An EER Prototyping Environment and its Implementation
in a Datalog Language®

Norbert Kehrer, Gustaf Neumann
Vienna University of Economics and Business Administration
Department of Management Information Systems
Augasse 2—6
A-1090 Vienna, Austria

kehrer@wu-wien.ac.at, neumann@wu-wien.ac.at

Abstract

In this paper we present an approach to represent schema information, application data
and integrity constraints as a datalog program. The schema information is supplied as an
enhanced entity relationship (EER) model which is transformed by a one-to-one mapping
into a set of ground facts. The application data corresponding to the schema is represented
by ground facts as well by using a single predicate named observation. In order to check
whether the application data conforms to the given schema, a set of integrity rules is de-
fined which expresses the dependencies (mostly functional and inclusion dependencies)
implied by the EER model. In order to check whether the application EER model is a valid
EER model a meta EER model is defined. Any application EER diagram appears as an in-
stance of the meta EER diagram which can be specified using the same application data
representation as above. This way a single set of the integrity rules can be used to check
the conformance between the application data and the application EER diagram, the meta
EER diagram and the application EER diagram. Since the representation of the meta EER
diagram is an instance of the meta EER diagram, the validity of the meta EER diagram is
checked as well. The resulting logic program is composed of the application data, the ap-
plication schema, the meta schema, a general set of constraints plus optionally additional
application specific constraints and deduction rules.

1 Introduction

The entity relationship (ER) approach is undoubtably a very popular tool for the communica-
tion between a database designer and a user of a database system. In our opinion the reason
for the popularity is due to the fact that ER models have a graphical representation and that
ER models can be mapped in a systematic way to a relational database schema [TYF86]. Ex-
tensions of the basic formalism of Chen [Che76] were proposed by various authors to capture
concepts like generalization [SS77] or categories [EWHS85]. In this paper we will follow the
enhanced entity relationship (EER) flavor as presented in [EN89]. Within this paper we will
not deal with certain EER constructs such as composite, derived or multi-valued attributes and
predicate defined categories or sub-/superclasses.

We will present a prototyping environment based on a deductive database system for EER
model designers in the form of an executable EER specification. To accomplish this goal we

*Published in the Proceedings of: “Entity-Relationship Approach - ER’92, 11th International Conference on the
Entity-Relationship Approach”, pp 243-261, Karlsruhe, Germany, October, 1992.

develop a representation of EER models, which is derived from a meta EER model, and a rep-
resentation of the application data consisting only of a single table, which can be provided at
design time. We do not focus in this paper on the generation of efficient information system
for production use, but we want to provide instead a tool for a database designer to model
EER applications together with its data, to experiment with various design approaches and to
refine the EER model if necessary. The provided integrity constraints may be used to check the
consistency of both, the application EER model (by checking it against the meta EER model)
and the application data. In order to obtain an efficient information system using a relational
database system the standard mapping techniques can be applied. This paper does not, how-
ever, address application issues like transactions, locking, user interfaces, output, etc.

2 Using a Deductive Database System for EER Modelling

#1
, Data of Application
checking schema
EER Model of Application -—
#4
G 1 #2
enera L

Integrity checking Application SChet:clki rIn)'lata >com
Constraints Meta EER Model -

#3
Meta Schema Data

composes
schema
Meta EER Model >_

Figure 1: Using a general EER specific set of constraints to check meta and application integrity

checking

In our approach we start from a given EER diagram which is represented as a set of facts.
These facts are the result of a pure one-to-one mapping of the EER concepts used in the dia-
gram representing the schema information of the application. In addition to the schema the
application data will be given as facts as well. By applying general consistency rules we are
able to check the conformance of data and schema (see Figure 1). This consistency checking is
implemented using a deductive database system. We have chosen the datalog language SYL-
LOG [WMSW90] with its near-English representation and its comfortable user interface, where
one can easily generate explanations for inconsistent data. SYLLOG is implemented using a
backchain iteration procedure which gives clear semantics to stratified logic knowledge bases
[ABW87]. In general, our approach does not rely on the SYLLOG system. The same representa-
tion and the same rules can be used in a different syntactic form in a Prolog based environment
[KN91], where the system implementor has to care about termination, or in deductive database
system providing sound and complete computations in a datalog language. For a port, the tar-
get system must be able to deal with negation in stratified programs. Function symbols and
arithmetic computations are not required. Candidates for such target systems are for example
LDL [NT89] or RDL [KMS90].

We have developed a representation schema that allows us to keep the schema and data
together in the same database. This prerequisite allows us to specify further application EER
schemas as instances of a meta EER diagram. The meta EER diagram specifies how an appli-
cation EER diagram might be composed. Since the application EER models appear as data of

2

the meta EER model their well-formedness can be checked using the same general integrity
constraints. Finally it can be checked, whether the meta EER diagram is a valid EER diagram.

The resulting checked database has the form of a datalog program which can be extended
with deduction rules or additional constraints (which exceed the expressibility of the EER
methodology) as needed by the application. In certain cases one might want to add further
constraints which are not entailed by the EER diagram (such as domain restrictions). Such
constraints will be discussed in the section of the meta EER model.

Since all constraints are formulated in this paper in terms of datalog rules, one might ask,
why we used the EER methodology in the first place, and why we have not used a logic spec-
ification instead. We think that the main advantages of the EER methodology are its graphical
representation, which forces the user to express a relatively wide set of constraints without the
need of going into representation details.

Our work was influenced by [DZ88], who developed a first order specification of inference
rules together with a set of integrity constraints for a graphical information systems specifica-
tion language. In contrast to our work, a new formalism called LOCS is proposed. We based
our work on the well established and well known EER approach. The paper of [DZ88] does not
mention any attempt to check the wellformedness of the application schema using the same
integrity constraints.

3 Representing EER-Diagrams and its Data in a Datalog Language

The information contained in an EER diagram can be separated into two components.

1. Anextensional part containing the names of the concepts used in the EER model, a certain
classification of these concepts (attribute, entity type, relationship type), the links between
these basic concepts and the definition of certain properties of the concepts, and

2. an intensional part containing integrity constraints and deduction rules. In this paper we
are concerned primarily with integrity constraints that are induced by the EER model.

The extensional part of an application consists of the extensional part of the schema as
specified by the EER diagram plus application data. The intensional part of the application is
composed of the intensional part of the schema plus optionally additional constraints over the
data that cannot be expressed in an EER model. We will show some examples for such con-
straints in a later section which discusses a meta EER model. The integrity rules will be used to
check the conformance between the schema and the data. In order to check the wellformedness
of a schema we will introduce a meta EER diagram.

The extensional part of an EER diagram can be obtained by performing a simple one-to-one
mapping from the EER diagram to a set of facts. In our representation we represent an EER
diagram in terms of the links between the basic EER concepts. These links are either roles,
attributes, generalizations, or categories. In addition a predicate is needed to identify weak
entities. We are using the following SYLLOG sentences for representing EER diagrams (words
starting with the prefix eg-, some-, the-, a- and an- are logical variables in SYLLOG; the prefixes
are used only for readability. Two variables that differ only in their prefix denote the identical
variable):

1. One-to-one mapping of roles:

Role a-role-name a-rel-name an-ent-name the-cardinality the-participation
where the-cardinality is either One or Many and the-participation is either Partial or Total.

In EER diagrams roles are arcs connecting entity types and relationship types. All roles
are labelled with their names and their cardinalities (1 for One, n or m for Many). Role

3

arcs drawn as thick lines denote a total participation of the participating entity type in the
connected relationship type, thin lines denote a partial participation.

2. One-to-one mapping of attributes:

Attribute an-att-name a-mt-name the-type

Composite a-mt-name an-att-name an-att-name-component

where the-type is one of Simple, Identifying or Multivalued. a-mt-name stands for the name
of a modelled type of the EER methodology, i.e. an entity type or a relationship type.

In the EER diagrams attributes are drawn as ellipses, identifying attributes are under-
lined. As mentioned above the examples throughout this paper will contain only simple
or identifying attributes.

3. One-to-one mapping of generalizations:

Generalization a-gen-name an-ent-name the-disjointness the-completeness

G-sub a-gen-name an-ent-name

where the-disjointness is either Overlapping or Disjoint and the-completeness is either Partial
or Total.

Generalizations are denoted in the diagrams as undirected arcs leading from a supertype
to a small circle containing either a d (for disjoint subclasses) or an o (overlapping sub-
classes) which is connected with arrows pointing to the entity types of the subclasses.
A thick line between the supertype and the small circle indicates a total generalization.
In cases where a supertype has a single subtype the undirected arc and the small circle
can be omitted. In such cases a partial overlapping generalization is assumed. In our
representation a unique generalization name (a-gen-name) is used to represent the circle
symbol. The supertype of a generalization is included in the predicate Generalization.
Each subtype is stated as a fact for the predicate G-sub

4. One-to-one mapping of categories:

Category a-cat-name an-ent-name the-completeness

C-super a-cat-name an-ent-name
where the-completeness is either Partial or Total.
Categories are drawn like generalizations except that the character u is used in the circle

and there is only one arrow from the circle to the category entity type.

5. Identification of weak entity types:

Identifies a-rel-name a-weak-ent-name

Weak entity types and identifying relationship types are drawn in a grey box using a
thicker line style.

A Schema of a simple Airline Application and its Extensional Representation

Now we will use the relational schema for representing EER diagrams introduced in the last
section for a sample application. The EER diagram in Figure 2 is mapped to a set of facts. It
should be noted that this transformation is easy enough to be done by a fairly simple trans-
formation program. We have developed such a program that transforms EER diagrams drawn
with the publicly available graphical editor TGIF [Che91] into a relational schema conforming

(o) (Coone)
Departing
n 1
Departure Starting
Place

Flight Airport

Landing
estination Place
Offering 1
Heading
Offers w

1 | Company

Airline

Figure 2: An EER Diagram specifying a simple Airline Information System

=)

to the following SYLLOG tables. In SYLLOG a table is written as SYLLOG sentence followed by
a double dashed line followed by the values. All of these facts have to be ground.

Since the EER diagram contains only entity types, relationship types and attributes it suf-
fices to use Role and Attribute sentences.

Role the-name the-relationship-type the-entity-type the-cardinality the-participation
From Departing Airport One Partial
Departure Departing Flight Many Total
To Heading Airport One Partial
Destination Heading Flight Many Total
Company Offers Flight Many Total
Offering Offers Flight One Partial

Attribute the-attribute the-entity-type the-type-of-attribute

Country Airport Simple
Name Airport Identifying
Location Airport Simple
Tower-Freq Airport Identifying
Flight-Nr Flight Identifying
Seats Flight Simple
Location Airline Simple
Name Airline Identifying

A Set of Instances for the Airline Schema

In order to make the EER diagram executable it is necessary to store the data for the diagram
in the same SYLLOG knowledge base. To achieve maximal flexibility we decided to use a fairly
atomistic representation schema based on so called Observations. An observation is a fact deter-
mining that some attribute (or role) belonging to a certain entity type (or relationship type) has
for a given object a certain value. Thus all instances of the EER schema are defined by a single
predicate Observation with four arguments. The following patterns are possible:

Observation some-attribute some-entity-type some-tuple-identifier some-value or
Observation some-attribute some-relationship-type some-tuple-identifier some-value or
Observation some-role some-relationship-type some-tuple-identifier some-value

The first two arguments refer to the schema information, the third argument tuple-identifier
is used to group the various Observations to a certain tuple (aggregation). The tuple-identifier
determines uniquely the object in the database. The tuple identifier is a concept comparable to
the surrogate in [Cod79].

Note that a representation based on Observations allows us to cope with null values (no
observation available) or with multi-valued attributes (several observations with identical first
three arguments and different fourth arguments) in a simple way.

Observation the-attribute the-modelled-type the-tuple-id the-value

Location Airline Airlinel Wien

Name Airline Airlinel Aua

Location Airline Airline2 Budapest

Name Airline Airline2 Malev

Name Airport Airportl Wien-Schwechat
Country Airport Airportl Wien
Location Airport Airportl Schwechat
Tower-Freq Airport Airportl 123

Name Airport Airport2 Jfk

Country Airport Airport2 Usa

Location Airport Airport2 New-York-City
Tower-Freq Airport Airport2 222

Flight-Nr Flight Flightl 123

Seats Flight Flightl 130

Flight-Nr Flight Flight2 234

Seats Flight Flight2 170

From Departing Departingl Airport2
Departure Departing Departingl Flightl

To Heading Headingl Airportl
Destination Heading Headingl Flightl

One might argue that this representation is very atomistic and hard to use. The major
advantages are however that it allows a very general way to reference the EER concepts from
within the integrity rules and it is fairly easy to perform certain schema modifications (eg.
introducing a new attribute).

In order to provide a more more traditional view of the data specified in the Observation
facts one might provide rules. A SYLLOG rule consists of one or several SYLLOG sentences
(premises) followed by a line consisting of dashes followed by one or several SYLLOG sentences
(conclusions). The following two SYLLOG rules show how to make the data more accessible
and how to specify additional rules which are not expressible in the EER model (recursively
defined transitive closure).

Observation Flight-Nr Flight some-tuple-flight some-flight
Observation Seats Flight some-tuple-flight some-seats
Observation Offering Offers some-tuple-offers some-tuple-flight
Observation Company Offers some-tuple-offers some-tuple-airline
Observation Name Airline some-tuple-airline some-airline
Observation Departure Departing a-tuple-departing some-tuple-flight
Observation From Departing a-tuple-departing some-airport-a
Observation Destination Heading a-tuple-heading some-tuple-flight
Observation To Heading a-tuple-heading some-airport-b
Observation Name Airport some-airport-b the-place-b
Observation Name Airport some-airport-a the-place-a

some-flight is a flight of some-airline from the-place-a to the-place-b with some-seats seats
one can fly from some-place-a to some-place-b

one can fly from some-place-a to some-place-b
one can fly from some-place-b to some-place-c

one can fly from some-place-a to some-place-c

Rules like the first one can be found by applying a procedure like in [TYF86], [Te0o90], or
[EN89] to transform an EER model into a relational schema. These procedures are oriented to-
wards generating a small number of relations together with their attributes. Those relations are
used as conclusions of SYLLOG rules where the attributes are stated as variables. The premises
of the rules are formed by grouping together the Observations that are needed to specify the
variables in the conclusion. Both the generation of a relational schema and the grouping of the
Observations can be done automatically, so the advantages of the representation of the data as
Observations and of the possibility to easily access the data can be utilized without additional
effort.

The transformation into relations with a high number of attributes can entail some disad-
vantages: If a particular Observation is missing to form such a wide relation, either the whole
relation tuple will be omitted or a special representation for null values is needed. This null
value problem occurs if an attribute is missing or when a partial n-to-1 relation is resolved as
additional attributes of the table corresponding to an entity type. An easy solution for missing
attributes would be to use another integrity constraint that forbids missing values. This con-
straint would be very similar to the constraint that each role in a relation must be specified,
which is discussed in the next section. This consistency rule would be a non standard exten-
sion. A solution for the partial relation problem would be to map such relationship types to
separate tables.

4 General Integrity Constraints of the EER Model

Now we will present a set of general integrity constraints which can be used to check whether
the instances of an EER diagram conform to the restrictions entailed by this EER diagram. We
describe the different types of integrity constraints and show how integrity checking can be
implemented using stratified datalog knowledge bases in SYLLOG. It is assumed that the EER
diagram is represented as set of facts for the predicates resulting from the one-to-one mapping
of the meta EER diagram (Attribute, Role, etc.) and that the instances of the EER diagram are
given as ground facts using the predicate Observation.

Because we have available both — the information about the EER model and the instances
of the model — we are able to check the integrity of a database with one general set of integrity
constraints. Unlike other approaches [TYF86, MS89, EN89] which generate for each EER model
it’s own set of integrity constraints, we only have one set of integrity constraints which can be
used for any EER model.

An integrity constraint is formulated as a SYLLOG deduction rule with the conclusion stat-
ing that the constraint is violated and specifying the role or attribute and the modelled type
which violate the constraint. The premise of the rule states the conditions for the violation and
combines predicates referring to EER schema information and the Observation predicate con-
taining the instances of the EER schema. To make the rules shorter and more readable we have
introduced auxiliary predicates.

4.1 Functional Dependencies

Marking attributes as identifying and the specification of cardinalities of 1 in relationship types
in an EER model are ways to express functional dependencies on the modelled data.

A functional dependency (FD) is a constraint on a relation R which states that the values of
a tuple on one set of attributes X uniquely determine the values on another set Y of attributes.
It is written as X = Y and is formally defined by the following implication [Mai83, GV89]:

t1(X) = t2(X) — ta(Y) = t2(Y)

t1 and ¢y are two different tuples of R. If the values on the set of attributes X are the same in ¢
and t9 then the values on the attribute set Y have to be the same, too.

A FD is violated if there exist two tuples which have the same values in X and different
values in Y. In SYLLOG this can be expressed by the following rule:

two observations with different values in [eg-att-Rhs eg-mt-Rhs] are eg-tl eg-t2
not: two observations with different values in [eg-att-Lhs eg-mt-Lhs] are eg-tl eg-t2

value of [eg-att-Lhs eg-mt-Lhs] does not determine value of [eg-att-Rhs eg-mt-Rhs]

This rule defines the violation of a functional dependency of the type value(attribute-LHS)
= value(attribute-RHS) (where the attributes are atomic attributes). Since in our representa-
tion both the values and the tuple identifiers are accessible in the same way, we could express
dependencies of the form value(attribute-LHS) = tupid(attribute-RHS) or tupid(attribute-LHS)
= value(attribute-RHS) or tupid(attribute-LHS) = tupid(attribute-RHS) with the same ease. We
could generalize the rule as follows:

two observations with different eg-vtR in [eg-attR eg-mtR] are eg-tl eg-t2
not: two observations with different eg-vtL in [eg-attlL eg-mtL] are eg-tl eg-t2

eg-vtL of [eg-attL eg-mtL] does not determine eg-vtR of [eg-attR eg-mtR] for ATOMIC

In this syllogism vt stands for ‘value or tuple’. In cases where the left hand side of a functional
dependency is not atomic (AB — (), it can be stated informally that the dependency is violated
if “...for any different RHS all LHS are equal”, or “...no elements of the LHS are allowed to
be different”. We can use a syllogism to generate the left hand side attributes and proceed as
follows:

two observations with different eg-vtR in [eg-attR eg-mtR] are eg-tl eg-t2
not: any observations of type eg-t with different eg-vtL in eg-mtR using eg-tl eg-t2 exist

eg-vtL of [eg-attL eg-mtL] does not determine eg-vtR of [eg-attR eg-mtR] for eg-t

Some syllogism that concludes eg-attL for eg-mtL
two observations with different eg-vtL in [eg-attL eg-mtL] are eg-tl eg-t2

any observations of type specialized-type with different eg-vtL in mtL using eg-tl eg-t2 exist

Here the checking if two tuples of the modelled type of the left hand side are different is
done by a special syllogism which determines the items of the left hand side of the FD. For
each type of non-atomic left hand side one wants to use, an own syllogism has to be written,
which may be selected by an integrity rule via the variable specialized-type. Examples for this
procedure will be given later.

Identifying attribute determines tuple identifier

For each identifying attribute att of a modeled type of the EER schema there exists a functional
dependency between att and the tuple identifier of the form:

value(identifying-att,modelled-type) = tupid(modelled-type)

This corresponds to the definition of an identifying attribute as an attribute whose values
can be used to identify an entity uniquely [EN89], because in our approach an entity is repre-
sented by its tuple identifier.

In SYLLOG this is formulated by a rule which has the conditions for the violation of the func-
tional dependency as its premises and states the attribute and modelled type which violates the
FD as conclusion.

Attribute eg-att eg-mt identifying
not: eg-mt is a weak entity type
value of [eg-att eg-mt] does not determine tupid of [eg-mt eg-att] for ATOMIC

fd of eg-att -> tuple id. in eg-mt is violated

It has to be noted that the identifying attribute of weak entity types does not determine the
weak entity [Che76], but together with the owner entities it does. So we need a separate rule to
check this functional dependency violation for weak entity types. It states that the identifying
attribute together with the tuple identifier(s) of the owner(s) determine the tuple identifier of
the weak entity type:

value(identifying-att+tupids-of-owners,weak-ent) = tupid(weak-ent)

Tuple identifier determines single-valued attributes

Chen defined a (single-valued) attribute as a function which maps from an entity set or a rela-
tionship set into a value set [Che76]. For our representation this means that the value of each
single-valued attribute of the modelled type mt is determined by the tuple identifier of mt:

tupid(modelled-type) = value(any-attribute,modelled-type)

We need not check the constraint that the identifying attribute determines the values of the
other attributes [MS89], because it follows from the two previous constraints:

value(identifying-att,modelled-type) = tupid(modelled-type) N
tupid(modelled-type) = value(any-attribute,modelled-type) —
value(identifying-att,modelled-type) = value(any-attribute,modelled-type)

Entities participating in a relationship type with cardinality One

Each role r of a relationship type rel in which an entity type participates with cardinality One
is determined by all other roles of rel together [TYF86]:

value(other roles,rel-type) = value(one-role,rel-type)
This constraint is independent of the degree of the relationship type.
All roles determine tuple identifier
All roles of a relationship type r together determine the tuple identifier of r:
value(all roles,rel-type) = tupid(rel-type)

Which is expressed in SYLLOG as:

Role a-role a-rel an-ent the-cardinality the-participation
value of [a-role a-rel] does not determine tupid of [eg-any a-rel] for ALL-ROLES

fd of all roles -> tuple-id in a-rel is violated

Role eg-role eg-rel eg-ent eg-cardinality eg-participation
two observations with different eg-vt in [eg-role eg-rel] are eg-tl eg-t2

any observations of type ALL-ROLES with different eg-vt in eg-rel using eg-tl eg-t2 exist

This is an example of a FD where the left hand side is not atomic, but consists of all the roles
of a relationship type. Therefore we define a syllogism to determine two tuples of a relationship
type rel where at least one observation of a role of rel differs in these tuples. The FD violation
is checked using the rule for a non-atomic left hand side which is described at the beginning of
this section.

4.2 Inclusion Dependencies

The use of relationship types, generalizations, and special-izations in EER models indicates
that entity or relationship sets are subsets of some other entity or relationship set. The property
of being a subset of another set is covered by inclusion dependencies.

Inclusion dependencies (ID) specify that each member of some set A must also be a member
of a set B. An inclusion dependency A C B is violated iff there is an occurrence (value or tuple
identifier) of A which is not an occurrence of B. In SYLLOG this is expressed by the following
rule:

eg-x1 is an attribute or a role of eg-mtl

eg-x2 is an attribute or a role of eg-mt2

one observation of eg-vtl of [eg-ral eg-mtl] is eg-x

not: one observation of eg-vt2 of [eg-ra2 eg-mt2] is eg-x

eg-vtl of [eg-ral eg-mtl] is not a eg-vt2 of [eg-ra2 eg-mt2]

Like the rule for FD violations this rule may be used to check inclusion dependencies be-
tween tuple identifiers and attribute or role values in any combination by specifying the vari-
ables vt1 and vt2 as “value” or “tupid”. The sentence “one observation of eg-vtl of
[eg-ral eg-mtl] is eg-x" returns a tuple identifier or a value of a role or attribute de-
pending on the value of vt.

Participating entities included in entity type

The values of a role of a relationship type must be tuple identifiers of the entity type participat-
ing in that role:

value(role,rel-type) C tupid(entity-type)
In SYLLOG the ID is checked by the integrity rule:

Role eg-r eg-rel eg-ent eg-card eg-part
value of [eg-r eg-rel] is not a tupid of [eg-att eg-ent]

id role eg-r of eg-rel << entity type eg-ent is violated

Totally participating entity types

For entity types which participate totally in a relationship type the previous ID has to hold in
the other direction, too. Each tuple identifier of an entity type e must be a value of a role in
which e participates totally:

tupid(entity) C value(role,rel-type)

10

Generalizations

A generalization may be total or partial. A total generalization specifies the constraint that
every entity in the superclass must be a member of some subclass in the specialization [EN89].
For our representation this means that in a total generalization with supertype super there must
be at least one subclass sub for each tuple identifier T of super, where T is included in sub:

tupid(supertype) C tupid(at-least-one-subtype)

There is also an inclusion dependency tupid(subtype) C tupid(supertype) for both partial and
total generalizations. In our representation we guarantee through the use of deduction rules
that the tuple identifiers of supertypes are also tuple identifiers of the subtypes. Therefore this
ID needs not to be checked.

Categories

Like for generalizations there are deduction rules to assure that tuple identifiers of the super-
classes are also tuple identifiers of the subclass in a category and that the attributes are inher-
ited. This mechanism may not be applied to partial categories, because not every entity of a
supertype has to be member of the subclass. Instead the members of the subclass in partial
categories have to be stated explicitly. Therefore we will have to check if the tuple identifiers
and attribute values of a subclass in partial category occur in one of the superclasses specified
for the category, which is expressed by the inclusion dependencies:

tupid(subclass) C tupid(some-superclass)
value(att,subclass) C value(att,some-superclass)

The mechanism of attribute inheritance will be described in more detail in a later section.

All roles in a relationship must be specified

In each relationship instance the associated entities have to be specified. This constraint is
violated if there are two different roles rolel and role2 in a relationship type rel and the set of
tuple identifiers of rel which have a value for rolel is a proper subset of the tuple identifiers of
rel having a value for role2. A is a proper subset of B if A C B and not B C A. So the constraint
may be written as

tupid(rolel,rel-type) C tupid(role2,rel-type) A — tupid(role2,rel-type) C tupid(rolel,rel-type)

which is expressed in SYLLOG as:

Role eg-rl eg-rel eg-entl eg-cardl eg-partl

Role eg-r2 eg-rel eg-ent2 eg-card2 eg-part2

tupid of [eg-rl eg-rel] is not a tupid of [eg-r2 eg-rel]

not: tupid of [eg-r2 eg-rel] is not a tupid of [eg-rl eg-rel]

not all roles specified in relationship type eg-rel

4.3 Exclusion Dependencies

An exclusion dependency (ED) is the constraint indicating that no member of a set A is a mem-
ber of a set B (empty intersection). An ED A = B is violated iff a tuple identifier of A is also
a tuple identifier of B. We define this constraint violation only for tuple identifiers and not for
attribute values or roles because this is not expressible in the EER methodology. The SYLLOG
representation of the violation of the constraint is easy:

11

Observation eg-ral eg-mtl eg-tl eg-vl
Observation eg-ra2 eg-mt2 eg-tl eg-v2
not: eg-mtl equal eg-mt2

tuple id eg-tl of eg-mtl is also a tuple id of eg-mt2

Disjoint subclasses

A disjointness constraint on a generalization specifies that the subclasses in the generalization
must be disjoint [EN89]. This constraint can be expressed by mutual exclusion dependencies
between all the subclasses. Let subl and sub2 be two different subclasses of a disjoint general-
ization. If a tuple identifier of sub1 is also a tuple identifier of sub2 the ED of disjoint subclasses
is violated:

tupid(disjoint-subclass-1) = tupid(disjoint-subclass-2)

Unique Tuple Identifiers

Two different modeled types mt1 and mt2 may not contain the same tuple identifier unless
mtl1 is a subtype of mt2 or mt2 is a subtype of mt. The sentence eg-sub is a subtype of
eg-super checks if one entity type is a subtype (via a subclass or category) of another entity

type.

tuple id eg-tl of eg-mtl is also a tuple id of eg-mt2
not: eg-mtl is a subtype of eg-mt2
not: eg-mt2 is a subtype of eg-mtl

eg-tl is not a unique tuple identifier of eg-mtl

44 Schema Conformity

The conformity of the database with the schema - i.e. the attributes, roles, and modelled types
appearing in Observation facts must be specified in the schema — cannot be checked by one of
the above dependencies, because the rules only refer to data integrity whereas the schema con-
formity may be viewed as an inclusion dependency between data and schema representation.
Therefore we use a separate consistency rule for this dependency.

An observation containing an attribute or role ra of a modelled type mt does not conform
to the schema if ra or mt have not been specified in the schema correspondingly.

Observation eg-ra eg-mt eg-tuple-id eg-value
not: eg-ra is an attribute or a role of eg-mt

schema conformity violated by tuple eg-tuple-id for eg-ra eg-mt

4.5 Type Hierarchy

The concepts of the generalization and category allow the construction of a hierarchy of entity
types. In our representation we use a mechanism for the inheritance of attributes in that hier-
archy and for the inclusion of tuple identifiers of one entity type in other entity types. It is built
upon the following rules:

12

e In a generalization the tuple identifiers and attributes which were stated in an Observa-
tion for a subtype become tuple identifiers and attributes of the supertype. The entity —
represented by the tuple identifier — belongs to both types. The name of the supertype is
an alias for the name of the subtype. Therefore we call this process “aliasing”.

e In a total category the attributes specified for a superclass are inherited to the subclass,
and the tuple identifiers of the superclass become tuple identifiers of the subclass (alias-

ing).

Nonetheless, additional Observations may be specified for the superclass in a generalization
and for a subclass of a category. Therefore the corresponding inclusion dependencies, which
we described earlier, have to be checked.

The inheritance of attributes and the aliasing of tuple identifiers is performed by SYLLOG
deduction rules for a predicate called Observation-In-Hierarchy. This predicate has the same
arguments as Observation and covers all Observations plus the ones that result from the inher-
itance mechanism. Actually the integrity constraint definitions are based upon this predicate
except in the cases where Observation is used explicitly.

4.6 Integrity Checking in Syllog

The checking of the integrity constraints is performed by querying the constraint violations
which were defined above. If there is a positive answer the database is inconsistent. The in-
tegrity rules may be extended to include the tuple identifiers of the violated Observations. Then
the answers to queries contain the observations which violate the constraint, and a set of ob-
servations which represents a consistent database could be generated. Such a consistent subset
is comprised of the answers to the predicate Consistent observation which may be defined as
follows:

fd of eg-att -> tuple-id in eg-mt is violated for tuple eg-ti

inconsistent observation eg-att eg-mt eg-ti

id role eg-r of eg-rel << entity type eg-ent is violated for tuple eg-ti

inconsistent observation eg-r eg-rel eg-ti

Observation eg-att eg-mt eg-ti eg-v
not: inconsistent observation eg-att eg-mt eg-ti

Consistent observation eg-att eg-mt eg-ti eg-v

The integrity of an inconsistent database can be recovered by deducing the consistent ob-
servations and replacing the set of Observation facts by the set of consistent observations. But
this new set of observations is not necessarily a consistent database, because of the deletion of
the inconsistent observations other integrity constraints (e.g. inclusion dependencies) might be
violated now. So the process of integrity checking and generation of consistent observations
has to be repeated until no more inconsistent observations can be detected (fixed point).

This iterative process of recovering the integrity of a database is necessary because the in-
tegrity constraints are based upon the predicate Observation and therefore use the stored facts
regardless of the recognition of some of these facts as inconsistent observations by other in-
tegrity constraints. One possible solution would be to use the predicate Consistent observation
instead of the basic Observation predicate in the integrity constraints, but here the problem
arises that the knowledge base becomes unstratified and cannot be used with traditional infer-
ence mechanisms.

13

4.7 Generating Meaningful Explanations

If, by the integrity checking it can be detected that the database is inconsistent, it is important
to know the reasons for the integrity violation to be able to update the database appropriately.
SYLLOG offers the facility to generate explanations of the answers it gives. This facility can be
used to detect the reasons for integrity constraints violations. A rule to check the consistency
of the whole database can be defined as:

not: some FD is violated
not: some ID is violated
not: some ED is violated
not: there is some tuple identifier that is not unique

general integrity constraints hold

fd of eg-att -> tuple id. in eg-mt is violated

some FD is violated

fd of all roles -> tuple-id in a-rel is violated

some FD is violated

The integrity of a database may be checked by submitting the query “general integrity
constraints hold” to SYLLOG. If the answer is “No” the database is violated and an expla-
nation like the following may be generated.

general integrity constraints hold

Sorry, no

Because....

not : some FD is violated
not : some ID is violated
not : some ED is violated

not : there is some tuple identifier that is not unique

general integrity constraints hold

t123 is not a unique tuple identifier of departing

not : there is some tuple identifier that is not unique

tuple id t123 of departing is also a tuple id of offers
not : departing is a subtype of offers
not : offers is a subtype of departing

t123 is not a unique tuple identifier of departing

observation from departing t123 Vienna
observation company offers t123 Aua
not : departing equal offers

tuple id t123 of departing is also a tuple id of offers

The items in italics could not be proved by SYLLOG. This explanation shows that t123 was
used as a tuple identifier for two different modelled types (departing and offers).

14

By using different groupings of the premises of the rule that checks the integrity of the
database different aspects of integrity violations may be covered and the different explanations
are generated. E.g. if we use the following rules to check the integrity we obtain for each
modelled type as an explanation the reason why this modelled type violates the integrity:

not: fd of all roles -> tuple-id in eg-mt is violated

not: 1id role eg-r of eg-mt << entity type eg-ent is violated

not: eg-ti is not a unique tuple identifier of eg-mt

not: schema conformity violated by tuple eg-tuple-id for eg-ra eg-mt

general integrity constraints hold for modelled type eg-mt

eg-mt is a modelled type
not: general integrity constraints hold for modelled type eg-mt

general integrity constraints violated

Another useful feature of SYLLOG is the possibility to generate the domain of a variable, i.e
the values it may have. So when we have the query

fd of eg-att -> tuple-id in eg-mt is violated for tuple eg-ti

e.g. the domain of eg-att can be computed which is the set of all attributes in the current
EER model. The domain computations are very useful in the exploration of the EER model and
to specialize variables in queries.

5 Using a Meta EER Diagram to Reason about the Consistency of an
Application EER Model

So far, we are only able to check whether some given data conforms to the integrity constraints
of a given EER diagram. In a next step we will check whether the EER diagram is a valid EER
diagram. This task is performed mostly by using the meta EER diagram of Figure 3 and by a
few further integrity constraints which are not expressible in the meta EER diagram.

The meta EER diagram in Figure 3 can be read as follows: The central EER concepts are
entity type and relationship type. Both of these concepts are generalized to so called modelled types.
Since a modelled type is either an entity type or a relationship type a disjoint generalization
was used. A modelled type might be described by attributes. An attribute is identified by a
name (identifying attribute) and characterized by its type (simple, identifying or multivalued).
Composite attributes are constructed using the composite relationship type). Since the names
of attributes are only unique per modelled type, attributes are modelled as weak entities with
the modelled type as owner.

Entity types and relationship types can be connected via roles, which are identified using a
name, and which have a cardinality and a participation value. The role names are unique per
relationship type, each occurrence of a relationship type participates in the participates relation
(total participation). Each weak entity type (a subtype of entity type) is identified by an identifying
relationship type (subtype of relationship type) and vice versa. The enhanced ER constructs of
the category and the generalization are used to define hierarchies of entity types. A generalization
(identified by name, characterized by the attributes disjointness and completeness) has one entity
type a supertype and might have several (one or many) entity types as subtypes. A category on
the contrary has one subtype and might have several supertypes.

15

Completeness Generalization

@ Categow

used-in m used-in
Completeness
Composite c-sub gstiper
contains component has
Attribute Enity Type Weak Enity Type
Identified Entity
n
description 1
Participation
Describes P
Name 1
S | described

Identifies

n
Mode"ed Type _@ Participates ——— Role
In

Cardinality

Participation

Name Containment

Identifying
Relationship Type

Relationship Type
Identifier

Figure 3: A Meta EER Diagram

The Schema of the Meta EER Model as One-to-One Mapping from the EER Diagram

Since the meta model is an EER model we can transform it into a SYLLOG knowledge base
using the same procedure as for the application EER model (airline example). Below you will
find the result of the one-to-one mapping.

Attribute the-attribute the-entity-type the-type-of-attribute

Name Modelled-Type Identifying
Name Attribute Identifying
Type Attribute Simple
Name Role Identifying
Cardinality Role Simple
Participation Role Simple
Name Generalization Identifying

Completeness Generalization Simple
Disjointness Generalization Simple

Name Category Identifying
Completeness Category Simple
Role the-name the-rel-type the-entity-type the-cardinality the-participation
Description Describes Attribute Many Total

16

Described
Contains
Component
Participation
Containment
In
Identified-Entity
Identifier
Used-in

Has

Used-in

Has

Used-in

Has

Used-in

Has

Describes
Composite
Composite
Participates
Participates
Participates
Identifies
Identifies
G-Super
G-Super
G-Sub

G-Sub

C-Sub

C-Sub
C-Super
C-Super

Modelled-Type
Attribute
Attribute
Entity-Type
Rel-Type

Role
Weak-Entity-Type
Id-Rel-Type
Generalization
Entity-Type
Generalization
Entity-Type
Category
Entity-Type
Category
Entity-Type

One
One
Many
One
Many
Many
One
One
Many
One
Many
Many
Many
One
Many
Many

Partial
Partial
Partial
Partial
Partial
Total
Total
Total
Total
Partial
Total
Partial
Total
Partial
Total
Partial

Generalization the-name the-entity-type the-disjointness the-participation

Types Modelled-Type Disjoint Total
Entity-Types Entity-Type Disjoint Partial
Rel-Types Rel-Type Disjoint Partial

G-sub the-name the-subtype

Types Entity-Type

Types Rel-Type
Entity-Types Weak-Entity-Type
Rel-Types Identifying-Rel-Type

the relationship some-relationship-type identifies the weak entity some-entity-type

Attribute
Role

Describes
Participates

All but the names of the generalizations can be inferred automatically from the diagram.
Our transformation program returns as “name” of Generalization its coordinate pairs. In the
SYLLOG representation above the generalization names Types, Entity-Types and Rel-Types were
used for better readability.

5.1 The Schema of the Airline Example as a Set of Instances for the Meta EER
Model

The schema of the application EER model was represented as a set of SYLLOG sentences of the
form:

Attribute Country Airport Simple
Attribute Name Airport Identifying

The same information can be expressed as follows as data for the meta EER model:

Observation some-attribute-name some-mt-name some-tupid some-value

Name Attribute Attributel Country

Type Attribute Attributel Simple
Description Describes Describesl Attributel
Described Describes Describesl Entity-Type-1
Name Entity-Type Entity-Type-1 Airport

Name Attribute Attribute2 Name

Type Attribute Attribute2 Identifying
Description Describes Describes?2 Attribute2
Described Describes Describes2 Entity-Type-1

17

This rather complicated representation does not turn out to be a problem since the transfor-
mation from the diagram is performed by a program. It is interesting to note that the transfor-
mation from the one-to-one mapping (SYLLOG sentence starting with Attribute) to the notation
using Observation is nontrivial, since it must be distinguished between a first reference and a
later reference to generate the correct tuple identifiers. The transformation in the other direc-
tion (from Observation to eg. Attribute) is much easier:

Observation Name Attribute some-att some-attribute-name
Observation Type Attribute some-att the-type-of-attribute
Observation Description Describes some-rel some-att

Observation Described Describes some-rel some-mt

Observation Name an-et-or-rt some-mt some-mt-name

Attribute some-attribute-name some-mt-name the-type-of-attribute

Using the schema information of the meta EER diagram and the instances above the well-
formedness of the application EER diagram (the airline schema) can be checked by applying
the general EER integrity constraints.

One can, however, check more than is specified in the EER diagram. There are essentially
two types of constraints missing: domain restrictions and exclusion of certain (recursive) def-
initions. An example of a missing domain restriction would be to specify that the participation
of a role is either total or partial (or that the role in which a weak entity type participates in an
identifying Relationship must be total, the names of roles and attributes of an relation must be
disjoint). An example of an EER construction that should be forbidden would be if an entity-
type is owner of itself (or if a subtype is its own supertype, two supertypes in a generalization do
not have a common root). Another constraint would be that each relationship type must have
at least two roles attached. Such constraints (we call them application specific constraints as
opposed to the general constraints) can be easily added.

not: a relationship has two or more roles

application specific constraints hold for METAEER

Role some-role-namel the-rel some-entityl some-cl some-pl
Role some-role-name2 the-rel some-entity2 some-c2 some-p2
not: some-role-name-1 equals some-role-name2

a relationship has two or more roles

general integrity constraints hold
application specific constraints hold for some-application

database for some-application consistent

6 Usinga Meta EER Diagram to Reason about the Consistency of the
Meta EER Model

As demonstrated above one can easily derive from the observation information of the meta
EER diagram the schema information of the application EER diagram. But since the meta EER
diagram itself is an EER diagram it has the same schema as the application EER diagram.

In order to check the consistency between the application schema and its data it is only
necessary to store the observation information and to use deduction rules like the rule above.

18

Thus, none of the instances of the one-to-one mapping introduced in an earlier section must
be available in the final system, since all of these sentences might be formulated as deduction
rules based on observations. One could even rewrite the integrity constraints introduced above
to access the observation information of the schema directly which would make the deduction
rules for Attribute and the like unnecessary.

If the meta EER diagram is specified in terms of instances (using the Observation represen-
tation) of the meta EER schema, the same general and application specific integrity rules (as
introduced the previous section) can be applied to check the wellformedness of the meta EER
model.

The relationships between meta EER model, application EER model, and application data
in our approach can be summarized as follows:

A typical application consists of schema information (one-to-one mapping) and correspond-
ing data in form of observations:

describing application data

(1) schemagppication EER + Observations, pplication EER

= application program

By using the general integrity constraints it is possible to check the data against the schema. In
order to check the wellformedness of the application EER diagram the meta EER diagram can
be used where the application EER diagram is given in form of observations for the meta EER
diagram:

. describing application EER
(2) schemameta gER + Observations,, .. prg = schema,pplication EER
. describing application EER , describing application data
(3) schemameta EER + Observations, ;. prg + observat1onsappﬁ cation EER
= application program

In order to check the wellformedness of the meta EER diagram the meta EER diagram itself can
be expressed in terms of observations:

. describing meta EER
(4) schemameta pER + Observations,, ., EERg = schemamets EER
. describing meta EER . describing application EER
(5) observatwnsme? EER ; + ofserva1.‘1011smetal FER
. escribing application data
+ observations, pplication EER
= application program

Item (5) shows that in principle the whole application could be specified only in terms
of observations plus a single set of EER specific integrity rules. However, when the system is
maintained “manually”, it appears to be very hard to distinguish the various abstraction layers
and to comprehend the observations. To reduce this disadvantage a simple set of rules can be
given which deduces the representation of the one-to-one mapping from a set of observations.

7 Conclusion and Future Work

We presented in this paper a set of general integrity constraints for the EER model which are
implemented using stratified datalog programs. Integrity checking is however the most naive
approach to exploit the integrity information, since it might be too costly for reasonably sized
databases. A large improvement in performance could be achieved, when only the relevant
integrity constraints are tested on each update.

As pointed out in an earlier section it would be desirable not only to check the whole
database, but instead to compute the set of consistent tuples or observations, ignoring the

19

invalid (or incomplete) information during the computations of an application. As a conse-
quence either a layering of the integrity constraints must be introduced (eg. compute first the
set of consistent observations using only integrity-constraint-1, apply integrity-constraints-2
on its results, and so on), or to specify the integrity constraints recursively, which leads to non-
stratified knowledge bases. The disadvantage of the first approach is that the layering of the
integrity constraints might be very hard (for n integrity rules exist n! different layerings), the
disadvantage of the second approach is that most implemented deduction methods rely on
stratified programs.

A problem of a complete other nature is the missing modularity of our approach. When
several EER models are kept in a single knowledge base (eg. a meta EER model and several
application EER models), the user has to care that the names of the modelled types do not
interfere. Our integrity checking rules can detect many clashes, but the maybe cleaner approach
is to introduce an EER diagram name, which can be specified as an additional argument in the
Observation facts.

Although our approach has several shortcomings, we think it might lead to better under-
standing of EER modeling and of integrity checking in general, and that our system is a very
powerful prototyping system and case designer, where traditional relational databases could
be easily integrated.

References

[ABWS87] C. Apt, H. Blair, A. Walker: “Towards a Theory of Declarative Knowledge”, in
Minker (ed.): “Foundations of Deductive Databases and Logic Programming”,
Morgan Kaufmann, Los Altos 1987.

[Che76] P. Chen: “The Entity Relationship Model — Toward a Unified View of Data”, ACM
Transactions on Database Systems, 1:1, March 1976.

[Che91] W.C. Cheng: “Tgif 2.6 - A Xlib based drawing facility under X11”, available via
anonymous ftp from export.lcs.mit.edu, May 1991.

[Cod79] E. Codd: “Extending the Database Relational Model to Capture More Meaning”,
Transactions on Database Systems, 4:4, December 1979.

[DZ88] P.W. Dart, J. Zobel: “Conceptual Schemas Applied to Deductive Database Sys-
tems”, Information Systems, Vol. 13, 1988.

[EN89] R. Elmasri, S.B. Navathe: “Fundamentals of Database Systems”, Ben-
jamin/Cummings, Redwood City 1989.

[EWHS5] R. Elmasri, J]. Weeldreyer, A. Hevner: “The Category Concept: An Extension to
the Entity-Relationship Model”, International Journal on Data and Knowledge
Engineering, 1:1, May 1985.

[GMN84] H. Gallaire, J. Minker, J. Nicolas: “Logic and Databases: A Deductive Approach”,
ACM Computing Surveys 16, 2, June 1984.

[GV89] G. Gardarin, P. Valduriez: “Relational Databases and Knowledge Bases”,
Addison-Wesley, Reading 1989.

[KN91] N. Kehrer, G. Neumann: “Treating Enhanced Entity Relationship Models in a
Declarative Style”, in: Proceedings of the “2nd Russian Conference on Logic Pro-

gramming”, September 11-16, 1991, Leningrad (Proceedings will be published in
LNCS 1992).

20

[KMS90]

[Mai83]

[MS89]

[NT89]

[TYF86]

[Teo90]

[SS77]

[WMSWI0]

G. Kiernan, C. de Maindreville, E. Simon: “Making Deduktive Databases a Practi-
cal Technology: A Step Forward”, in: Proceedings of the ACM SIGMOD, Atlantic
City, USA, May 1990.

D. Maier: “The Theory of Relational Databases”, Computer Science Press,
Rockville 1983.

V. M. Markowitz, A. Shoshani: “On the Correctness of Representing Extended
Entity-Relationship Structures in the Relational Model”, in: J. Clifford, B. Lind-
say, D. Maier (eds.): “Proceedings of the 1989 ACM SIGMOD International Con-
ference on the Management of Data”, ACM, New York 1989.

S.Naqvi, S. Tsur: “A Logic Language for Data and Knowledge Bases”, Computer
Science Press, New York 1989.

T.J. Teorey, D. Yang, J.P. Fry: “A logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model”, ACM Computing
Surveys 18, 2, June 1986.

T.J. Teorey: “Database Modeling and Design: The Entity-Relationship Approach”,
Morgan Kaufmann, San Mateo 1990.

J. Smith, D. Smith: “Database Abstractions: Aggregation and Generalization”,
Transactions on Database Systems, 2:2, June 1977.

A. Walker (ed.), M. McCord, J.E. Sowa, W.G. Wilson: “Knowledge Systems and
Prolog”, 2nd Edition, Addison-Wesley, Reading 1990.

21

