
Supporting Multiple Feature Binding Strategies in NX

Stefan Sobernig Gustaf Neumann Stephan Adelsberger

Institute for Information Systems and New Media
WU Vienna

Austria
{firstname}.{lastname}@wu.ac.at

ABSTRACT

Feature-oriented programming (FOP) environments restrict
implementers of software product lines to certain implemen-
tation choices. One is left with the choices between, for
example, class-level or object-level extensions and between
static or dynamic feature bindings. Once developers have
chosen an FOP environment, they are confined to its ca-
pabilities. This choice is typically made at an early devel-
opment stage causing an unwanted lock-in. We present a
feature-oriented development framework based on dynamic,
object-oriented constructs that allows for deferring such de-
sign decisions by piggybacking on first-class language enti-
ties (metaclasses, mixins) for feature-oriented programming.
To demonstrate the feasibility, we implemented a prototyp-
ical framework in the scripting language NX. NX provides
the required OO infrastructure for dynamic software evo-
lution : a reflective language model, metaclasses, multiple
class-based inheritance, decorator mixins, and open entity
declarations. We exemplify the approach based on a Graph
Product Line.

1. INTRODUCTION
A software product line (SPL) provides a common code

base for a family of related software products and a prod-
uct line model (e.g., a feature model) specifying the set of
valid products which can be built from the product line. An
important approach to constructing software product lines
in an object-oriented (OO) programming environment are
collaboration-based designs [23].
In a collaboration [1], objects and classes interact by ex-

changing messages to realize an integrated piece of func-
tionality. The base product is a collaboration implementing
a domain model using a mix of OO composition strategies
(e.g., a structure of associated objects and classes). The im-
plementation of a feature is a code unit that is designed to
extend the collaborations of the base product. The target
products (the instances of the SPL) are built from a set of
software assets comprising the base product and feature im-
plementations selected by a valid configuration of the prod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’12, September 24–25, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1309-4/12/09 ...$15.00.

uct line model. Therefore, the composed products embody
the collaboration-based designs of the base product and of
the feature modules. This step of building an SPL instance
based on feature composition is supported by object-level
composition techniques as well as by dedicated approaches
for feature-oriented programming (FOP ; [23]).

In order to implement a software product line, various
design decisions must be made on the base product and
on the individual feature implementations. Important de-
cisions are : How is the set of assets organized into separate
code units to be combined into a final product ? How can
feature cohesion [9] be achieved for these code units ? How
should object collaborations and their feature-specific refine-
ments be expressed and made explicit ? Which OO extension
mechanisms could/should be used for feature composition ?
Is first-class code representation (data structures, objects,
classes) of the assets required ? Should the target product be
a code unit (such as a class) that should be further reusable
and refinable ? What is the desired feature binding time ?
In other words, in which program phase are the feature im-
plementations included into the product : at design time, at
compile time, at start-up time, or at runtime ? What is the
desired/required product granularity : Is the product to be
represented as a collaboration of objects or of classes ?

By adopting certain object-compositional techniques or
a particular FOP toolkit, many of these decisions must be
made comparatively early in an SPL development cycle.
For example, the chosen FOP approach (e.g., rbFeatures
[6]) and the underlying OO language (Ruby) determines
certain decisions due to the programming language’s OO
model. For Ruby, this model is class-centric with single,
class-based inheritance and a form of mixin composition
based on dynamic superclass injection. The FOP approach
might also provide mandatory abstractions for features (e.g.,
feature classes) and products (e.g., product classes). Col-
laborations of classes and objects could be expressed in a
language-supported manner (e.g., by declaring a names-
pace per collaboration). As for the feature composition,
the toolkit might adopt a static, class-level approach (e.g.,
by generating a composed source representation of a class
structure at the SPL build time).

These decisions appear to be prematurely taken as they
come bundled with the chosen FOP framework and the un-
derlying programming language. After having implemented
the product line to a large extent, revisiting any of those
decisions at some later time (e.g., due to changed require-
ments) might even require a complete re-implementation in
a more fitting FOP environment.

In this paper, we present an FOP framework based on
dynamic OO constructs that allows for deferring the design
decisions such as the feature binding time and the prod-
uct granularity. To demonstrate the feasibility of the ap-
proach, we implemented the framework prototypically in the
dynamic, object-oriented scripting language NX [11]. This
prototype showcases the required OO infrastructure for dy-
namic software evolution [17], comprising a reflective lan-
guage model, metaclasses, multiple class-based inheritance,
and composable inheritance hierarchies [15]. With this, our
approach provides means to defer decisions about . . .
– the representation of feature modules,

– the feature binding time (static, dynamic), and

– the composition granularity (class, object).
The remainder of this paper is structured as follows : In

Section 2, we elaborate on our motivation to support vari-
able SPL implementation decisions and we identify a set
of challenges. In Section 3, we focus on the necessary lan-
guage support to address these challenges, and introduce a
lightweight realization based on the scripting language NX.
Then, we briefly compare our approach with related work on
SPL implementation techniques (Section 4). We close with
a summary and an outlook (Section 5).

2. VARIABILITY IN FEATURE COMPOSI-

TION DECISIONS
In the following, we will use the common example of a

Graph Product Line (GPL) to illustrate our approach. This
product line example has been used in closely related work
on FOP [20, 16] and will, therefore, facilitate comparing the
approaches. As a product line model, the GPL is shown as
a feature diagram in Fig. 1. The GPL is modeled as a fam-
ily of products which implement different types of graphs
(colored, weighted, directed, undirected, edge-labeled, etc.),
different representation strategies (e.g., adjacency or inci-
dence lists), and support algorithms (e.g., for graph traver-
sals). For this paper, we only look at selected features. The
feature colored adds coloring support to graph edges. The
second feature, weighted, adds labeling support to graph
edges to store and to attach weightings to edges. As shown
in the feature diagram in Fig. 1, these two exemplary fea-
tures are both optional (depicted by the empty dot markers)
and simultaneous. That is, this product line model allows for
four valid products : plain graphs, colored graphs, weighted
graphs, and, both, colored and weighted graphs.

GraphGraph Edge Node

WeightWeightcolored Color

WeightWeightweighted Weight

«refines»

«refines»

Edge

Edge

Graph

colored weighted

Figure 1: A Collaboration-based Design (left) and a Feature Di-
agram of the GPL (right)

The design of the exemplary GPL is collaboration-based
and layered (see Fig. 1, on the left). The graph base product
is implemented by a collaboration of three entities : Graph,
Edge, and Node. The two feature implementations of col-
ored and weighted refine these base entities (i.e., Edge) in
an incremental manner (e.g., by adding to the printing fa-
cility of the edges). For such designs, numerous feature im-
plementation techniques have been proposed, for example :

mixin layers [23], delegation layers[16], virtual classes [2],
and decorator layers [19].

2.1 Feature Binding and Composition Levels
Including a feature into a program is referred to as bind-

ing a feature. Feature binding can occur at several binding
times, with each programming language and runtime envi-
ronment providing a characteristic set of binding times (pre-
processing time, compile time, load time, program execution
time), and in certain binding modes (i.e., fixed, changeable,
or dynamic ; [3]). Static feature binding occurs at an early
binding time and represents an irrevocable inclusion of a
feature into a program. Forms of dynamic feature binding
allow for deferring feature inclusion to later binding times
(e.g., during program execution) and for revoking the inclu-
sion decision during the lifetime of a program.

Composing feature implementations can be performed at
different levels of abstraction : the object, the class, the
method, the sub-method, or the statement levels. For the
scope of this paper, we limit ourselves to objects and to
classes (see Fig. 2), the primary abstraction levels in object-
oriented, collaboration-based designs [23]. At the class level,
the derived product is represented by a single composed class
or a composed, collaborative class structure to be instanti-
ated. At the object level, the product is embodied by a single
composed object or a composed object collaboration.

static dynamic

binding

c
la
s
s

o
b
je
c
t

c
o

m
p

o
s

it
io

n
 l

e
v

e
l

e.g., FeatureC++

compound classes

e.g., FeatureC++

decorator layers

?

?

(changing binding/level)

Figure 2: Variable feature composition

Along these two dimensions, FOP approaches [20, 16, 23]
fall into four categories (Fig. 2). For example, the code gener-
ation approach of Rosenmüller et al. [20] covers static class-
level (FeatureC++ compound classes) and dynamic object-
level feature compositions (FeatureC++ decorator layers).
By offering multiple feature binding strategies, an FOP en-
vironment realizes composition variability :

Changeable feature binding times. This allows the
product line implementer to derive products from one code
base which can benefit either from static feature binding
(e.g., allowing for code-level optimization, avoiding binding
overhead in execution times, minimizing the memory foot-
print, removing otherwise dead code) or from dynamic fea-
ture binding (e.g., product reconfiguration during runtime,
lazy acquisition of platform-specific product refinements).

Changeable composition levels. Closely related, one
might learn that certain feature implementations should
only be applied to selected product instantiations (depend-
ing on runtime conditions). Class-level implementations of
product line assets represent a family of product instanti-
ations. To obtain a handle on one of these instantiations
(i.e., an instance), idioms such as singleton classes to rep-
resent product instances at the class level must be devised
(see, e.g., [2]). Alternatively, an FOP framework might sup-
port a transition to an object-level composition.

Mixed binding/composition strategies. Finally, con-

sider the requirement to mix different binding strategies and
composition levels. First, a product is composed statically at
the class level (e.g., through source code generation), result-
ing in a class collaboration composed from a base product
and certain features. To enact the collaboration, instances
of the collaborating classes must be created. This instance
structure could be further extended dynamically and at the
object (instance) level by another feature during runtime,
independently from further instantiations of the product’s
class collaboration. This requires the flexibility to change
the composition strategy at arbitrary times (and not only
at SPL build time [19]).

2.2 Challenges
A survey of closely related work [19, 7, 1, 16, 23, 24] reveals

important challenges of providing composition variability :
Single code base. At the time of designing and imple-

menting the product line assets (e.g., the core and the fea-
ture modules), adopting several level/binding combinations
should not require the redundant and diverging implemen-
tation of features [19]. Code specific to a given feature, bind-
able both statically and dynamically (e.g., weighted in the
GPL), should not be kept in two different implementation
variants. Also, the feature implementations should not con-
tain binding-specific boilerplate code (e.g., wrapper code for
feature-module loading at runtime). If neglected, there is the
risk of introducing code clones [22].
Avoiding decomposition mismatches. In an object-

based decomposition of a layered, collaboration-based de-
sign, the collaborations (Graph, colored, and weighted in
Fig. 1) and the collaboration parts (Graph.Edge, weighted.
Edge) are represented by distinct objects. For the client of a
collaboration-based product instantiation (a weighted graph
object), the parts of a complex collaboration form single con-
ceptual entities (e.g., the composed, most refined edge kind).
This decomposition mismatch can entail a self-problem dur-
ing method combination and method forwarding [8, 16].
Composition locality . Critical operations (e.g., message

sends) on and within a composed collaboration (a weighted
graph) should be local to the composed collaboration. The
composed collaboration so sets the context for, e.g., con-
structor calls [24, 16].
Symmetry : Binding and unbinding . For feature bind-

ings to be fully dynamic, the binding operation must be re-
versible [7]. This is also necessary to form valid products
during runtime when facing mutually exclusive features.
Product-bounded quantification . For binding feature

implementations, quantification [5] refers to evaluating se-
lection predicates over a program structure (an AST, an
interpreter state) to match code units (objects and methods
in the base program) for performing transformation, weav-
ing, and intercepting operations on them. Support for dy-
namic feature binding allows one to create multiple products
(and product instantiations) side-by-side [19] ; for example,
multiple graph products each with a different feature con-
figuration. This requires the client code to manage multiple
feature compositions. Reconfiguring selected products (e.g.,
unbinding the colored feature) must preserve the feature
composition of the remaining products through tailorable
quantification statements.
Host language integration . The product code resulting

from a feature composition step should be usable directly
from native applications written in the host language. As

an example, consider the plain C++ support as discussed
in [19]. Any unwanted interactions between the FOP infras-
tructure (e.g., collaborations) and the host language features
used to implement them (e.g., classes and class inheritance
systems, the type system) must be controlled [23]. For exam-
ple, if the product derived was represented by a collabora-
tion structure implemented by a set of (nested) classes, these
classes would have to remain refinable by means of native
subclassing (the inheritance hierarchy) without breaking the
collaboration semantics (the extension hierarchy).

3. LANGUAGE SUPPORT FOR VARIABLE

FEATURE COMPOSITION
In this section, we present an approach to supporting both

static and dynamic, as well as class- and object-level feature
composition. The approach adopts established high-level,
object-oriented abstractions for object composition (i.e.,
decorator mixins, class-based multiple inheritance), objec-
t/class aggregation, and metaclasses. While applicable to
several language environments providing these constructs,
we showcase the approach for the dynamic, object-oriented
scripting language NX [11] because it provides built-in sup-
port for all of these composition operations. Therefore, NX
is a convenient test bed for an implementation study.

3.1 The Scripting Language NX
NX is a highly flexible, Tcl-based, object-oriented script-

ing language. NX is a descendant of XOTcl, a language de-
signed to provide language support for design patterns [13].
The object system of NX is rooted by a single class :
nx::Object. All objects are instances of this class. In
NX, classes are a special kind of object providing meth-
ods to their instances and managing their life-cycles. These
class objects (simply classes, hereafter) are instances of the
metaclass nx::Class. NX supports object-specific behav-
ior : Objects can carry behavior distinct from the behavior
specified by their class. This behavior can be defined in
object-specific methods and by decorator mixins (see per-
object mixins in [12]). The object system is highly flexible,
the relations between objects and classes and among classes
can be changed at arbitrary times. NX supports dynamic
software evolution [17] by supporting dynamic state and
behavior changes at runtime, as well as dynamic changes
to program structure and to program composition [10]. In
the remainder, we concentrate on the language features of
NX relevant for supporting feature-oriented programming.
Throughout the section, we refer to the collaboration-based
design of a Graph Product Line (GPL, see Fig. 1).

from

Node

«instance»

nx::Class
«metaclass»

+create(name)

+info(option)

+method(name,params,body)

+property(spec)

to

Graph

print()

«instance»

Edge

print()

«instance»

edges

nx::Object

new edge(args):Edge

method(name, params, body)

print()

+info(option)

+method(name,params,body)

+property(spec)

(a) UML

1 nx::Class create Edge {

2 :property from

3 :property to

4

5 :public method print {} {

6 # ...

7 }

8 }

9 nx::Class create Node

10 nx::Class create Graph {

11 :public method print {} {

12 # ...

13 }

14 }

(b) NX

Figure 3: NX and GPL Base Classes

Creation of Objects and Classes in NX . Fig. 3a shows
the base classes nx::Object and nx::Class with a subset

of their methods (create for object construction, info for
object introspection, method and property for member dec-
larations). While the instances of nx::Object are objects,
the instances of nx::Class are classes. Since the class of a
class is a metaclass, nx::Class is a metaclass.
To define the basic GPL class structure, one constructs

the corresponding application classes Graph, Edge, and
Node using the method create of nx::Class. Per default,
the superclass of the application classes is the root class
nx::Object. The code snippet in Fig. 3b defines the classes
modeled in Fig. 3a. NX provides properties as attributes
with generated accessor methods. For the class Edge, the
two properties from and to are defined. The classes Edge

and Graph declare two print methods. Note that all these
artifacts are created at runtime (i.e., upon evaluation of the
script) via methods defined by the metaclass nx::Class

(the methods create, method, and property).

«instance»«instance»

from

Node

to

«instance»

Edge

+print()

edges

Graph

«instance»

«instance»

nx::Object

new edge(args):Edge

method(name, params, body)

print()

+info(option)

+method(name,params,body)

+property(spec)

Collaboration
«metaclass»

nx::Class
«metaclass»

+create(name)

+info(option)

+method(name,params,body)

+property(spec)

Graph

+print()

«Collaboration»

(a) UML

1 nx::Class create Collaboration \

2 -superclass nx::Class

3

4 Collaboration create Graph {

5 :property name

6 :property edges:0..n

7

8 :public method print {} {

9 # ...

10 }

11

12 nx::Class create [self]::Node

13 nx::Class create [self]::Edge {

14 :property from

15 :property to

16 :public method print {} {

17 # ...

18 }

19 }

20 }

21

22 Graph create graph1

(b) NX

Figure 4: Metaclasses and Object Aggregation

Object and Class Aggregation in NX . In order to
group multiple object and class definitions, we use dynamic
object aggregations [14]. The aggregation relationship real-
izes a part-of relationship commonly used in object-oriented
designs. NX supports object aggregation via nesting objects
as trees based on their names. In NX, objects and classes
are explicitly named. The object aggregation in NX is based
on object naming similar to file system paths : The name of
an aggregated object is prefixed by the name of the parent
object, using :: as a separator. In the same way that objects
can contain other objects, classes can contain other classes.
This is a consequence of classes being objects.
Later, we will use object aggregation for two purposes :

To express which classes interact within a collaboration and
to define feature modules. A collaboration is then modeled
as a class containing the interacting classes (the collabora-
tion parts) as its child objects. In Fig. 4a, we define the
Collaboration concept as an NX metaclass (lines 1–2). A
metaclass is a specialized nx::Class. The metaclass will get
more behavior later. Then, the NX class Graph is defined as
an instance of the Collaboration metaclass (lines 4–20).
This collaboration contains the child classes Graph::Edge

and Graph::Node. Note that these class names are prefixed
by the name of the actual collaboration Graph. The collabo-
ration class Graph can be used like any ordinary NX class : It
can own properties and methods (see lines 5–10 in Fig. 4b),
it can be instantiated (see line 22) and subclassed.
In the UML, the collaboration class Graph is repre-

sented using a UML class stereotyped «Collaboration»

and an attached, equally named UML package (see Fig. 4a).
The containment relation between the collaboration class
(Graph), the package (Graph), and the nested classes (e.g.,
Graph::Edge) is modeled using the cross-hair notation ⊕.

3.2 Variable Feature Composition in NX
Below, we define the code assets of a SPL to be used as

the single source for static and dynamic feature binding.
The same assets are also used to compose products at the
class level and at the object level. Furthermore, we show how
to combine these feature composition techniques. Moreover,
the implementation techniques honor the previously iden-
tified requirements (see Section 2.2). We outline two tech-
niques for dynamic feature binding at the object level and
at the class level, respectively. Then, we elaborate on turn-
ing dynamically composed product representations into their
source representations to be used for static feature binding.
Our approach differs from prior approaches in two respects :
First, in a dynamic scripting environment as NX, dynamic
feature binding is the native mode. Second, we support all
four combinations of composition levels (object, class) and
binding modes (static, dynamic) while existing approaches
are mostly limited to two : static class-level and dynamic
object-level bindings [19].

3.2.1 Common Assets

In a first step, we create the code assets of the Graph
Product Line (GPL) as aggregated objects. The assets con-
sist of the collaboration implementing a basic graph and the
feature modules (weighted and colored ; see Fig. 5). This
allows us to address and to handle the assets as objects in
our minimal FOP framework. As objects, the product line
assets can be easily introspected and modified using common
programming idioms.

BaseGraph

Weighted

Graph

Edge
Weight

+value:string

cd: assets

«Collaboration»

«FeatureModule»

edges

+name:string

+new edge(args):Edge

+new node(args):Node

Graph

Weighted

+value:string

«refines»

weighted
Edge

Weight

Weighted

Edge
Weight

+value:string

weighted

+value: int
Edge

Weight

Weighted

Edge
Weight

+value:string

«FeatureModule» color

colored

+value: int

«refines»

colored

Edge
Color

weight

NodeNode

+from+to

Edge

Figure 5: Assets used in the GPL

The collaboration classes (Graph in Fig. 5) are both
class objects and namespaces. As namespaces, they add
namespace qualifiers (Graph::*) to disambiguate the ob-
jects representing collaboration parts (e.g., Graph::Edge vs.
weighted::Edge). As objects, they provide a collaboration
interface to client objects. Most importantly, the collabo-
ration interfaces expose factory methods (new edge(), new
node()) to instantiate refined, collaboration-specific vari-
ants of the contained objects. The generated factory method
supports composition locality for clients (see Section 2.2).

1 nx::Class create FeatureModule -superclass Collaboration {

2 :property {partial:switch true}

3 }

4

5 FeatureModule create weighted {

6 nx::Class create [self]::Weight {

7 :property {value 0}

8 }

9 nx::Class create [self]::Edge {

10 :property weight:object,type=::weighted::Weight

11 }

12 }

Likewise, we define feature module classes as specialized
collaborations (see line 1 in the listing above). In Fig. 5, the
corresponding UML classes are tagged as «FeatureModule».
In contrast to collaboration classes, feature modules are not
meant to be instantiated directly. Feature modules represent
intermediate and abstract collaborations. They are marked
abstract in their UML representation in Fig. 5. As a conse-
quence, the previously mentioned factory methods are not
generated after having included each feature module, but
rather for the composed, final collaboration.

3.2.2 Dynamic Class-Level Feature Binding

For class-level feature composition, the objective is to de-
rive a class structure from the collaboration classes which
forms the configured product (Graph and weighted for a
weighted graph). In NX, this class structure can be built
on the fly, by generating a metaclass based on the prod-
uct line assets. In order to build a graph product named
G1 with weighted edge support from the GPL, we need the
base collaboration Graph and the feature module weighted
(see Fig. 6). In this scenario, the composition artifact G1 is

G1

+new weight(args):weighted::Weight

+new edge(args):G1::Edge

+new node(args):G1::Node

«Product,Collaboration»

G1

Edge Node

cd: composition

od: instantiation

:G1

:G1::Edge

+ edge

:G1::Node

:G1::Node

+ from

+ to

«transform»

«instantiate»

weighted

BaseGraph Node

Weighted Weight

+value:string

«collaboration»

«featureModule»

edges

weight

+name:string

+new edge(args):Edge

+new node(args):Node

Graph

Graph Node

+value:string

«Collaboration»

«FeatureModule»

+name:string

+new edge(args):Edge

+new node(args):Node

weighted WeightEdge

assets

+from+to

Edge

Figure 6: Class-level Feature Binding

again a collaboration class with two nested classes G1::Edge
and G1::Node. This class structure represents the derived

«Product» which, like any other class, can be instantiated
and subclassed. Since the result of the asset transformation
is a freshly configured class, the constructor of its meta-
class is the natural place for performing the transformation.
The input to this generative step are the base collabora-
tion and the respective feature modules. We add these two
properties to the definition of the Collaboration metaclass
in Fig. 7a, lines 1–2. Upon creating a new class from the
metaclass (Fig. 7a, lines 5–7), the constructor of the Col-

laboration metaclass performs the following steps :

1. Compute the collaboration parts based on the base
class and the configured feature modules.

2. Compute the extension hierarchy for the collaboration
classes and the collaboration parts.

3. Add the collaboration classes of the feature modules
as superclasses of the base class.

4. Create additional nested classes in the generated col-
laboration, one for each collaboration part. Then, the
collaboration role classes are combined using multiple
inheritance, following the computed extension hierar-
chy.

5. Add factory methods as instance methods of the gen-
erated class for creating instances of the collaboration
parts.

The last step provides composition locality (e.g., by return-
ing instances of G1:Node rather than Graph::Node). The
result of composing the base Graph and the feature module
weighted is shown in Fig. 6.

1 Collaboration property {base [self]}

2 Collaboration property \

3 {features:0..n ""}

4

5 Collaboration create G1 \

6 -base Graph \

7 -features weighted

(a)

1 set g [G1 new -name "A G1 instance"]

2 $g print

(b)

1 G1 public method print {} {next;}

2

3 nx::Class create MyGraph -superclass G1 {

4 :public method print {} {next;}

5 }

(c)

Figure 7: The Generated Collaboration Class G1

Finally, the resulting class-level product G1 can be instan-
tiated (see Fig. 7b ; see also the last transformation in Fig. 6).
The dispatch upon the print method (see line 2) proceeds
from G1 to weighted and then Graph. By leveraging the
built-in NX object and class generation mechanism, client
components of the class-level product can use it as an ordi-
nary class. The collaboration class (G1) can be refined fur-
ther either by providing methods to it (line 1 Fig. 7c) or by
subclassing (lines 3–5). The same holds for the collaboration
parts (G1::Edge, G1::Node). NX’s built-in object system in-
trospection is used during the above transformation steps to
query the child objects of the collaboration classes and to
extract their object names.

3.2.3 Dynamic Object-Level Feature Binding

In the second dynamic binding scenario, the feature com-
position is performed at the object level using the common
code assets (see Section 3.2.1). At the object level, an in-
stance of a collaboration class and its child instances, repre-
senting the collaborating parts, are the binding targets.

As an example, we refer to the collaboration class Graph
and a feature module weighted to form a weighted graph
product (see Fig. 9). In an object-level composition, one can
specify the feature composition either at the time of object

construction (called dynamic feature binding in [20]) or at a
later time during the object’s life span. Similarly, we can re-
move feature modules from the created graph at later times.

1 Graph create g1 -name "A plain graph"

2 g1 edges add [g1 new edge \

3 -from [g1 new node] \

4 -to [g1 new node]]

5 g1 print

6 # ...

7 Graph property {

features:0..n,incremental ""}

8 # ...

9 g1 features add weighted

(a)

1 g1 edges add [g1 new edge \

2 -from [g1 new node] \

3 -to [g1 new node] \

4 -weight [g1 new weight]]

5 g1 print

6 # ...

7 g1 features add colored

8 #

9 g1 features delete weighted

(b)

Figure 8: The Refinable Graph Instance g1

Following Fig. 9, we create an instance of the plain Graph

collaboration called g1 (line 1, Fig. 8a). In lines 2–4, a single
edge is added to the newly created graph. In line 5, we print
the Graph using the method implementation provided by
Graph. To manage the inclusion and the exclusion of feature
modules, we provide a special-purpose property features to
the family of Graph objects (line 7, Fig. 8a). As for introspec-
tion, this property can be queried by client objects or from
within a collaboration during runtime to retrieve the cur-
rently active feature set. As for intercession, the features

property supports reconfiguration of a given Graph instance
every time the value of the property features changes. NX
provides various hooks to capture property changes. When
feature modules are added or removed (see lines 7 and 9,
respectively, in Fig. 8b), the following steps are performed :

1. Compute the collaboration parts based on the class of
the current object and the configured feature modules.

2. Compute the extension hierarchy for the collaboration
classes and the collaboration parts.

3. Add the collaboration classes of the feature modules
as decorator mixins to the current object.

4. Add factory methods as per-object methods to the re-
fined object. These factory methods are responsible for
registering the decorator mixins to newly created in-
stances of the collaboration parts.

The refined graph instantiation g1 is the product represen-
tation of a weighted graph (as identified by the «Product»

tag in Fig. 9). Since the factory method of weighted::Edge
is mixed into the object g1, new edge() calls on object g1 to
accept the additional weight argument (line 4, Fig. 8b). The
print method provided by the weighted feature is resolved
(line 5, Fig. 8b).
Since NX provides language support for decorator mixins,

adding decorators does not require any kind of code refactor-
ing or the generation of intermediate code structures (such
as the decorator generator in [20]). The NX decorator mix-
ins preserve the self-context throughout the composed col-
laboration, thus avoiding issues pertaining to decomposition
mismatches (see Section 2.2).
As already stated, the running GPL example only depicts

the most basic binding scenario, with a single feature module
being included. Also, there are no class inheritance relations
between the collaboration parts to be preserved by the ex-
tension hierarchy. However, NX supports the construction
of complex decorator mixin chains and the decorator mixins
can form their own inheritance structures to allow for in-
cremental mixin implementations [25]. As a result, multiple
feature modules (and the underlying «mixin» relations) can
be added and deleted (lines 7 and 9, Fig. 8b) to support
feature binding and feature unbinding (see Section 2.2).

od: instantiation

g1:Graph

:Graph::Edge

+ edge

:Graph::Node

+ from

+ to

od: composition

g1:Graph

:Graph::Edge

+ edge

+ from

+ to

«mixin»
«mixin»

«transform»

Weighted

Edge Weight

+value:string

«FeatureModule» weight

+new weight(args):weighted::Weight

+value:string

«Product»

weighted
WeightEdge

:Graph::Node

:Graph::Node

:Graph::Node
+new edge(args): Graph::Edge
+new node(args): Graph::Node

«instantiate»

assets

Figure 9: Object-level Feature Binding

3.2.4 Static Feature Binding

Under static feature binding, feature implementations are
included into an application before load time, typically by
a source-code generator or a specialized compiler frontend.
This definition targets especially at languages which pro-
vide binding times prior to the actual runtime (e.g., compile
time). Transferring the notion to a dynamic languages re-
veals two properties of static binding (see also Section 2.1) :
(a) Generating a tailored source code representation of a
valid product (e.g., of the readily composed G1) and (b)
disallowing product reconfigurations (i.e., the product code
structure is fixed). The latter property is commonly moti-
vated by baking code-level optimization (for a particular re-
source constrained platform) into a product and by avoiding
the time penalties of dynamic feature binding [19].

Dynamic and reflective languages such as NX can meet
property (a) by serializing [18] a given product of the SPL.
NX provides a flexible serializer infrastructure capable of
streaming objects and classes into source code, reflecting
their current configuration state. Therefore, we can serialize
the object-level and class-level products with no effort :

1 package require nx::serializer

2

3 foreach fm [FeatureModule info instances] {

4 puts [$fm serialize]

5 }

6 puts [G1 serialize]

7 puts [g1 serialize]

The above snippet showcases the loading of the NX seri-
alizer and its instrumentation to create a script from the
SPL instances as specified in the previous two sections. Se-
rialization is supported both for the class-level and for the
object-level compositions (see lines 6 and 7 above).

From property (b) it follows that the composed product
with its refinement relations must not be changeable. Like-
wise, the feature composition should not be extensible (by
adding further, previously omitted features). In dynamic and
scripting environments as NX, feature composition is inher-
ently subjected to change. In NX, for example, it would be
possible to redefine the product structure and product be-
havior after restoring the product (G1) from its serialized

state through reflective operations (such as altering class re-
lations, adding new methods, redefining objects and classes).
Evaluating techniques for freezing products at the object
and at the class levels are future work (e.g., variants of su-
perimposition based on runtime structures, applying filters
to the serialization process).

3.2.5 Implementation

The previous sections presented the NX language-level
support for feature-oriented programming and for flexible
feature binding strategies in a step-wise manner, introducing
the notions of collaboration classes, feature module classes,
and extension hierarchy one after another. The full imple-
mentation study is given in the Appendix to this paper. We
want to stress that this implementation, while not feature
complete, is lightweight. The concepts of collaborations and
feature modules map to the two metaclasses Collaboration
and FeatureModule. The weaving behavior defined by these
metaclasses is implemented by a small code fragment. The
code necessary for computing the extension hierarchy fits
in 24 SLOC, the code for feature weaving at the class level
in 18 SLOC, and its object-level counterpart for weaving at
the object level in 20 SLOC. This is completed by further 12
lines for adding some syntactic sugar (e.g., the infrastructure
for the managing properties such as features). Despite the
limitations of SLOC, this weak approximation of code size
indicates the low effort required for a basic feature binding
framework in NX.

4. RELATED WORK
Compositional approaches [20, 19, 21, 2, 24, 23, 6, 16]

to feature-oriented programming (FOP) of software product
lines (SPLs) typically support one or several feature binding
strategies as defined in Section 2.1. Below, we review the
ones which directly influenced our approach. A more com-
plete account on binding support in FOP is given in [19].
Rosenmüller et al. [20, 19] propose code generation from

a single asset base integrating both static class-level and
dynamic object-level feature bindings in FeatureC++. The
framework allows for switching between static class-level
and dynamic object-level feature bindings at SPL build
time. These assets (class refinements) are organized in a flat
folder structure. For static binding, these class structures
are merged by superimposition. For dynamic binding, fea-
ture classes as part of a GoF Decorator pattern idiom are
generated. These feature classes are then organized in deco-
rator chains to implement layered designs, based on method
forwarding, using an application-level super-reference list.
This entails decomposition issues such as the self-problem.
Limitations are due to the host language C++ (e.g., not
supporting dynamic class-level composition).
Ostermann [16] puts forth a collaboration-based and lay-

ered implementation technique based on prototype delega-
tion (to realize refinement chains) and a variant of virtual
classes (to represent collaborations with composition local-
ity ; see Section 2.2). The result allows for dynamic, object-
level compositions. Multiple binding schemes are not sup-
ported. This delegation layer compares with our dynamic,
object-level technique using NX decorator mixins. For exam-
ple, decorator mixins share the rebinding of the self-reference
under delegation.
Smaragdakis and Batory [24, 23] present an implementa-

tion technique for collaboration-based designs using mixin

layers. Their notions of collaboration-based design and of
coarse-grain modularization for step-wise refinements is also
a central motivation for FOP in NX. As for the implementa-
tion techniques for collaboration-based designs and the no-
tion of mixins, besides C++, Smaragdakis and Batory [24]
explore the use of CLOS mixins (i.e., the CLOS variant of
multiple class-based inheritance with linearization). Their
CLOS implementation study compares with our NX study as
NX’s OO system is closely modeled after CLOS (e.g., the lin-
earization scheme used). In addition, the CLOS meta-object
protocol allows for implementing versatile serializers [18] to
be used as outlined in Section 3.2.4 for NX.

In CaesarJ [2] (and the Beta family of languages) the
concept of family classes as collections of virtual classes at-
tracted our attention towards the issue of composition lo-
cality and influenced the NX implementation of collabora-
tion classes based on constructor generation and object nest-
ing. Also, NX provides comparable means to navigate family
classes. The NX helper command info parent allows one
to access the enclosing object, similar to the pseudo variable
out in gbeta. Further similarities result from CaesarJ and
gbeta composing superclass hierarchies upon binding family
classes (and their nested classes) to each other. The nested
classes are a variant of abstract subclasses.

In DeltaJ [21] refinements are limited to the class level.
A program is generated given a product configuration. We,
therefore, classify DeltaJ as a static, class-level approach
only. While in our dynamically typed language setting, we
stress software compositional issues, Schäfer et al. investi-
gate (static) type safety under feature composition.

In [6], Gunther and Sunkle introduce the Ruby FOP
extension rbFeatures. The FOP approach is mainly annota-
tional, that is, feature-specific code is grouped using Ruby
blocks (e.g., inside a Proc object) and feature composition
is then performed by evaluating an assembled set of such
blocks. In our scheme in Fig. 2, this constitutes a composi-
tion level distinct from objects and classes which also covers
the sub-method level, for example. This meta-programming
scheme for script-level composition is implementable in
NX. The authors of rbFeatures, however, do not consider
object-compositional facilities, in particular Ruby modules.
Although missing metaclasses, the techniques introduced in
Section 3.2 (with object aggregation) can be approximated
using Ruby modules and open class declarations.

5. SUMMARY AND CONCLUSIONS
We presented an approach to dynamic and to static fea-

ture bindings, both at the object level and at the class level.
The assets of the SPL (the base collaboration and the feature
modules) are represented as objects and classes, with col-
laboration structure being modeled through dynamic object
aggregations. The same set of assets is used as the source for
dynamic and static feature binding. For the implementation
of the approach, we use high-level object-oriented concepts
such as multiple class-based inheritance, decorator mixins,
metaclasses, object/class aggregation, and object system in-
trospection. The resulting implementation study meets crit-
ical requirements, such as providing for a single code base,
composition locality, and the avoidance of typical decom-
position mismatches in collaboration-based designs. Given
appropriate language support as in NX, the approach turns
into a lightweight implementation (see the Appendix).

The approach presented is not complete. We have not ad-

dressed checking of product line models, evaluating com-
position constraints (unlike [19]), and handling feature in-
teractions. Also, support for homogeneous and dynamically
crosscutting features has not been considered. For the latter,
NX provides message-level filters [13]. NX also supports con-
ditional mixins for fine-grained composition control, based
on guarding expressions. There are also mixin variants [25]
available to enforce strict feature ordering. Besides, while the
GPL helps demonstrate similarities and differences to prior
work [20, 16], the framework’s fit regarding larger-scale SPLs
remains to be evaluated.
In a next step, we will extend our feature binding frame-

work beyond structure-preserving binding techniques to
support flattening layered collaboration structures (see the
merge operator in [15] and traits [4]). This is important to
offer optimizations (e.g., minimizing a product’s memory
footprint) under both the static and the dynamic binding
modes, as well as to fully support static feature binding.

6. REFERENCES
[1] S. Apel, D. S. Batory, and M. Rosenmüller. On the

Structure of Crosscutting Concerns : Using Aspects or
Collaborations ? In Proc. Workshop Aspect-Oriented
Product Line Eng. (AOPLE), 2006.

[2] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
An overview of CaesarJ. T. Aspect-Oriented Software
Develop. I, pages 135–173, 2006.

[3] K. Czarnecki and U. W. Eisenecker. Generative
Programming — Methods, Tools, and Applications.
Addison-Wesley, 6th edition, 2000.

[4] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. P. Black. Traits : A Mechanism for Fine-grained
Reuse. ACM Trans. Program. Lang. Syst.,
28(2) :331–388, 2006.

[5] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit.
Aspect-Oriented Programming is Quantification and
Obliviousness. In Aspect-Oriented Software
Development, chapter 2. Addison-Wesley, Oct 2004.

[6] S. Günther and S. Sunkle. rbFeatures :
Feature-oriented programming with Ruby. Sci.
Comput. Program., 77(3) :152 –173, 2012.

[7] S. O. Hallsteinsen, M. Hinchey, S. Park, and
K. Schmid. Dynamic software product lines. IEEE
Computer, 41(4) :93–95, 2008.

[8] H. Lieberman. Using Prototypical Objects to
Implement Shared Behavior in Object-oriented
Systems. SIGPLAN Not., 21(11) :214–223, June 1986.

[9] R. E. Lopez-Herrejon, D. S. Batory, and W. R. Cook.
Evaluating Support for Features in Advanced
Modularization Technologies. In Proc. 19th Europ.
Conf. Object-Oriented Programming (ECOOP’05),
volume 3586 of LNCS, pages 169–194. Springer, 2005.

[10] G. Neumann. Dynamic Software Evolution in the
Next Scripting Language. http ://next-
scripting.org/docs/2.0b3/doc/nx/nx-code-evolution/,
last accessed on July 9th, 2012, July 2012.

[11] G. Neumann and S. Sobernig. An Overview of the
Next Scripting Toolkit. In Proc. 18th Annu. Tcl/Tk
Conf. Tcl Association, 2011.

[12] G. Neumann and U. Zdun. Enhancing Object-Based
System Composition through Per-Object Mixins. In
Proc. Asia-Pacific Software Eng. Conf. (APSEC’99),

pages 522–530. IEEE Computer Society, 1999.

[13] G. Neumann and U. Zdun. Filters as a Language
Support for Design Patterns in Object-Oriented
Scripting Languages. In Proc. 5th Conf.
Object-Oriented Technologies and Syst. (COOTS’99).
USENIX, 1999.

[14] G. Neumann and U. Zdun. Towards the Usage of
Dynamic Object Aggregation as a Foundation for
Composition. In Proc. Symp. Applied Computing
(SAC’00), pages 818–821. ACM, 2000.

[15] H. Ossher and W. Harrison. Combination of
Inheritance Hierarchies. In Conf. Proc. Object-oriented
Programming Syst., Languages and Applicat.
(OOPSLA’92), pages 25–40. ACM, 1992.

[16] K. Ostermann. Dynamically Composable
Collaborations with Delegation Layers. In Proc. 16th
Europ. Conf. Object-Oriented Programming
(ECOOP’02), pages 89–110. Springer, 2002.

[17] S. Rank. A Reflective Architecture to Support
Dynamic Software Evolution. PhD thesis, University
of Durham, UK, 2002.

[18] D. Riehle, W. Siberski, D. Bäumer, D. Megert, and
H. Züllighoven. Serializer. In Pattern Languages of
Program Design 3, pages 293–312. Addison-Wesley,
1998.

[19] M. Rosenmüller, N. Siegmund, S. Apel, and G. Saake.
Flexible feature binding in software product lines.
Autom. Softw. Eng., 18 :163–197, 2011.

[20] M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel.
Code generation to support static and dynamic
composition of software product lines. In Proc. 7th
Int. Conf. Generative Programming and Component
Eng. (GPCE’08), pages 3–12. ACM, 2008.

[21] I. Schaefer, L. Bettini, and F. Damiani. Delta-oriented
Programming of Software Product Lines. In Proc. 10th
Int. Conf. Aspect-oriented Software Develop., pages
43–56. ACM, 2011.

[22] S. Schulze, S. Apel, and C. Kästner. Code Clones in
Feature-Oriented Software Product Lines. In Proc. 9th
Int. Conf. Generative Programming and Component
Eng. (GPCE’10), pages 103–112. ACM, 2010.

[23] Y. Smaragdakis and D. Batory. Mixin Layers : An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
T. Softw. Eng. Meth., 11(2) :215–255, 2002.

[24] Y. Smaragdakis and D. S. Batory. Implementing
layered designs with mixin layers. In Proc. 12th Europ.
Conf. Object-Oriented Programming (ECOOP’98),
pages 550–570. Springer, 1998.

[25] U. Zdun, M. Strembeck, and G. Neumann.
Object-based and class-based composition of transitive
mixins. Inform. Software Techn., 49(8) :871–891, 2007.

Appendix . The NX Implementation Study

<<metaclass>>

nx::Class

+init(args):Collaboration
+partial: boolean = false

<<metaclass>>

Collaboration

+computeExtensionHierarchy()
+partial: Boolean = true

<<metaclass>>

FeatureModule

base

0..1 *

features

**

1 ##

2 # Feature Framework Classes

3 ##

4 #

5 # The collaboration metaclass takes a base class and a set of features modules

6 # to build a new class in its constructor.

7 #

8 nx::Class create Collaboration -superclass ::nx::Class {

9 :property {base:class [self]}

10 :property {features:0..n,type=::FeatureModule ""}

11 :property {partial:switch false}

12

13 :public method createAccessors {-context -collaborationClassNames} {

14 # Create accessors for the collaboration parts

15 foreach name $collaborationClassNames {

16 $context public method "new [string tolower $name]" args \

17 [subst {${context}::$name new {*}\$args}]

18 }

19 }

20

21 :public method weave {-baseClass -featureModules -context -partial} {

22 set d [::FeatureModule computeExtensionHierarchy \

23 -baseClass $baseClass \

24 -featureModules $featureModules]

25 set collaborationClassNames [dict keys [dict get $d class]]

26 if {${:base} ne $context} {

27 # Let the product inherit from the extension classes and the base class.

28 set superclasses [concat [dict get $d extension $baseClass] $baseClass]

29 nsf::relation [self] superclass [concat $superclasses [:info superclass]]

30

31 foreach name $collaborationClassNames {

32 # Create child classes as collaboration parts.

33 nx::Class create ${context}::$name \

34 -superclass [concat [dict get $d extension $name] [dict get $d class $name]]

35 }

36 }

37 if {!$partial} {

38 :createAccessors \

39 -context $context \

40 -collaborationClassNames $collaborationClassNames

41 }

42 }

43

44 :public method init {} {

45 :weave -baseClass ${:base} \

46 -featureModules ${:features} \

47 -context [self] \

48 -partial ${:partial}

49 }

50 }

51

52 #

53 # A FeatureModule is a specialized collaboration.

54 #

55 nx::Class create FeatureModule -superclass Collaboration {

56 :property {partial:switch true}

57 :public class method computeExtensionHierarchy {

58 -baseClass:class

59 -featureModules:object,type=::FeatureModule,0..n

60 } {

61 dict set d extension $baseClass ""

62

63 # Create an extension structure for the base class.

64 foreach childclass [$baseClass info children -type ::nx::Class] {

65 set name [$childclass info name]

66 dict set d extension $name ""

67 dict set d class $name $childclass

68 }

69

70 # For each feature module,

71 # (1) add the feature class to the extension list of the base class and

72 # (2) create/extend the extension list for the collaboration classes.

73 foreach featureClass $featureModules {

74 if {[nsf::object::exists $featureClass]} {

75 dict set d extension $baseClass \

76 [concat [dict get $d extension $baseClass] $featureClass]

77

78 foreach featureChildclass [$featureClass info children -type ::nx::Class] {

79 set name [$featureChildclass info name]

80 if {[dict exists $d class $name]} {

81 # known collaboration class

82 dict set d extension $name \

83 [concat [dict get $d extension $name] $featureChildclass]

84 } else {

85 # unknown collaboration class

86 set class($name) $featureChildclass

87 dict set d class $name $featureChildclass

88 dict set d extension $name ""

89 }

90 }

91 }

92 }

93 return $d

94 }

95 }

96

97

98

99

100

101 ##

102 # Application Code

103 ##

104 #

105 # A helper class providing the otherwise redundantly implemented "print" method.

106 #

107 nx::Class create Printable {

108 :public method print {} {

109 puts "[self] has vars [:info vars]"

110 }

111 }

112

113 #

114 # A Graph is a collaboration composed of Nodes and Edges.

115 #

116 Collaboration create Graph -superclass Printable {

117 :property name

118 :property {edges:0..n,incremental ""}

119

120 nx::Class create [self]::Node -superclass ::Printable

121 nx::Class create [self]::Edge -superclass ::Printable {

122 :property from

123 :property to

124 }

125 }

126

127 #

128 # Define a feature module "weighted", including a new property "weight" for edges.

129 #

130 FeatureModule create weighted {

131 nx::Class create [self]::Weight -superclass Printable {

132 :property {value 0}

133 }

134 nx::Class create [self]::Edge {

135 :property weight:object,type=::weighted::Weight

136 }

137 :public method weighted {} {return 1}

138 }

139

140 #

141 # Define a second feature module "colored".

142 #

143 FeatureModule create colored {

144 nx::Class create [self]::Color -superclass Printable {

145 :property {value 0}

146 }

147 nx::Class create [self]::Edge {

148 :property color:object,type=::colored::Color

149 }

150 :public method colored {} {return 1}

151 }

152

153 ##

154 # Code for Object-Level Composition

155 ##

156 #

157 # Extend the Graph collaboration to support object-level compositions.

158 #

159 Graph eval {

160 # Helper method for providing tailored "new"-methods

161 :public method addAccessor {name base mixins} {

162 set body "\n set o \[$base new "

163 if {$mixins ne ""} {append body "-mixin [list $mixins] "}

164 append body "\]"

165 append body {

166 foreach {att value} $args {$o [string trimleft $att -] $value}

167 return $o

168 }

169 :public method "new $name" args $body

170 }

171

172 #

173 # Property "features" is implemented as a slot with its own helper methods. The method

174 # "weave" uses the computeExtensionHierarchy method to compute the class dependencies.

175 #

176 :property features:0..n {

177 :method weave {obj featureModules:object,0..n,type=::FeatureModule} {

178 set baseClass [$obj info class]

179 set d [::FeatureModule computeExtensionHierarchy \

180 -baseClass $baseClass \

181 -featureModules $featureModules]

182 set collaborationClassNames [dict keys [dict get $d class]]

183

184 # The following assumes that

185 # (1) all mixins are provided by the PL composition and that

186 # (2) we can freely overwrite "new *" methods.

187 $obj mixin [dict get $d extension $baseClass]

188 foreach name $collaborationClassNames {

189 $obj addAccessor [string tolower $name] [dict get $d class $name] \

190 [dict get $d extension $name]

191 }

192 }

193

194 :public method assign {obj prop arg} {

195 next

196 :weave $obj [$obj $prop]

197 }

198 :public method add {obj prop arg} {

199 next

200 :weave $obj [$obj $prop]

201 }

202 :public method delete {obj prop arg} {

203 next

204 foreach m [$obj info lookup methods -path "new *"] {

205 $obj delete method $m

206 }

207 :weave $obj [$obj $prop]

208 }

209 }

210 }

