People Oriented Software Technology:.
and its Use in Environmental Reporting

Terry Krueger, George Kurian, Anil Nair, Gustaf Neumann,
Ulrich Neumerkel, Stefan Nusser, Peter Reintjes, Andrew Taylor,
Daphne Tzoar, and Adrian Walker

All correspondence to: Adrian Walker
adrian@watson.ibm.com

Keywords: People oriented, specification, Syllog, English application authoring,
accountability, surety, knowledge interchange, environmental reporting

Abstract

We describe a software technology that is “people oriented”, in the sense
that it allows us to:

o specify a task as English syllogisms, together with tables of facts,
e run the specification consisting of English syllogisms directly,

e ask questions in English,

o get hypertexted English explanations of answers,

e automatically fill in business forms, and

¢ to automatically generate database queries and updates.

In our approach, English words take their meaning from their context,
rather than from a separately maintained dictionary and grammar. This makes
it easy to write down knowledge with specialized words and phrases, such as
“Environmental Protection Agency Form R”, and then to run the knowledge
directly. The knowledge in a specification is directly compiled and interpreted
according to a formal theory of highly declarative knowledge. This eliminates
the troublesome and expensive gap that often arises between a specification
of a task and a program that is supposed to do the task, by eliminating the
program. It is not necessary to know about the theory in order to write and
to run specifications.

The technology is used to automatically fill in report forms about chemical
usage that are submitted to the U.S. Environmental Protection Agency. One
such form has over 300 entries per chemical reported, and there are significant
penalties for incorrect entries, both for an organization and a private individual
who signs the form. Our technology allows us to click on a form entry to see a
step by step explanatory audit trail, showing how government regulations, plus
engineering expertise, and data about chemicals, were used to automatically
make the entry. Other uses of the technology include the mining of medical
databases, business case justification, enterprise modelling, and experiments in
knowledge based document routing within an organization.

1 Introduction

We describe some generic software technology that allows us to specify a task for a
computer, and then do the task, in a way that is “people oriented”. The technology
allows a nonprogrammer to write down, as English syllogisms and as tables of facts,
the knowledge needed to do a task, and then to directly run the knowledge as though
it were a program. In our approach, English words take their meaning from their
context, rather than from a separately maintained dictionary and grammar. This
makes it easy to write down knowledge with specialized words and phrases, such as
“Cupric sulfate, anhydrous”, or “Environmental Protection Agency Form R”, and
then to run the knowledge directly. This flexibility is purchased by following a few
simple guidelines when writing a specification.

Syllogisms and facts in a specification are interpreted in a highly declarative way
that is based on a formal model theory of declarative knowledge [ABWS88,Wal93],
allowing the author of the specification to concentrate on writing down just the
knowledge needed for a task, rather than programming a procedure to do the task.
The knowledge in a specification is directly compiled and interpreted according to the
formal theory. This eliminates the troublesome and expensive gap that often arises
between a specification of a task and a program that is supposed to do the task, by
eliminating the program. It is not necessary to know about the theory in order to
write and to run specifications.

Once a task has been specified, we can:
e run the specification consisting of English syllogisms and facts directly,
o ask questions in English,
o get hypertexted English explanations of answers,

e automatically fill in business forms, and

e automatically generate and run database queries and updates.

We describe how the technology is used to automatically fill in report forms about
chemical usage that are submitted to the U.S. Environmental Protection Agency.
There are many such forms. Other uses of the technology include the mining of
medical databases, business case justification, enterprise modelling, and experiments
in knowledge based document routing within an organization.

The next Section outlines the technology, and Section 3 describes how it is used
in environmental reporting. Section 4 outlines the implementation of the technology,
and Section 5 lists our conclusions and directions for further work.

2 OQOutline of the Technology

As in the case of classical Object Orientation (see e.g. [KRO93]), some key aspects
of our technology are

e encapsulation,

e reuse,

e picturing familiar items on the screen
o the use of large databases, and

e inheritance of properties.

However, we take a different approach. In our implemented technology, we
e encapsulate and
e reuse

much of the knowledge that a programmer has about the efficiency and termination
of programs. This knowledge is generic. We do not yet try to encapsulate knowledge
about real world tasks. Rather, we provide a technology in which these tasks can be
specified in English, and in which the resulting specifications can be used directly as
programs, optionally over databases. The

o familiar items that we picture on the screen

are English sentences (some of which are hypertext linked), data tables, and business
forms. To

e use large databases

we automatically generate and execute SQL [DaD93] queries over relational data-
bases. We provide a flexible way to specify

e inheritance of properties.
For example, this syllogism
some-area is within some-region

some-attribute in that-region has value some-value

the value of that-attribute in that-area is not directly given in its description

that-attribute in that-area has value that-value

specifies a kind of inheritance with a local override. In the syllogism, ”"some-area”,
”some-region” and so on, are place holders, or variables, that are filled in consistently
with actual values (such as "New Jersey” and "Fast Coast”), when the syllogism is
used. The syllogism says that, if the three premises above the line are true, then so
is the conclusion.

Our approach provides explanations of the results of inheritance and override
[Wal91]. Indeed, it provides English explanations of all results, and even of what
would be needed to get a result that is not forthcoming. These explanations are
automatically hypertexted.

Encapsulation and reuse of programming knowledge is done by raising logic pro-
gramming, see e.g. [WMSWO90], to a higher declarative level, based on a theory of
declarative knowledge [ABWS88, Wal93]. (While the theory, and the inference engine
based on the theory, are highly technical, it is not necessary to know about them in
order to specify tasks for our system.)

Support for this approach is built into a generic system called Syllog. (Pronounced
as in “syllogism”, but with a hard “g”.) The system executes task specifications
that translate to the class “stratified datalog with recursion and negation as failure”
(SDRN), plus certain kinds of numeric specifications. By way of example, multiple in-
heritance with override translates into SDRN, while critical path scheduling translates
into the class of numeric specifications that Syllog executes directly. Conventional
programs can be added to a Syllog specification by “procedural attachment”. Succes-
sive versions of Syllog increase the kinds of specifications that are supported without
the need for such attachments.

We believe that current software engineering approaches to task modeling and
programming can leave an expensive and error-prone gap to be filled between the

specification and the program. In our approach, the specification i¢s the application
program. We believe that the approach can significantly reduce software costs while
improving life cycle flexibility and quality.

3 Using the Technology in Environmental Report-
ing

In Section 2, we outlined our technology. In this Section, we describe how our tech-
nology is actually used in a complex real world task, namely to prepare reports on
chemical use and storage that organizations in the United States must send to the
Federal and State Environmental Protection Agencies.

3.1 The Environmental Reporting Task

The Environmental Protection Agency (EPA) of the United State government re-
quires all organizations over a certain size to report the chemicals that they use.
Dangerous chemicals must typically be reported even if used in small quantities.
Less dangerous chemicals must be reported if the amount stored or used is over a
certain threshold. Different forms of a chemical (e.g. solid, powder, solution), and
different chemicals, have different thresholds. The amount of each pure constituent of
a mixture of chemicals must be reported. The hazards associated with each chemical,
such as fire, sudden release of pressure, and reactivity, are part of the report. EPA
standard codes must be used for items such as amounts, temperature, pressure, type
of storage container, and the location of chemicals within an organization.

Most reports must be made on forms whose layout is specified by the EPA, or on
the electronic equivalents of such forms. One such form, EPA Form R, has 9 pages
and over 300 entries, for each chemical reported. The EPA instructions for filling
in the form [EPA94] are approximately 120 pages long. A manufacturing organi-
zation may have hundreds, or even thousands, of potentially reportable chemicals.
The forms must be filled in according to EPA regulations, and the organization sub-
mitting the forms is subject to audits to make sure that the regulations have been
followed. An environmental engineer normally has expertise about the regulations
and about chemicals, and he or she applies this expertise in filling in the forms, and
in keeping notes for audit purposes. Technical errors on the form expose the organi-
zation to significant financial penalties. In addition to the penalties that apply to the
organization, an executive who signs a form containing errors may also be personally
exposed to fines, and, in extreme cases, a prison sentence.

3.2 Reasons for using People Oriented Technology for the
Task

There are several ways in which conventional software engineering can fail to close the
gap between a task description and a program that is supposed to do the task. For the
reasons just described, it is particularly important in real environmental reporting to
close the possible gap between the EPA regulations and any procedures or software
that may be used to help in filling in the forms. The gap can arise because someone

has
e misinterpreted the EPA regulations,
e placed a correctly computed entry in the wrong slot in a form,
e made a programming mistake, or

e someone has misunderstood the layout or meaning of the organization’s data
about chemicals.

Even if none of these happen, it may be hard to reconstruct how a form entry was
arrived at in the event the organization is audited.

We have used our people oriented Syllog technology to fill in and submit to the
EPA several kinds of environmental report forms, including Form R. The technology
tends to close the gap between the task description and a program in the following
ways.

o We write down the EPA regulations, together with the expertise that an en-
vironmental engineer uses to interpret the regulations, as executable English
syllogisms. (In the case of Form R, the syllogisms are about one quarter the
length of the EPA manual containing the regulations.)

o We generically fill in a form, by “drag and drop” of place holders, such as some-
chemical or some-year, from sentences in the syllogisms into slots in the form.
Thus, we link the knowledge about the EPA regulations to the slots in the form
just once, and then we reuse the links (with no further effort) to fill in as many
forms as are needed.

e As we write the specification, we run it and we ask for explanations of the
answers that we get. Also, when the specification is completed, and is used to
fill in a form, we ask for explanations of the entries on the form, and we examine
these explanations step by step. This allows us to check, more easily than with
conventional programming, for mistakes, and for misunderstandings about the
layout or meaning of the organization’s data about chemicals.

In addition to direct use, our system is a useful tutorial tool. We have found that
people who are not experts in EPA regulations, in chemical engineering, in program-
ming, or in the layout or meaning of the organization’s data, can usefully run a
specification to understand the regulations, expertise and facts that are used to fill

in an EPA form.

3.3 Using the Technology to Fill in EPA Form R

EPA Form R is a 9 page form that must be filed each year, for each chemical for
which more than a certain amount has been used or stored. (Form R is also known
as the SARA 313 form.) Pages 1 and 2 of the form ask for information about the
organization, such as: address, map coordinates, 24-hour emergency contact infor-
mation.

When completed, page 3 of our onscreen version of the form is as shown in figure 1
on page 8. The page shows that Sulfuric Acid, which has a “CAS” number 7664-93-9,
was imported, and used for on-site processing. The maximum amount on-site at any
time during the year was coded, according to the EPA regulations, as 04.

Pages 4 to 8 of Form R ask about amounts released to the environment on-site,
discharges to publicly owned water treatment works, transfers to offsite treatment
locations, on-site waste treatment methods and their efficiency, and on-site energy
recovery and recycling. Page 9 asks for some of these items to be compared to their
amounts in the previous year, and for planned amounts for the next two years.

On an IBM RS6000 model 350 workstation, filling in the 9 page EPA Form R
for one chemical, using small amounts of data, takes approximately 1 minute if a
relational database is not used, and about 3 minutes if the tables of data are stored
in the DB2/6000 database management system. (We expect a crossover as the data
tables increase in size, since the overhead of using the DBMS should be balanced by
faster data processing.) The completed form can be printed by clicking on the File
button and then selecting from menus.

A person responsible for signing the form might reasonably ask why Sulfuric Acid
has to be reported, and about the meaning of the code 04, on page 3 of the form, for
the maximum amount on-site. To see a step by step explanation, we can click on the
04 entry in the form, then on the Explain button at the foot of the form. The first
step of the resulting hypertext explanation looks like this.

User Form: R9page

< EPAFORM R

Part I1. Chemical Specific Information
Tri Facility Id Number LlDSQBNTLBSRTElS | Toxic Chemical Category Neme |Sulfuric Acid

Section 1: Toxic Chemical Identity
(Irmportant: DO NOT complete this section if vou complete Section 2 below!)

1.1 CaS Number T664-93-9

1.2 Toxic Chemical or Chemical Category Name |Sulfuric Acid

1.3 Generic Chemical ¥ Name =

Section 2: Mixture Component Identity
{Tmportant: DO NOT complete this section {f yvou complete Section 1 abovel)

2.1 Generic Chemical Name Prowided by Supplier

Section 3: Activities and Uses for the Toxic Chemical at the Facility

o [= [[2 [« [WP = [«]

3.1 Manufacture the toxic chemical: a. [Produce
. [®] Impoct
If produce or import: .[W] For on-site use/processing
[For sale/distribution
[&s a byproduct
4 As an impurity

3.2 Process the toxic chemical: [&s a reactant c. [As an article component
[&s a formulation component d. [] Repackaging

3.3 Otherwise use the toxic chemical: a. [As a chemical processing aid c. Ancillary or other use
[&s a manufacturing aid

Section 4: Maximum Amount of the Toxic Chemical on-site at any time during the
Calendar Year

4.1 Enter two digit code from instruction package!)

Figure 1: Page 3 of the completed form

Form R 92 10598NTLESETE13 Sulfuric Acid entry II.4.1 is D4

|? Yes, that is true

Becanse....

EPA Form R entry H. 0.1 for CAS number 7664-93-9 in 1992 is 10598NTLESRTELZ
EPA Form R entry H 0.2 for CAS number Te64-93-9 in 1992 is Sulfuric Acid
EPA Form R entry I.1 for CAS rumber T664-93-9 in 1992 is 392

EPA Form R entry IT.4.1 for CAS rumber 7664-93-5 in 1992 1s 04

not : IT.4.1 is one of the three key slots for the form

Form R 92 10528NTLESRTE13 Sulfwric Acid entry I1.4.11s 04

Dismiss| New | Gack | search | rie | Heln

This step consists of 5 premises followed by the conclusion that the entry in slot 4.1

in Part IT of the form is 04. On the screen, the first 4 premises are shown in green,
indicating that further explanation is available for each of them. To go into more
detail in an explanation, we can either just scroll downwards, or we can click on a
premise shown in green to make a hypertext jump directly to see how the premise is
justified. So, clicking on the 4th line of the explanation gets us to the step

Form R 92 10598NTLBSRTE12 Sulfuric Acid entry II.4.1 is 04

the current form is for CAS rumber T664-93-%9 and for the year 1992 and for buildings 801, 806, 850, 834, 974
for the year 1992 the max amount of pure chem T664-93-9 was 67200 lhs
67200 1hs codes as 04 on the SARA 313 form

EPA Form E non blank entry IT.4.1 for CAS mumber 7664-23-2in 1992is 04

oismiss) [ere | Sack | soarch] Fie] voio]

If we click on the second line of this step we see

Form R 92 10598NTLBSRTE12 Sulfuric Acid entry II.4.1 is 04

during 1992 (the current reporting year) we imported 36000 lhs of Sulfuric Acid with CAS mumber Te64-93-9
T0 % of 96000 is 67200

Jor the year 1992 the max amount of pure chem 7664-93-9 was 67200 bs

[ere | Sack | soarch] Fie] voio]

=F

that we have estimated the maximum amount on site as 70% of the amount we
imported. Going into further detail in the explanation would show that we were
importing quaterly, and using up the chemical continuously during the year. However,
we might reasonably be concerned about the 70% estimate, depending on how the
final code 04 on the form is arrived at. To see this, we can hypertext jump to

Form R 92 10598NTLBSRTE13 Sulfuric Acid entry II.4.1 is 04

runber of lbs of a chem hetween 10000 and 99999 codes as 04
67200 greater than or equal 10000
67200 less than or equal 29999

67200 Ihs codes as 04 on the SARA 313 form

[ere | 5nck | soarch] Fie] veto]

which tells us that we are comfortably near the middle of the range of 10,000 to
99,999 1bs that the EPA requires us to code as 04.

Other parts of the hypertexted explanation allow us to check when we accepted
deliveries of the chemical, and that we had a reportable amount of it according to

the EPA rules.

3.4 Writing the Specification to Fill in EPA Form R

We mentioned that the EPA regulations for Form R [EPA94] consist of about 120
pages of English text and tables, and that our English executable specification is
about one quarter of that length. Environmental engineering expertise is needed to
interpret the regulations so as to fill in the form correctly. Ideally, an environmental
engineer, who need not know any programming, writes down his or her expertise
directly as a specification, and checks the specification by running each part of it in
Syllog while writing it. This is possible for simple environmental reporting tasks, such
as filling in the three page New York State Hazardous Waste form known as tp-550.
In writing the specification for the much more complex Form R, an environmental
engineer worked with a person experienced in writing specifications that run in Syllog.
(This was necessary in part because the underlying Syllog system and its online help
were themselves under development at the time.)

The main steps in writing the specification were:

o extraction of tables of data from the EPA regulations, for example

10

number of 1bs of a chem between this-min and this-max codes as this-code

10000000 999999999999 07

1000000 9999999 06
100000 999999 05
10000 99999 04
1000 9999 03
100 999 02
0 99 01

The table says that a number of 1bs of a chemical between 100 and 999 codes as
02, and so on.

o gathering tables of data about the site facility, for example

our facility engaged in source reduction this-type activities in this-year

Modified equipment layout piping 1992
Other 1992

e understanding the EPA regulations and writing them as syllogisms, for example

the current form is for CAS number some-CAS and for the year some-year and for buildings some-names
some-chemical , with CAS number some-CAS | is reportable under SARA 313

during that-year we imported some-number lbs of that-chemical with CAS number that-CAS

SARA 313 report threshold is some-threshold Ibs of that-chemical

that-number greater than that-threshold

in that-year we imported that-number Ibs of that-chemical , with CAS number that-CAS , so a SARA 313 report is

required

Here, 7CAS number” and ”SARA 3137 are jargon phrases. They take their meanings
directly from the way they are used in the syllogism. In many other technologies, one
would have to define the meanings in separate dictionary.

11

e noting EPA regulations about Form R itself, for example

EPA Form R this-slot should be filled in with this-entry rather than left blank

11.6.2.1.A.2 NA
11.6.2.1.A.3 NA
I1.8.9 NA

o writing knowledge about coded form entries and the slots they belong in on the
form, for example

the current form is for CAS number some-CAS and for the year some-year and for buildings some-names
for the year that-year the max amount of pure chem that-CAS was some-number Ibs

that-number Ibs codes as some-code on the SARA 313 form

EPA Form R non blank entry I1.4.1 for CAS number that-CAS in that-year is that-code

o testing to make sure that all the form entries could be found as a simple table
of answers by running the specification in Syllog.

o writing special syllogisms to be used when we generically drag and drop answers
from the table into slots in the form

Form R some-year some-FID some-chem-name entry I1.4.1 is some-maximum-code

Form R9page “I1.4”7 : that-FID that-chem-name that-year

e writing the blank Form R for display on the screen using a simple extension of
hypertext markup language [BCG92]

e using Syllog screens to couple the knowledge in the specification to the form,
for example by dragging some-maximum-code from the sentence

Form R some-year some-FID some-chem-name entry I1.4.1 is some-maximum-code

to the correct slot on in the form.

These steps were interleaved with one another, and with the testing of each item
in Syllog as soon as it was written. While the whole process took several person-
months, we estimate that doing similar tasks in future will take much less time and

12

effort. This is because (a) the Form R specification now exists, and needs only to
be adapted to changing circumstances (b) the underlying Syllog system is stable and
has a useful set of online help screens, and (c¢) our skill levels in understanding EPA
regulations and how to write them as runnable specifications are higher, and we can
easily transfer these skills.

3.5 Automatically Generated Database Queries for Filling in
EPA Form R

The Syllog system can be used without an underlying database management system
when the data tables are small. When the data tables are large, or when a pre-existing
relational database is to be used, Syllog automatically generates and executes queries

in the SQL language [DAD93]. For example, if the table

number of 1bs of a chem between this-min and this-max codes as this-code

is in a database instead of in the specification, then we write the syllogism

ext : cims.daphne.codesas MIN MAX CODE

number of 1bs of a chem between this-min and this-max codes as this-code

in the specification. The syllogism says that there is an external database called
“cims”, containing a table belonging to “daphne”, and that the table has the name
“codesas” and the columns MIN, MAX, and CODE. It also says that the meaning of
a row of this data table is that a number of lbs of a chemical between some min and
some max codes as a certain code on Form R.

If the data are stored in a database, and are coupled into the specification by
syllogisms like the one above, then the current version of the Syllog system makes
about 250 SQL queries, using 50 tables, to fill in Form R for one chemical. This
includes a number of data definition level queries such as

select NAME from sysibm.systables
where NAME = ’CODESAS’ and CREATOR = ’DAPHNE’

that check to make sure that the necessary tables are present in the database. Among
the queries that are actually used to fill in the form, some are as simple as

select distinct "CHEM", "CAS", "NAME"
from DAPHNE.GENERICNAME GENERICNAME

while others, like this one

13

select distinct 1992, X."NAME", ’7664-93-9’ from
DAPHNE . CURRENTFORM W,
DAPHNE.I313ISX X,
DAPHNE . PURCHASED Y,
DAPHNE . TOCONVERT Z,
DAPHNE .GENERICNAME AZ,
DAPHNE.S313REPOTHRESH BA,
DAPHNE .ONSITECHEM BB

where

W."CAS" = ’7664-93-9’ and
W."YEAR" = 1992 and
X."CAS" = ’7664-93-9’ and
X."NAME" = AZ."NAME" and
X."NAME" = BA."NAME" and
W."CAS" = ’7664-93-9’ and
W."YEAR" = 1992 and
Y."UNITS" = Z."UNITS" and
Y."CHEM" = Z."CHEM" and
Y."CHEM" = AZ."CHEM" and
Y."YEAR" = 1992 and

AZ ."CAS" = ’7664-93-9’ and

AZ ."CHEM" = BB."CHEM"
group by Y."CHEM", Y."UNITS", Z."FACTOR", BA."THRESHOLD", X."NAME"
having (sum(Y."AMOUNT") * Z."FACTOR") > BA."THRESHOLD

are more Complex.

We emphasize that all of this SQL database activity is automatic, and is encapsulated
inside the Syllog system. The specification author, and the user of a specification,
never need to see any such activity. Rather, they interact with the system at a
business level, via English and business forms, rather than a technical SQL level.

4 Implementation of the Technology

The Syllog technology has been implemented through about 10 major versions, over
a number of years. Some design questions that were raised and solved in successive
versions are described in [Wal93], [ABWS8], [FRTWS8g], [WMSW90]. Early versions
of Syllog were on an IBM 3090 mainframe, to take advantage of local databases.
The current version runs on IBM RS6000 workstation under AIX, IBM’s version
of the Unix operating system. It automatically generates SQL queries and updates

14

and executes them either locally or remotely. The database management systems
supported are Oracle, and IBM’s DB2/6000, which can in turn run SQL operations
on DB2 on MVS and on SQL/DS on the VM operating system.

The branching to different DBMSs at the backend of Syllog is mirrored by a
branching to different display screens at the front end. The Syllog user interface
uses Xwindows and the Athena widget set, and we plan to replace Athena widgets
by Motif (See e.g. [Bark9l]). Since Xwindows/Athena/Motif is virtually platform
independent, it is straightforward to display the Syllog user interface not only on Unix
screens, but also on Windows, OS/2, and Mac screens. Conceptually, Syllog links
business level English, forms, rules, and questions to system-level SQL databases.
Architecturally, Syllog links most modern display screens to DBMSs from different
software vendors.

The sophisticated behavior of the widgets that is needed for the Syllog user inter-
face is programmed in the language TCL [Ous94] for the Wafe [NeN92] user interface
package. The business forms at the Syllog user interface are written in a form de-
scription language that is mapped, via a simple generator, into Hypertext Markup
Language [BCG92]. The Syllog system consists of TCL code, for the user interface,
and of about three times as much Prolog code, for deduction (using a backchain
iteration method [Wal91] that is different from Prolog’s built in method), for ex-
planations, for menu filling, and for a sophisticated Syllog-to-SQL compiler. From
another viewpoint, one can say that the system is essentially implemented in C, using
some extensions (TCL, Prolog) that are themselves in C. The TCL part of Syllog is
interpreted at runtime, whereas the Prolog part is compiled when a Syllog runtime
package is built. A complete Syllog runtime system occupies approximately 10Mb of
disk space, plus the space that is needed for task specifications, and for the DBMS
and its data.

5 Conclusions and Directions for Further Work

We have described a software technology that is “people oriented”, in the sense that
it allows a task specification to be written as English syllogisms and as tables of
facts, and then allows us to run the specification directly to do the task. We have
shown how this technology eliminates the expensive and troublesome gap that can
arise between a task specification and a program that is supposed to do the task, by
eliminating the program. As in the case of classical object orientation, our technology
supports encapsulation, reuse, the picturing familiar items on the screen, the use of
large databases, and inheritance of properties. At present, we encapsulate and reuse
programming knowledge, so that a task can be specified rather than programmed.
An interesting direction for further work is to specify metaknowledge about how to

15

reuse object level specifications, e.g. for reasoning about inheritance with overrides
or about time. Some initial work in this direction is in [Lel91].

Our people oriented technology is used in environmental reporting, a demand-
ing task for which engineering judgement and expertise are needed. Our English
specification of the knowledge needed to fill in EPA Form R is about one quarter
of the length of the corresponding EPA regulations, yet it is precise, readable, and
executable. When the specification is used to fill in the form, we can also use it to
generate a hypertexted explanation for each entry. An explanation serves as a trail,
through the EPA regulations, environmental engineering expertise and the knowledge
about the meaning of the organization’s data, that justifies the entry in the form for
audit purposes. If the data are stored in a relational database, the system gener-
ates approximately 250 SQL queries in order to fill in Form R. Some of these SQL
queries are complex, and it would be a difficult task to use them to justify a form
entry. Rather, their generation and use is encapsulated in the Syllog system, and
explanation is at the business level.

In writing a conventional program, one is concerned not only with doing the
required task correctly, but also with doing it efficiently. In addition one must deal
with questions of data structures and storage management. It can be argued that
some of the difficulty of large, conventional programming projects stems from the fact
that changing a program to make it more efficient can cause it to do a different task
from the intended one, and that the difference can be hard to detect. The difficulty
is compounded if — as is usually the case — the task description leaves details to be
filled in, and changes during programming.

The present Syllog system encapsulates many optimizations that seek to run a
specification efficiently, whether or not the specification uses a database management
system to hold tables of facts. So, the system is efficient on many real examples.
One specifies a task, rather than saying how the task is to be done. Running the
specification efficiently is the responsibility of the system implementers, rather than a
problem for the programmers of each task. As is the case with database management
systems, there is further work to be done on Syllog on the question of generic efficiency
over families of tasks. Meanwhile, if a conventional program is needed for efficiency,
it can be procedurally attached to a Syllog specification.

The user interface of Syllog, together with the supporting software, allows us to
write a task specification almost in English. When we run a specification, we can ask
questions in FEnglish, via menus, or via business forms. We get answers to questions
as tables, as business forms, or as business charts. In the case of tables and business
forms, automatically hypertexted explanations of results are available as needed. We
believe that this people oriented software technology, and its future extensions, can
make a major contribution to the accountability and surety of information systems,

16

and that it can also contribute to the growing field of methods for interchanging
executable knowledge.

6 References

[ABWS88] Apt, K., H. Blair and A. Walker. Towards a Theory of Declarative Knowl-
edge, In: Foundations of Deductive Databases and Logic Programming, J. Minker

[Ed.], Morgan Kaufman 1988.
[Bark91] Barkakati, N. “Unix Desktop Guide to X/Motif”, Hayden, 1991.

[BCGI2] Berners-Lee, T.J, R. Cailliau and J.-F. Groff, The World-Wide Web, Com-
puter Networks and ISDN Systems 25 (1992) 454-459. Noth-Holland.

[DAD93] Date, C. J., and Hugh Darwen. A Guide to the SQL Standard, Addison-
Wesley, 1993.

[EPA94] “Toxic Chemical Release Inventory Reporting Form R and Instructions, Sec-
tion 313 of the Emergency Planning and Community Right to Know Act, EPA EPA
745-K-94-001", U.S. Environmental Protection Agency, Washington D.C. .

[FRTWS8S8] Foo, N., A. Rao, A. Taylor and A. Walker. Deduced Relevant Types and
Constructive Negation. Proc. Fifth International Conference Symposium on Logic
Programming, Seattle, Washington, 1988, 126-139.

[KRO93] Kroha, P. Objects and Databases, McGraw-Hill, 1993.

[Lel91] Lell, C. Using a Meta-knowlege Method for Developing an Educational Knowl-
edge Based Application. Proc. 2nd Int. Conf. on Database and Expert System
Applications — DEXA "91, Berlin, Springer Verlag, 1991.

[NeN92] Neumann, G. and S.Nusser. Wafe - An X Toolkit Based Frontend for Appli-
cation Programs in Various Programming Languages, USENIX Winter 1993 Technical
Conference, San Diego, California, January 25-29, 1993

[Ous94] Ousterhout, J.K. “Tcl and the Tk Toolkit”, Addison-Wesley, 1994.

[Wal91] Position Statement on The Direction of Object-Oriented Technology in the
Marketplace. In: “Object-Oriented Databases: Analysis, Design and Construction”,
Meersman, Kent and Khosla [Eds.], North-Holland, 1991.

[Wal93] Walker, A. Backchain Iteration: Towards a Practical Inference Method that
is Simple Enough to be Proved Terminating, Sound and Complete. Journal of Auto-
mated Reasoning, 11:1-22. 1993.

[WMSW90] Walker, A., M. McCord, J. Sowa and W. Wilson. “Knowledge Systems

17

and Prolog: A Logical Approach to Expert Systems and Natural Language Process-
ing”, second edition, Addison-Wesley, 1990.

7 Acknowledgements

In addition to the people whose work we have cited, many others have contributed
to the Syllog system, and to its use in environmental reporting. We would like
in particular to thank the users of the Syllog system for their patience when early
versions of the system were less than user friendly, and for their many suggestions for
improvements.

18

