oclAsType(CallOperationAction).operation))

OCL Constraint 4: Only corresponding object nodes residing
in different partitions may be tagged by the «secure»
stereotype.
context SOF::Services::secure
def: allPredecessors(objNode : ActivityNode) : Set(ActivityNode) =

objNode.incoming.source->collect(x | allPredecessors(x))->asSet()->
union(objNode.incoming.source)

inv: allPredecessors(self.base_ObjectNode)->select(
incoming->isEmpty() and
oclIsKindOf(ObjectNode) and
getAppliedStereotype(’SOF::Services::secure’) <> null)->forAll(s |
s.inPartition <> self.inPartition)

OCL Constraint 5: All activity nodes must be assigned to
and must be contained by exactly one and only one activity
partition.
context SOF::Services::SecureInterface
inv: self.base_Class.ownedBehavior.oclAsType(Activity).node->forAll(

inPartition->size() = 1)

OCL Constraint 6: All secured InputPins must have an
incoming object flow; all secured OutputPins must have
an outgoing object flow.
context SOF::Services::secure
inv: self.base_ObjectNode.oclIsKindOf(InputPin) implies

self.base_ObjectNode.incoming->notEmpty()
inv: self.base_ObjectNode.oclIsKindOf(OutputPin) implies

self.base_ObjectNode.outgoing->notEmpty()

OCL Constraint 7: All ActivityParameterNodes
which are not initial or final nodes in a control and data
flow but counterparts of intermediary Input- and Out-
putPins must refer to a streaming Parameter.
context SOF::Services::SecureInterface
def: isFirstNode(a : ActivityNode) : Boolean =

a.owner.oclAsType(Activity).node->select(
oclIsKindOf(InitialNode))->exists(outgoing.target->any(true) = a) or

a.owner.oclAsType(Activity).node->select(
oclIsKindOf(ActivityNode) and incoming->isEmpty())->includes(a)

def: isLastNode(a : ActivityNode) : Boolean =
a.owner.oclAsType(Activity).node->select(
oclIsKindOf(ActivityFinalNode))->exists(
incoming.source->any(true) = a) or

a.owner.oclAsType(Activity).node->select(
oclIsKindOf(ActivityNode) and outgoing->isEmpty())->includes(a)

def: allSuccessors(objNode : ActivityNode) : Set(ActivityNode) =
objNode.outgoing.target->collect(x |
allSuccessors(x))->asSet()->union(objNode.outgoing.target)

inv: self.base_Class.ownedBehavior.oclAsType(Activity).node->select(
oclIsKindOf(ActivityNode))->forAll(an |
(not isFirstNode(an) implies
an.input->forAll(ipin |
allPredecessors(ipin)->select(
oclIsKindOf(ActivityParameterNode))->forAll(
oclAsType(ActivityParameterNode).parameter.isStream))) and

(not isLastNode(an) implies
an.output->forAll(opin |
allSuccessors(opin)->select(
oclIsKindOf(ActivityParameterNode))->forAll(
oclAsType(ActivityParameterNode).parameter.isStream))))

OCL Constraint 8: All source object nodes of a set of
InputPins owned by a CallOperationAction must
be assigned to the same activity partition.
context SOF::Services::secure
inv: self.base_ObjectNode.oclIsKindOf(InputPin) implies

self.base_ObjectNode.oclAsType(InputPin).owner.oclAsType(
CallOperationAction).input->forAll(ipin |
allPredecessors(ipin)->select(
incoming->isEmpty() and
oclIsKindOf(ObjectNode) and
getAppliedStereotype(’SOF::Services::secure’) <> null)->forAll(
inPartition = self.inPartition))

