Treating Enhanced Entity Relationship Models in a Declarative
Style*

Norbert Kehrer, Gustaf Neumann
Vienna University of Economics and Business Administration
Institute of Information Processing
Augasse 2-6
A-1090 Vienna, Austria

kehrer@wu-wien.ac.at, neumann@wu-wien.ac.at

Abstract

In this paper we present an approach to represent schema information, application data and integrity constraints
in form of a logic program. An information system is specified by an enhanced entity relationship (EER) model which
is transformed by means of a one-to-one mapping into a set of ground facts. The application data corresponding to the
schema is represented by ground facts called observations. In order to check whether the application data conforms
to the given schema, a set of general integrity rules is defined which expresses the dependencies (functional, inclusion
and exclusion dependencies) implied by the EER model. In order to check whether the application EER model is a
valid EER model a meta EER model is defined. Any application EER diagram appears as an instance of the meta
EER diagram and can be represented using observations. This way the same set of integrity constraints can be used
to check the conformance between the application data and the application EER diagram, the meta EER diagram
and the application EER diagram. Since the representation of the meta EER diagram is an instance of the meta EER
diagram, the validity of the meta EER diagram can be checked as well. The resulting logic program is composed of
the application data, the application schema, the meta schema, a general set of constraints plus optionally additional
application specific constraints and deduction rules.

1 Introduction

The ER approach [Che76] was introduced 15 years ago as a diagrammatical technique for unifying different database
models. Several extensions to Chen’s basic formalism were proposed to capture concepts like generalization [SS77]
or categories [EWHS85]. We will follow the enhanced entity relationship (EER) flavor as presented in [EN89]. In this
paper we will not be concerned with certain EER constructs such as composite, derived or multi-valued attributes
and predicate defined categories, or sub-/superclasses.

As the ER approach was seen primarily as a design tool mappings were developed for the implementation of
ER models (eg. mapping to the relational model by [TYF86]). As a result the coupling between the ER models
and its implementation was rather loose. In this paper we will follow a different approach where the ER model
is viewed as an executable specification of an information system. An EER model is mapped by a simple one-to-
one transformation from its graphical representation to a set of ground facts. This simple transformation can be
performed either by hand or by a program we have developed which takes as its source the output of a public
available graphical editor. In this paper we present a set of general integrity rules to check the application data
against the schema. By using a meta EER diagram the schema of the EER model can also be checked.

In addition to the general EER specific integrity constraints, additional application specific constraints or further
deduction rules may be added .

2 A Meta EER Diagram

The meta EER model in Figure 1 gives a short overview of the EER methodology and introduces the basic terminol-
ogy. The diagram can be read as follows: The central EER concepts are entity type and relationship type. Both of these
concepts are generalized to so called modelled types. Since a modelled type is either an entity type or a relationship
type a disjoint generalization was used. A modelled type might be described by attributes. An attribute is identi-
fied by a name (identifying attribute) and characterized by its type (simple, identifying or multivalued). Composite
attributes are constructed using the composite relationship type). Since the names of attributes are only unique per
modelled type, attributes are modelled as weak entities with the modelled type as owner.

*Presented at the “2nd Russian Conference on Logic Programming”, September 11-16, 1991, Leningrad, Proceedings in preparation.

Disjointness

Category —(Completeness Generalization

used-in m

used-in used-in used-in n

Completeness

c-sub

Attribute Enity Type —> Weak Enity Type

Identified Entity
n
description 1

Participation

g-super

has

Describes

1 ‘ described

n
Modelled Type _@ Participates Pr— Role
In

‘ Participation

Containment

Relationship Type ——»

Identifies

Identifying
Relationship Type

Identifier

Figure 1: A Meta EER Diagram

Entity types and relationship types can be connected via roles, which are identified through a name, and which
have a cardinality and a participation value. The role names are unique per relationship type, each occurrence of a
relationship type participates in the participates relation (total participation). Each weak entity type (a subtype of entity
type) is identified by an identifying relationship type (subtype of relationship type) and vice versa. The enhanced ER
constructs category and generalization are used to define hierarchies of entity types. A generalization (identified by
name, characterized by the attributes disjointness and completeness) has one entity type, a supertype and might have
several (one or many) entity types as subtypes. A category on the contrary has one subtype and might have several
supertypes.

3 The Mapping of the Schema and the Data of EER Diagrams into Logic

The information contained in an EER diagram can be separated into two components.

1. An extensional part containing the names of the concepts used in the EER model, a specifuc classification
of these concepts (attribute, entity type, relationship type), the links between these basic concepts and the
definition of certain properties of the concepts, and

2. an intensional part containing integrity constraints and deduction rules. In this paper we are concerned pri-
marily with integrity constraints expressible within an EER model.

The extensional part of an application consists of the extensional part of the schema as specified by the EER
diagram plus application data. The intensional part of the application is composed of the intensional part of the
schema plus optionally additional application specific constraints over the data that cannot be expressed in an EER
model (see section 5). The integrity rules will be used to check the conformance between the schema and the data. In
order to check the wellformedness of a schema the meta EER diagram can be used.

The extensional part of an EER diagram can be obtained by performing a simple one-to-one mapping from the
EER diagram to a set of facts. In our representation we represent an EER diagram in terms of the links between the
basic EER concepts. These links are either roles, attributes, generalizations, or categories. In addition, a predicate
is needed to identify weak entities. We are using in the following a Prolog like syntax for the logic formulas where
constants start with lower case letters and where variables are capitalized. For better readability dashes are used to
separate words within names.

1. One-to-one mapping of roles:

role(Role-name, Rel-name, Ent-name, Cardinality, Participation)

where Cardinality is either one or many and Participation is either partial or total.

L. ULICTLUTULIC llldl)l)lllg Ul daluaivules.

attribute(Att-name, Mt-name, Type)
composite(Mt-name, Att-name, Att-name-component)

where Type is one of simple, identifying or multivalued. Mt-name stands for the name of a modelled type of the
EER methodology, i.e. an entity type or a relationship type.

3. One-to-one mapping of generalizations:

generalization(Gen-name, Ent-name, Disjointness, Completeness)
g-sub(Gen-name, Ent-name)

where Disjointness is either overlapping or disjoint and Completeness is either partial or total.

4. One-to-one mapping of categories:
category(Cat-name, Ent-name, Completeness)
c-super(Cat-name, Ent-name)

where Completeness is either partial or total.

5. Identification of weak entity types:

identifies(Rel-name, Weak-ent-name)

The facts in items 1 to 5 keep the schema information in form of the one-to-one mapping from the diagram. All data
of the application will be kept in the single predicate “observation/4":

6. Instances for the schema:

observation(Att-or-Role-name, Mt-name, Tupid, Value)

where Att-or-Role-name is the name of an attribute or a role, Mt-name is the name of a modelled type.

Tupid is an tuple identifier that uniquely determines a modelled type in the database. It is also used to group the
various Observations to a certain tuple (aggregation). The tuple identifier is a concept comparable to the surrogate
in [Cod79]. Note that a representation based on Observations allows us to cope with null values (no observation
available) or with multivalued attributes (several observations with identical first three arguments and different
fourth arguments) in a simple and uniform manner.

A typical application consists of schema information (one-to-one mapping) and corresponding data in form of
observations:

describing application data

(1) schemagppiication EER + Observations, pplication EER

= application program

By using the integrity rules introduced in the next section it is possible to check the data against the schema. In
order to check the wellformedness of the application EER diagram the meta EER diagram can be used where the
application EER diagram is given in form of observations for the meta EER diagram:

. describing application EER
(2) schemameta rER + Observations . rp = schemagppiication EER

describing application EER

. . describing application data
(3) schemamera EER + Observations, . prr + observations- <8 PP

application EER = apphca tion program

In order to check the wellformedness of the meta EER diagram the meta EER diagram itself can be expressed in terms
of observations:

. describing meta EER
(4) schemameta pER + Observations .- EERg = schemameta EER

. describing meta EER . describing application EER .
(5) observations,, . rrr + observations, ;- prr + observations

= application program

describing application data
application EER

Item (5) shows that in principle the whole application could be specified only in terms of observations plus a single
set of EER specific integrity rules. However, when the system is maintained “manually”, it appears to be very hard to
distinguish the various abstraction layers and to comprehend the observations. To reduce this disadvantage a simple
set of rules can be given which deduces the representation of the one-to-one mapping from a set of observations. The
integrity constraints in the next section assume the schema to be in the representation of the one-to-one mapping
plus a single set of observations (like the items (1), (2) and (4)).

=x JJeliilial llllcslll)’ Ul1out1Aaliity Ul ULl LAl lYiaVaie:

4.1 Functional Dependencies

Marking attributes as identifying and the specification of cardinalities of 1 in relationship types in an EER model are
possible ways to express functional dependencies on the modelled data.

A functional dependency (FD) is a constraint on a relation R which states that the values of a tuple on one set
of attributes X uniquely determine the values on another set Y of attributes. It is written as X = Y and is formally
defined by the following implication [GV89]:

tl(X) = tQ(X) — tl(Y) = tQ(Y)

t1 and ¢, are two different tuples of R. If the values on the set of attributes X are the same in ¢; and ¢ then the values
on the attribute set Y have to be the same, too. In other words, a FD X = Y is violated if there exist two tuples which
have the same values in X and different values in Y. This can be expressed by the following rule:

not-determine(value(Att-LHS,Mt-LHS), value(Att-RHS,Mt-RHS))
two(value(Att-RHS,Mt-RHS), T1,T2),
not two(value(Att-LHS,Mt-LHS), T1,T2).

This rule defines the violation of a functional dependency of the type value(attribute-LHS) = value(attribute-RHS)
(where the attributes are atomic attributes). Since in our representation both the values and the tuple identifiers are
accessible in the same way, we could express dependencies of the form value(attribute-LHS) = tupid(attribute-RHS)
or tupid(attribute-LHS) = value(attribute-RHS) or tupid(attribute-LHS) = tupid(attribute-RHS) with the same ease. We
could generalize the rule as follows:

not-determine(LHS, RHS) :-
two(RHS, T1,T2),
not two(LHS, T1,T2).

In this clause LHS and RHS stand for value(Att,Mt) or tupid(Mt) (tupid(Mt) is a shorthand for tupid(_,Mt)). The two
predicate is defined below. It uses the predicate obs, which is identical to observeration except for weak entities (see
later).

two(value(Role,Type), TupleO,Tuplel, VO,V1l) :- obs(Role, Type, Tuple0,V0), obs(Role,Type,Tuple1,V1), not VO == V1.
two(tupid(Role,Type), TupleO,Tuplel, VO,V1l) :- obs(Role, Type,Tuple0,V0), obs(Role,Type,Tuple1,V1), not Tuple0 == Tuplel.

In cases where the left hand side of a functional dependency is not atomic we use a clause to define the left hand
side attributes and proceed as follows:

not-determine(FullLhs, RHS) -
extract _goal(FullLhs,Forall,LHS),
two(RHS, T1,T2),
not ((Forall, two(LHS, T1,T2))).

This way the formulation for the violation “for any two different RHS, all elements of the LHS must be equal” is
reformulated as “...no element of the LHS is allowed to be different”.

Identifying attribute determines tuple identifier

For each identifying attribute Att of a modelled type of the EER schema there exists a functional dependency between
Att and the tuple identifier of the form:

value(identifying-att,modelled-type) = tupid(modelled-type)

This corresponds to the definition of an identifying attribute as an attribute whose values can be used to identify
an entity uniquely, because in our approach an entity is represented by its tuple identifier.

violated(value(Att,Mt) => tupid(Mt))
attribute(Att, Mt, identifying),
not-determine(value(Att,Mt), tupid(Mt)).

It has to be noted that the identifying attribute of weak entity types does not determine the weak entity [Che76],
but together with the owner entities it does. This could be expressed informally as

value(identifying-att + tupids-of-owners,weak-ent) = tupid(weak-ent)

where + is used as a constructor. The concatenation of value and tuple identifiers of owners is achieved in the
implementation within the obs predicate used by two and not-determine.

taplcdciiulic doiciuuacs sulglcvmucu diluripultco

A (singlevalued) attribute is a function which maps from an entity set or a relationship set into a value set. For our
representation this means that the value of each singlevalued attribute of the modelled type Mt is determined by the
tuple identifier of Mt:

tupid(modelled-type) = value(any-attribute,modelled-type)

We need not check the constraint that the identifying attribute determines the values of the other attributes, because
it follows from the two previous constraints:

value(identifying-att,modelled-type) = tupid(modelled-type) N
tupid(modelled-type) = value(any-attribute,modelled-type) —
value(identifying-att,modelled-type) = value(any-attribute,modelled-type)

Entities participating in a relationship type with cardinality One

Each role R of a relationship type Rel in which an entity type participates with cardinality One is determined by all
other roles of Rel together [TYF86]:

value(other roles,rel-type) = value(one-role,rel-type)

This constraint is independent of the degree of the relationship type.

violated(value(other-roles,Rel) => value(Rolel,Rel))
role(Rolel,Rel, L1,
not-determine(other _role(Role1,Rel,Role2) ~ value(Role2,Rel), value(Rolel,Rel)).

This is an example of a FD where the left hand side is not atomic, but consists of all the roles of a relationship
type. The goal in front of * computes each role of the LHS of the functional dependency.

All roles determine tuple identifier

All roles of a relationship type r together determine the tuple identifier of :
value(all roles,rel-type) = tupid(rel-type)

This constraint can be expressed as:

violated(value(all-roles,Rel) => tupid(Rel))
relation(Rel),
not-determine(role(Role,Rel, o -) " value(Role,Rel), tupid(Rel)).

As above, this is an example of a FD with a not atomic left hand side.

4.2 Inclusion Dependencies

The use of relationship types, generalizations, and specializations in EER models indicates that entity or relationship
sets are subsets of some other entity or relationship set. The property of being a subset of another set is covered by
inclusion dependencies.

Inclusion dependencies (ID) specify that each member of some set A must also be a member of a set B. An inclusion
dependency A C B is violated iff there is an occurrence (value or tuple identifier) of A which is not an occurrence of
B. The following rule expresses this content:

not-included(LHS,RHS) :
extract _goal(LHS,Goal,L),
one(L,V),
not (Goal,one(RHS,V)).

Like the rule for FD violations this rule may be used to check inclusion dependencies between tuple identifiers
and attribute or role values in any combination. The predicate one is defined similar to the predicate two and returns
either a tuple identifier or a value depending on its first argument.

Participating entities included in entity type

The values of a role of a relationship type must be tuple identifiers of the entity type participating in that role:
value(role,rel-type) C tupid(entity-type)

This ID is checked by the following rule:

violated(value(Role,Rel) << tupid(Ent))
role(Role,Rel,Ent, S0
not-included(value(Role,Rel),tupid(Ent)).

10tdlly pdititipdtiliys ittty typyes

For entity types which participate totally in a relationship type the previous ID has to hold in the other direction, too.
Each tuple identifier of an entity type e must be a value of a role in which e participates totally:

tupid(entity) C value(role,rel-type)

Generalizations

A generalization may be total or partial. A total generalization specifies the constraint that every entity in the super-
class must be a member of some subclass in the specialization [EN89]. For our representation this means that in a
total generalization with supertype super there must be at least one subclass sub for each tuple identifier T of super,
where T is included in sub:

tupid(supertype-in-total-gen) C tupid(at-least-one-subtype)

This constraint is valid only for total generalizations. There is also an inclusion dependency tupid(subtype) C
tupid(supertype) for both partial and total generalizations. In our representation we guarantee through the use of
deduction rules that the tuple identifiers of supertypes are also tuple identifiers of the subtypes. Therefore this ID
needs not to be checked.

Categories

Similar to generalizations we have to assure that for total categories tuple identifiers of the superclasses are also tuple
identifiers of the subclass in a category and that the attributes are inherited. This mechanism may not be applied to
partial categories, because not every entity of a supertype has to be member of the subclass. Instead the members of
the subclass in partial categories have to be stated explicitly. Therefore we will have to check if the tuple identifiers
and attribute values of a subclass in a partial category occur in one of the superclasses specified for the category,
which is expressed by the inclusion dependencies:

tupid(subclass) C tupid(some-superclass)
value(att,subclass) C value(att,some-superclass)

The mechanism of attribute inheritance will be described in more detail in a later section.

All roles in a relationship must be specified

In each relationship instance the associated entities have to be specified. This constraint is violated if there are two
different roles rolel and role2 in a relationship type rel and the set of tuple identifiers of rel which have a value for
rolel is a proper subset of the tuple identifiers of rel having a value for role2. A is a proper subset of B if A C B and not
B C A. So the constraint for the violation using the C operator may be written as:

tupid(rolel,rel-type) C tupid(role2,rel-type) A — tupid(role2,rel-type) C tupid(rolel,rel-type)

4.3 Exclusion Dependencies

An exclusion dependency (ED) is the constraint indicating that no member of a set A is a member of a set B (empty
intersection). An ED A + B is violated iff a tuple identifier of A is also a tuple identifier of B. We define this constraint
violation only for tuple identifiers and not for attribute values or roles because this is not expressible in the EER
methodology. This constraint can be formulated simply as:

not-excluded(LHS,RHS)
one(LHS,V),
one(RHS,V).

Disjoint subclasses

A disjointness constraint on a generalization specifies that the subclasses in the generalization must be disjoint
[EN89]. This constraint can be expressed by mutual exclusion dependencies between all the subclasses. Let subl
and sub2 be two different subclasses of a disjoint generalization. If a tuple identifier of subl is also a tuple identifier
of sub2 the ED of disjoint subclasses is violated:

tupid(disjoint-subclass-1) = tupid(disjoint-subclass-2)

Ulllqut: i uPlt: AUCIiuUIcCIS

Two different modelled types mt1 and mt2 may not contain the same tuple identifier unless mt1 is a subtype of m¢2
or mt2 is a subtype of mt. The goal subtype(X,Y) checks if one entity type is a subtype (via a subclass or category) of
another entity type.

violated(tupid(Mt1) === tupid(Mt2))
not-excluded(tupid(Mt1),tupid(Mt2)),
Mtl /== Mt2,

not subtype(Mt1,Mt2),
not subtype(Mt2,Mt1).

4.4 Schema Conformity

The conformity of the database with the schema —i.e. the attributes, roles, and modelled types appearing in Observa-
tion facts must be specified in the schema — cannot be checked by one of the above dependencies, because the rules
only refer to data integrity whereas the schema conformity may be viewed as an inclusion dependency between data
and schema representation. Therefore we use a separate consistency rule for this dependency.

An observation containing an attribute or role ra of a modelled type mt does not conform to the schema if ra or mt¢
have not been specified in the schema correspondingly.

violated(not-in-schema(Ra,Mt)) -
observation(Ra, Mt, T, V), not attribute-or-role(Ra, Mt).

4.5 Type Hierarchy

The concepts of the generalization and category allow the construction of a hierarchy of entity types. In our represen-
tation we use a mechanism for the inheritance of attributes in that hierarchy and for the inclusion of tuple identifiers
of one entity type in other entity types. It is built upon the following rules:

o Ina generalization the tuple identifiers and attributes which were stated in an Observation for a subtype become
tuple identifiers and attributes of the supertype. The entity — represented by the tuple identifier — belongs to
both types. The name of the supertype is an alias for the name of the subtype. Therefore we call this process
“aliasing”.

e In atotal category the attributes specified for a superclass are inherited by the subclass, and the tuple identifiers
of the superclass become tuple identifiers of the subclass (aliasing).

Nonetheless, additional Observations may be specified for the superclass in a generalization and for a subclass of a
category. Therefore the corresponding inclusion dependencies, which we described earlier, have to be checked.

The inheritance of attributes and the aliasing of tuple identifiers are performed by deduction rules for a predicate
called Observation-In-Hierarchy. This predicate has the same arguments as Observation and covers all Observations plus
the ones that result from the inheritance mechanism. Actually the integrity constraint definitions are based upon this
predicate except in the cases where Observation is used explicitly.

5 Application specific Integrity Constraints

For certain applications, it will be necessary to specify integrity constraints which are not expressible within an EER
diagram. Let us look at the meta EER diagram again to identify such application specific constraints. In the meta
EER diagram there are essentially two types of constraints missing: domain restrictions and exclusion of certain
(recursive) definitions. An example of a missing domain restriction would be to specify that the participation of a role
is either total or partial (or that the role in which a weak entity type participates in an identifying Relationship must
be total, the names of roles and attributes of a relation must be disjoint). An example of an EER construction that
should be forbidden would be if an entity-type is owner of itself (or if a subtype is its own supertype, two supertypes
in a generalization do not have a common root). Another constraint would be that each relationship type must
have at least two roles attached. We call such integrity constraints “application specific” (as opposed to the general
constraints valid for all EER models), since they are only needed for testing the schema (i.e. the application meta-
EER).

6 Using the Integrity Constraints and Stratification Problems
When the consistency rules of the last section are used the observation facts are checked with respect to the schema

information. Within this test the rules are assumed to be correct, some of the facts might be invalid or missing
(constraint satisfaction problem). A straightforward implementation of the integrity constraints (eg. in Prolog) will

1Cd LU UIC lidlve dilid TAlldUsUVE dppludllil VWillcic dll LULLGLLAULIL diTC dpplicud UL dll OVSCLVAUULLS Talll LT tIic set Ul
observations is modified. This is no practical solution for applications with realistic sizes and further investigations
are necessary to reduce the search space.

In addition the integrity constraints might be used to enforce integrity and to trigger from an update of the facts
additional, so called “induced” updates (see for example [BDM87]).

Another interesting problem is to reason about inconsistencies and to try to derive consistent subsets of the
set of observations even if some observations are invalid. A convenient formulation of the predicate “consistent-
observation” is typically a non-stratified problem. To illustrate this problem we will use a small example using a
single entity type a with two attributes i (for an identifying attribute) and o (for another non-identifying attribute)
and two constraints:

observation(a,i,t1,1).
observation(a,o,t1,x1).
observation(a,i,t2,2).
observation(a,o0,t2,x2).
observation(a,i,t3,1).
observation(a,o,t3,x3).

[1] fdv(E,i,T,V) - obs(E,i,T,V), obs(E,i,T2,V), not (T==T2).
[2] nmv(E,A,T,V) - obs(EATYV), other-att(A,Al), not obs(E,AT,V1).
[3] consistent-observation(E,A,T,V) -

observation(E,A,T,V), not fdv(E,AT,V), not nmv(E,AT.\V).
[4a] obs(T,AV) - observation(E,A,T,V).
[4b] obs(T,AV) - consistent-observation(E,A,T,V).

The consistency rule fdv stands for functional dependency violated, nmv means no-missing-violated (all attributes

must be specified). For simplicity other-att is defined here as:
[5] other-att(i,0).
[6] other-att(o,i).

The clauses [1,2,3,4a,5,6] represent the stratified approach where the integrity constraints are based directly on the
observations. It can be easily seen that fdv holds for t1 and t3 and that nmv never holds. If the integrity constraints
are based upon consistent-observation instead of observation by using [4b] instead of [4a], the program is non-stratified,
since there is now a “recursion going through a negation”. The intended semantics is that now the observations of
the o-attributes are also removed from the set of consistent-observations. The set of consistent observations that is true
regardless of the order in which the consistency rules are applied consists only the observations containing ¢2.

For this example the same results could be obtained using a layered stratified program, where the first consistency
rule fdv would be based on the given observations resulting in a set obs1. The set obs1 could be used as a basis for
the second consistency rule nmv leading to the final consistent set. Different results will be obtained when the order
of the consistency rules is changed. The second disadvantage of the layering approach using stratified programs is
that in the general case, where N consistency rules are given, N/ different layerings are possible, which will result in
different models. The intended “save subset” of consistent observations should contain only the intersection of these
models.

References

[ABW87] C. Apt, H. Blair, A. Walker: “Towards a Theory of Declarative Knowledge”, in Minker (ed.): “Founda-
tions of Deductive Databases and Logic Programming”, Morgan Kaufmann, Los Altos 1987.

[BDMS87] F. Bry, H. Decker, R. Manthey: “A Uniform Approach to Constraint Satisfaction and Constraint Satisfi-
ability in Deductive Databases”, Proceedings of EDBT 88, May 1988, Venice.

[Che76] P. Chen: “The Entity Relationship Model — Toward a Unified View of Data”, Transaction of Database
Systems, 1:1, March 1976.

[Che91] W.C. Cheng: “Tgif 2.6 - A Xlib based drawing facility under X11”, available via anonymous ftp from
export.lcs.mit.edu, May 1991.

[Cod79] E. Codd: “Extending the Database Relational Model to Capture More Meaning”, Transactions of
Database Systems, 4:4, December 1979.

[DZ88] P.W. Dart, J. Zobel: “Conceptual Schemas Applied to Deductive Database Systems”, Information Sys-
tems, Vol. 13, pp. 273-287, 1988.

[EN89] R. Elmasri, S.B. Navathe: “Fundamentals of Database Systems”, Benjamin/Cummings, Redwood City,
Calif. 1989.

[EWHS85] R. Elmasri, J]. Weeldreyer, A. Hevner: “The Category Concept: An Extension to the Entity-Relationship
Model”, International Journal on Data and Knowledge Engineering, 1:1, May 1985.

Lo vVOJ]

[MS89]

[TYF86]

[Teo90]

[SS77]

. dlldliidl, 1. vdiudullcs, NDCldilUlldl DJdldUdoCo dlitl DNIUWICULEC DdoCo , AUULULIEYvVesIty, NodUllls

1989.

V. M. Markowitz, A. Shoshani: “On the Correctness of Representing Extended Entity-Relationship
Structures in the Relational Model”, in J. Clifford, B. Lindsay, D. Maier: “Proceedings of the 1989 ACM
SIGMOD International Conference on the Management of Data”, ACM, New York 1989, pp. 430—439.

T.J. Teorey, D. Yang,].P. Fry: “A logical Design Methodology for Relational Databases Using the Ex-
tended Entity-Relationship Model”, ACM Computing Surveys 18, 2, June 1986.

T.J. Teorey: “Database Modeling and Design: The Entity-Relationship Approach”, Morgan Kaufmann,
San Mateo, Calif. 1990.

J. Smith, D. Smith: “Database Abstractions: Aggregation and Generalization”, Transactions of Database
Systems, 2:2, June 1977.

