Distributed Web Application Development with Active Web Objects*

Gustaf Neumann

Department of Information Systems
Vienna University of Economics, Austria

Abstract

Modern distributed web applications should
offer high customizability, various communi-
cation resources, flexible data and document
representations, persistence, metadata, mech-
anisms for interaction and coordination, etc.
Often these requirements are realized with a
diverse set of technologies, which are orthog-
onal to web technology and based on overlap-
ping concepts, abstractions, and paradigms.
In this paper we present ACTIWEB as a single
framework which centers around the notion
of active web objects. Those integrate web
documents with objects of an object-oriented
scripting language. The scripting language
enables rapid application development and
component glueing. Moreover, some basic
services, such as support for XML, RDF,
remote procedure calls, code mobility, object
persistence, and object registration, are pro-
vided.

Keywords: web objects, distributed web applica-
tions, scripting

1 Introduction

The World Wide Web (WWW) was developed
with a set of desired qualities, such as portabil-
ity, interoperability, scalability, and extensibil-
ity. These goals led to a simple architecture that
is centered around document structures, but
which also provides resources to develop web-
based applications in a distributed client/server
environment. Advantages, like the simplicity of
the architecture, the ability of human beings to
understand the presented information directly,
the ease of adding new information, and the ease
of connecting information pieces through links,
have led to a dominating position for web-based
information systems.

*Published in: Proceedings of the 2nd International
Conference on Internet Computing (IC’2001), Las Vegas,
Nevada, USA, June 25-28 2001

Uwe Zdun
Specification of Software Systems
University of Essen, Germany

But this simple architecture has several draw-
backs for distributed web application develop-
ment: It lacks support for interactive or col-
laborative multi-user applications [2] and is not
well suited to exploit the benefits of today’s dis-
tributed (object) technologies. The basic data
structure of the web — hyperlinked HTML pages
— is too restricted to support complex applica-
tions [1]. The integration of important services,
such as diverse communication infrastructures,
data representations, metadata, persistence, in-
teraction and coordination of web-based applica-
tions, etc. is often missing. Current web object
models, as in [6], lack integration with these ser-
vices and do not provide powerful abstractions of
modern OO languages. Web-application devel-
opment in system languages, such as C, C++,
or Java, say, with the CGI interface, is often
complex and misses the flexibility and customiz-
ability required by many web applications (see
[11, 12]). Building flexible, distributed web ap-
plications on top of current web standards is
not impossible. However, distributed technolo-
gies/services and web standards, like the HTTP
protocol, are often not well integrated [13].

In this paper, we present an extensible,
component-based framework for distributed
web-based applications that centers around the
notion of active web objects. The basic con-
cept of active objects is not new, it has been
used in the context of other domain. However,
our component framework is implemented with
today’s web technology without suffering from
the complexity of e.g. middleware approaches.
It also avoids the limitations of CGI-like archi-
tectures, such as problems with client-to-client
interaction, customizability, performance, etc.



2 A Component Framework for
Active Web Objects

This section presents the basic architecture of
our AcTIWEB component framework. In this
section, we give a very brief overview of the
object-oriented scripting language XOTcL in
which AcTIWEB is implemented. XOTcL pro-
vides a set of uncommon functionalities that ease
the implementation of our component frame-
work. Then we discuss the conceptual hierarchy
of the basic web object types and the base-line
architecture of service components on top of a
flexible HTTP implementation. In Section 3 we
discuss the service components in more detail.

2.1 Extended Object Tcl (XOTcL)

Extended Object Tcl (XOTcL) [9] (pronounced
exotickle) is an object-oriented extension of the
language TcL. Scripting languages gain flexibil-
ity through language support for dynamic exten-
sibility, read /write introspection, and automatic
type conversion. TcL and similar scripting lan-
guages are designed as two-level languages, con-
sisting of components written in efficient, stat-
ically typed languages, like C or C++, and of
scripts for component glueing. The primary pur-
pose of the scripted layer is flexible composition
of components.

XOTcL enhances the “glueing of components”
idea of TcL with language constructs to support
architectural fragments, such as design pattern
parts, and to provide explicit support for com-
position and decomposition. All object-oriented
constructs are fully introspectable and all rela-
tionships are dynamically changeable. Besides
a highly flexible object system, XOTcL offers
the message interception techniques per-object
mixin, per-class mizin, and filter to support
changes, adaptations, and decorations of mes-
sage calls.

2.2 Active Web Objects

The goal of active web objects is “activeness” for
web artifacts. A web object is used as a unified
entity for application development and informa-
tion exchange on the web. Web artifacts are
represented by an object that contains methods
defining the web artifact’s behavior. In this con-
text, the traditional web with its interconnected

web pages can be interpreted as a drastically
simplified system of web objects. Web pages can
be seen as objects unambiguously identified by
URLs. Links can be seen as methods invoked
via a web server, which functions as dispatcher.

The notion of web objects also manifests in
variants of dynamic HTML and the Document
Object Model (DOM) [16] which treat HTML
documents as programmable objects. In such
approaches, the programmer can interact with
document elements without parsing the text
again. However, DOM based approaches only
offer limited suitability for general application
development, since they are conceptually cen-
tered around classical web documents. Thus re-
sources for expressing the application semantics
of distributed systems are not provided.

In our concept, an active web object is a full-
fledged programming language object which is
capable to represent itself on the web. An ac-
tive web object contains methods and data, has
a runtime state, a location, and an URL to be
accessed via the web. Requests for the objects
via the web, such as HT'TP requests, are mapped
directly to method invocations of the active web
objects. For a client of the system, like a web
browser, active web objects look exactly like tra-
ditional web pages.

A
ile Code: ; ; hed
N!Obl & Clatles Agent WebDocument IR EliEEE
- invoke web document
- clone
- migrate
(RS D . WebAgent
representations:
HTML, XML,
WAP, ... *

Figure 1: Conceptual Class Structure of Web
Objects

An important property of a web object is its
location. An active web object “lives” in the
runtime environment of a place. The place has
the responsibility to translate URL requests to
method invocations on the object. In ACTIWEB
active web objects can also be called via direct
RPC calls (on top of HTTP) without HTML
markup.



An object that can be accessed through an
AcTIWEB place is called web object. Each placeis
uniquely identified by host name and port num-
ber of the HT'TP server. Additionally, each web
object has a string-based object name as object
ID. There are different special web object types:
A web document is a web object which contains
a web artifact, such as an HTML page, a pic-
ture, a sound file, etc. An mobile agent is a web
object that can exploit mobile code primitives,
like migrate or clone. A web agent is a mobile
agent that supports — beside the mobile agent
abilities — views on the agent’s state and behav-
ior in various web representations, like HTML,
XML, etc.

Figure 1 presents the conceptual class struc-
ture of web objects. We call it a conceptual
class hierarchy because in XOTcL a class hier-
archy is highly flexibly and does not necessarily
express only the intrinsic properties of an ob-
ject. In XOTcuL it is, for instance, possible to
dynamically and transparently attach a class to
an arbitrary object as an implementational role
using per-object mixins [7]. Therefore in AcTI-
WEB an agent object can behave exactly like a
web document and vice versa.

ACTIWEB integrates mobile code technology
and object-oriented programming with the cur-
rent web infrastructure. The place abstraction
of the mobile code paradigm is a good access
point for the active web object system as well.
It also serves for all centralized issues, such as
integration of service components, the mapping
of URLs to methods of web objects, security
and access control issues, etc. Each agent can
communicate via RPC calls and clone/migrate.
An web agent additionally contains methods
to return a certain representation, like HTML
or other web representations. The place maps
URLSs to method implementations.

3 Components of ACTIWEB

The AcTIWEB system (see Figure 2) is imple-
mented on top of XOTcL. Each service is a
dynamically loadable component. Generally all
components can be substituted by compatible
ones. xoCoMmM [8] provides an object-oriented
implementation of an HT'TP server and HTTP
access. Places, the basic execution environments
of ACTIWEB, contain exactly one HTTP server
identified by host and port. Web objects can

access other (remote) web objects via HTTP.

The data representation services provide
an object-oriented implementation of an
XML- (called xoXML) and an RDF-parser/-
interpreter (called XoORDF). XOSTORE is a gen-
eral persistence service for XOTcL objects. A
registry service XOREG enables registration of
AcTIWEB objects, say, to find an object through
the specification of certain properties. xoMOS
implements an mobile object system. The active
web objects component X0OAWO provides web-
representations for active objects and agents.
All components can be loaded on demand. The
following sections describe these components.

Applications

ActiWeb

Mobile Object System
xoMOS

Registry Service
XoReg

—

Communication Services
xoComm

Data Glue Services

Metadata
XORDF

Data Representation
X0XML

Http Access || Http Server

XOTcl

Figure 2: AcTiWEB: Basic Architecture

3.1 Flexible Data Representation and
Metadata Services

For flexible data representation an XML and
RDF parser/interpreter framework is integrated
in ActiWEB [10]. XML is primarily used as a
flexible data glue and a platform independent
data representation. The Resource Description
Framework [4] is a formally specified model for
describing web resources with metadata. RDF
metadata can be expressed in various forms.
The RDF data model itself is visualized by di-
rected graphs, with two kinds of nodes for web
resources and properties. But RDF metadata
can also be linearized in XML.

In AcTiWEB we use RDF metadata as a gen-
eral form of knowledge representation about web
objects. These include ordinary web documents
which are described by metadata, like author,



title, etc., but also special metadata properties
of agents, such as migration properties. These
are the code of the agent, the current state, and
a start command with which the agent resumes
its actions at the migration target. When agents
migrate, they generate such RDF metadata.

3.2 HTTP-Based
Service

Communication

xoCoMM [8] is a communication infrastructure
for web applications, based on the HTTP proto-
col. It provides an HTTP server and client ac-
cess. Furthermore it is the basic communication
service for the AcTiIWEB web object and mobile
code system. The HTTP server component of
xoCoMmM is used to implement AcTIWEB places.
The places use the HTTP client-side implemen-
tation for providing the RPC communication re-
sources for their agents.

In AcTiWEB each place aggregates a web
server object. Per default all place communica-
tion is handled by the place’s web server. Each
AcTIWEB agent is able to invoke, clone, and mi-
grate itself via HTTP. Agents generally exploit
asynchronous communication. Agents must reg-
ister themselves with a place. The place con-
trols which methods of which active web objects
are accessible from the outside. All other URL
requests are not redirected to the object, but
produce an HTTP error. Furthermore, on the
accessible objects we may add basic and digest
access control.

3.3 Persistence Service

Object persistence is required for most dis-
tributed web applications. A persistence service
enables recovery of web objects and agents from
non-volatile storage, say, for cases when a place
has a fault or is turned down temporarily. If an
object persistence service is missing, it usually
has to be programmed by hand, say, on top of a
relational database.

The XOSTORE persistence service allows the
developer to make any XOTcL object persis-
tent with a single line of code. It realizes dif-
ferent storage STRATEGIES which are mixed-in
as per-object mixins [7]. Different backends,
like various persistent stores, can transparently
be used with a unique interface. Objects that

need persistence may add persistence transpar-
ently and dynamically through PER-OBJECT
STRATEGIES. Currently clients can choose be-
tween an eager strategy and a lazy strategy.
The eager strategy writes changes in the ob-
ject’s data to the storage as they occur. The
lazy strategy writes the object’s data when the
process terminates.

3.4 Mobile Web Object System

The components of the mobile object system im-
plement a remote programming (RP) and re-
mote procedure call (RPC) environment for mo-
bile agents. To let a web object be called
via a remote call, the web object class has a
method exportProcs that lets an object dynam-
ically specify which methods are currently ex-
ported for remote calls. Only these method calls
are dispatched by the place. All other calls re-
sult in an HTTP error.

Every remote call is handled via the place.
Places are unambiguously identified by host
name and port. All web objects are, therefore,
also unambiguously identified by an URL. To
let object-oriented calls be invoked using URLs,
we automatically transform them with the web
standard CGI encoding/decoding (e.g. spaces
are transformed to '+’). The general form for
object-oriented calls via an URL is:

http://hostname:port/objName+methodName+arguments

An agent management component imple-
ments a special agent that fulfills the manage-
ment tasks for agents of the place. All agents
of a place have to register/deregister themselves
with the agent manager. It (lazily) creates RDF
metadata on the agent’s code, if an agent clones
or migrates to a foreign host. Agent manage-
ment also includes immigration from a foreign
host. For immigration, RDF metadata that con-
tains the agents code and data has to be trans-
formed into XOTcL code. Then the start com-
mand that represents the last state of the agent
at the origin host has to be evaluated.

The agent component extends web objects
with the ability to clone and migrate. To let
a place distinguish RPC and RP call, we use the
HTTP method GET to denote an RPC call and
the HTTP method PUT for RP calls. invoke
takes an object-oriented call, encodes it with
CGI encoding, and asynchronously sends it via



HTTP GET. clone calls the agent manager to
lazily create an RDF metadata script, if it is not
already existing. The script captures the current
code and state of the agent. A start command
specifies where the agent resumes its work at
the foreign host. Finally, the agents is sent via
a PUT request. migrate clones the agents and
destroys it afterwards locally.

3.5 Registry Service

Sometimes an web object’s services have to be
searched in the network. Often object/agent in-
teraction has to be coordinated. Such tasks can
be solved by a service-based registry architec-
ture: Each place contains a registry which is
able to store properties for its objects. Objects
can register themselves with RDF metadata, like
type, name, attributes, etc.

Other agents can send a request for proper-
ties to the registry. The request is compared to
the attributes and a list of matching agents is
returned. Another variant is to directly redirect
the call to one of the matching agents via HT'TP
REDIRECT. Several registry agents in different
places may be connected and can forward queries
to other registries, say, in a hierarchical fashion
(similar to the domain name service (DNS)).

3.6 Web Representations for Active
Web Objects

In many distributed applications there are di-
verse requirements for communication and rep-
resentation. Often it is hard to predict all re-
quired representation and channel types for in-
teraction. Active web objects in the ACTIWEB
system are an extensible form of representations
via different channels, such as RP, RPC, SOAP,
CORBA, HTTP, WAP, etc.

An active web object can provide web repre-
sentations for the object’s methods. There are
two different kinds of active web objects: Special
agents that also have a web representation and
ordinary web documents, like HTML pages, pic-
tures, etc., that also have active parts in form
of methods. The two forms may also be com-
bined to web agents that contain a web docu-
ment. That way a document can migrate with
an agent to a foreign host.

Through the extensible invocation interface of

the place we add a representation invoker for ev-
ery additional representation. A client accesses
these representations through special FACADE
objects that hide the representation. Thus, a
SERVICE ABSTRACTION LAYER [15] providing
views for different channels is used. The place
acts as a PROXY and forwards calls for a special
representation to the proper FACADE.

Web documents are web objects that have the
capability to attach or detach files, like HTML
pages, pictures, etc. A document FACTORY al-
lows us to automatically create objects with
names comprising a directory and file name.
Therefore, a whole tree of a web server can
be automatically transformed into an object-
oriented representation using MIME type guess-
ing. For a client the ACTIWEB system then acts
as a normal web server for clients, but all doc-
uments may be extended by active parts. The
object names, which are encoded in the URL, are
identical to the filename part in the URL. Fig-
ure 3 presents the provided basic communication
resources and channels of the AcTIWEB system,
yet they can be extended with other channels
and representations, such as SOAP, CORBA, or
WAP.

4 Related Work

The commonly used CGI interface has several
drawbacks in comparison with the presented ar-
chitecture. CGI applications are often a loose
coupling of scripts without a component con-
cept. Thus complex applications may be hard
to maintain. Most tasks have to be programmed
by hand instead of using a simple service frame-
work. CGI scripts do not support suitable direct
client-to-client interaction. The CGI concept is
not equipped with mobile code abilities. There-
fore, it can suffer from problems of performance
and customizability.

If we compare AcTIWEB to a distributed ob-
ject system, like CORBA [14] or DCOM, we can
assess that both solutions are able to hide the
networking details. Some of these approaches,
like CORBA 3.0 or Java RMI/EJB, also offer
a component model integrated with distributed
objects. However, middleware solutions do not
integrate well with scripting and the web. Thus
solutions may be more complex. The distributed
object system usually does not provide an inte-
grated solution for static and active web rep-



agent
mirgration
(or cloning)
to remote place
agentl \= -

imethod?]

local
method
invocation

place = execution environment

. agent3
method

= agent meeting

HTTP implementation

remote
method
invocation

)

webagent2
method 13

method2

HTML
“ representation
v

network layer

Figure 3: Mobile Code and Active Web Object System — Communication Resources and Channels

resentations. The usage of a conventional ap-
plication server, such as WebLogic, WebSphere,
etc., offers a concept for adding an additional
web representation to a business logic. But the
concept does not ease the use of other represen-
tations. As a pure server-side approach it may
produce a significant network load for client-to-
client interaction.

Nevertheless, commercial products, like dis-
tributed object systems and application servers,
offer a great number of services, supported plat-
forms, etc. that are still missing in AcCTIWEB.
But through XOTcL’s extensibility with C com-
ponents, commercial products written in C or
C++, like CORBA ORBs, transaction moni-
tors, message queueing systems, etc. can be in-
tegrated. Furthermore, for interoperation Ac-
TIWEB makes use of several web standards, like
the HTTP protocol, URLs, CGI de-/encoding,
RDF metadata, etc. These are supported by
most languages on most platforms.

Telescript [18] is an object-oriented program-
ming language that pioneers in the area of mo-
bile code. The terminology of this work is re-
lated to Telescript and several abilities of Tele-
script, like persistence, mobile code, etc. are im-
plemented in AcTiWEB as well. Telescript does
not support web representations and is not in-
tegrated with web standards. In [3] the general
idea to provide one general framework for devel-
opment of distributed and information-oriented
applications is presented. In AcTIWEB we also
provide mobile code abstractions and scripting,
but additionally a tight integration with the web
and object-orientation is provided.

In [6] several resources for building a web ob-

ject model on top of available web resources is
discussed. These include XML, RDF, DOM,
embedded scripts, and simple RPC messaging
techniques. There are several approaches for
interaction using RPC based calls on the web,
like WIDL [17], XML-RPC [19], or WebBroker
[13]. Those send their data using XML encoding.
However, these approaches miss several impor-
tant parts of ACTIWEB, like the integration with
the scripting language for rapid customization
and component integration, the persistence ser-
vice, and code mobility. Moreover, integration of
the provided services is rather low-level. In con-
trast, ACTIWEB provides one language model,
paradigm integration, and services as dynami-
cally loadable components.

ZOPE [5] is an object-oriented development
environment for web pages that is based on the
object-oriented scripting language Python. It
also contains an object-oriented database and
a web server. Web documents are treated as
objects that can have active parts through the
document template markup language (DTML).
Object calls are also mapped to URLs. The ap-
proach of ZOPE is quite similar to ACTIWEB
for web site development, has currently a better
development environment with rich integration
facilities predefined, but it lacks important ser-
vices, like registry, mobile code, metadata rep-
resentation, etc.

There are several other application servers
and document management systems integrated
with scripting (and some of the other services
presented), including AOL Server, Web Shell,
Vignette V/5, or [12]. These systems offer
some service not available in AcTIWEB, as for
instance document management functionalities.



However, many important basic services of Ac-
TIWEB, like code mobility or integration with
object-orientation, are missing.

5 Conclusion

As described in the previous section, there are
several systems which implement partial aspects
of our ACTIWEB system, but lack other parts
completely. AcTIWEB provides extensibility, is
based on web standards, enables several web
representations, is integrated with an object-
oriented scripting language, is extensible with
C/C++ components, and solves customizabil-
ity and performance problems by providing code
mobility. Moreover, AcTIWEB has integrated
some of the most prevalently needed service for
distributed web applications: Integration with
HTTP communication, object persistence, flexi-
ble data representation through XML, metadata
through RDF, and registry services.

Despite the rich service environment, only a
very limited number of components with small
interface has to used by application developers.
For instance, all XML/RDF encoding/decoding
is handled automatically. Thus the direct use of
XML/RDF is optional. In other words, the basic
requirements to start development in AcTIWEB
can be learned quite quickly and applications are
usually less complex than applications written
entirely in system languages.

For many typical web applications, ACTIWEB
can be used as a single framework for inte-
grated development of distributed systems. The
component model of the XOTcL language en-
ables legacy integration and integration with ap-
plications written in other languages, such as
C/C++. Application parts, written in other lan-
guages, are integrated as dynamically loadable
components. The scripting language allows for
flexible component glueing and eases construc-
tion/manipulation of string-based web content.
Thus we gain high customizability of web appli-
cations.

The integration with an active web object sys-
tem lets us provide several representations for
one business logic. Since the integration is hid-
den in the place’s web server, the client does not
see any difference to usual web pages.

XOTcL and the ACTIWEB components are
freely available from http://www.xotcl.org/.

References

[1]

[2]

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Bosak. XML, Java, and the future of
the web. http://sunsite.unc.edu/pub/sun-info/
standards/xml/why /xmlapps.htm, 1997.

P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi,
and A. Knoche. Coordination multiagent ap-
plications on the WWW: A reference architec-
ture. IEEE Transactions on Software Engineer-
ing, 24(5), 1998.

D. Kotz and R. S. Gray. Mobile agents and the
future of the internet. ACM Operating Systems
Review, 33(3), August 1999.

O. Lassila and R. R. Swick. Resource de-
scription framework (rdf): Model and syn-
tax. http://www.w3.org/TR/WD-rdf-syntax/,
1998.

A. Latteier. The insider’s guide to Zope: An
open source, object-based web application plat-
form. Web Review, March 1999.

F. Manola. Technologies for a web object
model. IEEFE Internet Computing, 3(1):38-47,
January/February 1999.

G. Neumann and U. Zdun. Enhancing object-
based system composition through per-object
mixins. In Proceedings of Asia-Pacific Software
Engineering Conference (APSEC), Takamatsu,
Japan, December 1999.

G. Neumann and U. Zdun. High-level design
and architecture of an HTTP-based infrastruc-
ture for web applications. World Wide Web
Journal, 3(1), 2000.

G. Neumann and U. Zdun. XOTcL, an object-
oriented scripting language. In Proceedings of
Tcl2k: The 7th USENIX Tcl/Tk Conference,
Austin, Texas, February 2000.

G. Neumann and U. Zdun. Pattern-based de-
sign and implementation of an XML and RDF
parser /interpreter. Submitted for publication,
2001.

J. K. Ousterhout. Scripting: Higher level pro-
gramming for the 21st century. IEEE Com-
puter, 31(3):23-30, March 1998.

A. Shah and T. Darugar. Creating high perfor-
mance web applications using Tcl, display tem-
plates, XML, and database content. In Proceed-
ings of the 6th Annual Tcl/Tk Conference, San
Diego, California, September 1998.

J. Tigue and J. Lavinder. Webbroker:
Distributed object communication on the
web.  http://www.w3.0org/TR /1998 /NOTE-
webbroker, 1998.

S. Vinoski. Corba: Integrating diverse applica-
tions within distributed heterogeneos environ-
ments. IEEE Communications Magazine, 14(2),
1997.

O. Vogel. Service abstraction layer. sub-
mitted to EuroPLoP 2001, see also http://
www.ovogel.de/SAL.htm, 2001.

W3C. Document object model (DOM) level
1 specification. http://www.w3.org/TR/REC-
DOM-Level-1, 1998.



[17]

[18]

[19]

M. G. Wales. Widl: Interface definition for
the web. IEEE Internet Computing, 3(1):55—
59, January/February 1999.

J. White. Mobile agents white paper.
http://www.genmagic.com/technology/
techwhitepaper.html, General Magic, Inc.,
1995.

XML-RPC home page. http://www.xml-
rpc.com/.



