Wafe - An X Toolkit Based Frontend
for Application Programs in Various
Programming Languages

Gustaf Neumann Wirtschaftsuniersitat Wen
Stefan Nusser Wirtschaftsunversitat Wen

ABSTRACT

Wafe provides a flegible and easy to use intade to theX Toolkit (Xt) and theAthenawidget set
(Xaw) using the embeddable command languigd1]. It allows access to X4’ functionality
from all compiler and interpreter languages,vided that thg can communicate ver stdout
andstdin via unhuffered I/O. A typical Wafe application consists of a frontend process and an
application program, which isxecuted as a child process of the frontencafé\Vpravides a
relatively high level interface to the X @olkit and widget programming, where the user iatesf
can be interactely developed without ap need to program in C. &fe can be used as a rapid
prototyping tool and alles easier migration fronxesting ASCII based programs to Xikdow

applications.

Intr oduction

When we started to avk on the Védfe project in
Summer 91 we had the need tovide decent user
interfaces for applications inavious (mostly inter
preted) programming languages. As a matteact, fat
this time most of our applications were running with
ASCII based user inteates under terminal emulators
like xterm - which is a practicalub suboptimal \ay of
using the graphical user intade of our equipment,
which consists mostly of X Wdow based wrksta-
tions. W& found out that for most (if notven dl) of
our application programs a small set of Xolkit
commands and the Athena widget library with its pro-
grammatic intedice vas completely sfitient to pro-
vide easy to use graphical intecés.

On the one hand, it seemed impractical to imple-
ment widget functionality in all diérent program-
ming languages used for our applications, on the other
hand we did notwven consider to port ounsting pro-
grams to C.Therefore we chose a frontend approach
where all widget functionality is incorporated in one
separate program. &\talled our frontend \&fe, stand-
ing for Widget[AthenaFrontEnd. Wafe was imple-
mented using the embeddable command language Tcl
[1], which was augmented with widget specifaciii-
ties. Tcl is an interpretat language using strings as
the only data type and prides a collection of dilt-in
utility commands as well as user defineable subrou-
tines.

Given the situation described sarfwe decided
after a thorough analysis of theisting products to
implement our wn solution using the follwing
design goals:

» Our frontend approach must be able to collaborate
with a broad wariety of programming languages,
using a handy communication mechanism. This

implies that we cannot presume that the bacdk
application will support certain librariesgiesoclets

or pipes), which are actually nowadable under
some of the programming languages used for the
examples presented in the last section.

To support smoothly the dirent stages of the
developing and prototyping process, weamt our
frontend application to pwide three diferent
modes of operation: There is amteractive mode
where Vafe can be used as a single process reading
commands from standard input, which are interac-
tively interpeted. The user seesahthe widget tree

is huilt and modified step by steplhe interactie
mode ofers the possibility toxamine the décts of
different commands or to easily compareedént
approaches to accomplish a certain task.
Furthermore, our frontend has to support the possi-
bility to execute command filedile modg. The file
mode ofers two main usages: First, this mode can
be used to pnade simple user intemtes just by
writing scripts in the Tcl language, where Bcl’
built-in commands or the commands pided by
Wafe can be used.ypically such a script will start
with the#! magic supported by most of the shells.
This script can also be used later as a frontdrte
user interhce (the frontend) can be véoped
mostly independent from the application program
(the backnd).

Finally, Wafe praides the so-calleffontend mode
which uses interprocess communicatianilities as
described in the sections beldo support the sepa-
ration between the baekd application and the fron-
tend process.

Another requirement for the applicationvdep-
ment was the gtensibility of the chosen widget set.
This made us choose the Xdlkit as the basis for
our program, granting access to the broad range of

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA 1

commercial or freely\ailable widgets based upon
this toolkit.

* Finally, as mentioned abee, we want to use \&fe as
a prototyping tool as well, for deloping and test-
ing applications which will be implemented finally
in another programming language (mostly C). This
requires the incorporation of a widelyadable wid-
get set. W chose the Athena widgets as the basis for
our project, since tlyeare part of the MIT standard
distribution of the X Whdow System. Accepting
that thg do not offer a \ery exciting appearance, a
version supporting the commercial OSF/Motif wid-
get set is under gelopment (at the time of this
writing).

The first section starts with a short comparison of
Wafe and Tk [2] which was one of the ancestors
(motivations) of the Vidfe project. The follwing sec-
tion presents anverview of the components, folleed
by a summary of the design principles and basic fea-
tures of Wafe. After that we will discuss oWafe
can be used as a frontend for application programs in
arbitrary programming languagedhis section con-
tains a programmingxample in Perl [3]. The sum-
mary of our &periences and arvailability note end
this paper

Comparison between Vdfe and Tk

The reggular USENIX conference visitor who is
confronted with the termsTcl’’ and “user interbce’
will associate immediately John KOusterhous work
on Tcl [1] and Tk [2]. Therefore we amt to gve a
short comparison of ¥We and Ousterhowt’ work
before we concentrate on the details aff&V

In some of its componentsalé looks similar to
the Tk toolkit [2]. Tk comes with a Tcl shelvish
which allovs to read in command sequences in Tcl
from a file. Wafe’s equivalent is the file mode men-
tioned abwe.

Tk Toolkit
TCL Tk App-
Interpreter Library Loop
if $i<2 ... m-
Wafe
TCL Xt Athena Toolkit
Interpreter Intrinsics Widgets Extensions
fisz. |/ oot} l -
[procal. | [setvalues] [ext] Rdd
realize command 5

Figure 1 Tk and Wafe components

The Tk intrinsics and Tk widgets V& been
implemented by John Ousterhout since 1989; Tk
offers three dimensional appearance of its widgets, its
implementation comparesavarably with the Motif
counterparts in terms of size (see [2]).

Wafe is - on the other hand - based on the stan-
dard X11R5 Xt Intrinsics [4] and the Athena widget
set [5] (see Figure 1). As a consequenceai ®asy to
extend Wafe with other Xt based widgets, widget sets
or libraries such as Xpm [6] or fox@mple a drag and
drop library (Rdd [11]). A user inteate designer can
use the standard X11R5 literature (kiedge, sup-
port) in order to deslop Wafe applications. It is
straightforvard to replace the Athena widgets by an
other Xt based widget set (such as Motif) or to aug-
ment Wafe with special purpose widgets. The current
Wafe distritution contains support for the Plotter wid-
get set (which supports bar graphs and line graphs
[12]) and theXmGraphwidget (a graph layout widget
for OSF/Motif used in Figure 2 [13])Kaleb Keith-
ley’'s three dimensional Athena widget library
(Xaw3d) [10] can be used simply by relinkingaf#¥.

In order to write lager applications in practically
arbitrary languages, &fe praides its frontend mode.
Current \ersions of Tcl and Tk do not pride ary
comparabledcility.

Actions

Help

[T 8sn [T Hame [T Date [T Par [Name
N/ N/
Personl L @ ! Projectl

Figure 2 Sample Wafe application using
XmGraphwidget based on OSF/Motif

the

The Components of Vife

This chapter is intended to present the most
important implementation issues and iglain some
design principles whichuild the basis of all uservel
commands.

Wafe’s gructure can be described globally by the
following formula:

Wde = Tcl +
(Intrinsics + Wdgets + Cowertels + Ext) +
(Memory Mangement + Communication)

The three main components of this formula are
described in the follwing sections.

Tcl

Wafe uses the embeddable command language
Tcl (first part of the formula) as a host language and
extends Tcl§ basic programming capabilities with
additional X Dolkit and widget specific commands.

2 1992 Winter USENIX - January 25-29, 1993 - San Diego, CA

Tcl provides a parsing mechanism as well as a proce-
dural framevork for the generic \&Wfe commands and
offers adantages to users alreaddnfiliar with other

Tcl based tools.

In our point of viev Tcl offers the follaving
adwantages as a host language:

 Tcl has a simple syntax: Esy command is simply a
list of words.

» Tcl is highly etensible, since it has a simple and
well documented intezce to C where eachgar
ment is only a string.

» Tcl has a clean memory management, where it is
possible to specify whether Tcl should goyari-
ables or where special routines can be specified to
free memory

e Tcl uses only one type of gument - the string.
Since the string representation is also used to spec-
ify information in resource files, the standard Xt
corverters can be used to a@nt from string to the
variety of Xt or widget specific data types.

Of course, the use of Tcl imposes some limita-
tions too (see also [2]):
* It is not suitable for more compteprograms, since
it was designed to be a command language.
» The string representation of all data types is a disad-
vantage, when repetitious calculationsvéao be
made in Tcl.

BesidesTcl, two dfferent groups of components
can be distinguished in th&/ae formula abee. For
the following part we assume a certaanfiliarity with
the X Window programming tools, which arex&en-
sively described in [7] or [8].

X Toolkit Specific Components

The second unit in the ab® formula represents
all functions and commands actually implementing the
programmatic intedce to the X Whdow System.
These commands prigle access to the functionality
of the X Toolkit, which comprises all commands nec-
essary to manage a widgetife cycle, the selection
mechanism and some information retig functions
as well as the basic widget classes. This functionality
is commonly called the Xdolkit Intrinsics In most
cases, each toolkit function is represented by a corre-
sponding Véfe command.

In addition to the X dolkit a suitable widget set
(Widgets is reeded. Exampleare the Athena widget
set, the OSF/Motif widget set, or the widgets of the
Open Look Intrinsic dolkit (Olit). Every widget set
typically has a series specific functions, which are
called the ‘programmatic intedce’. In general, the
whole functionality of the programmatic intacke is
accessible via correspondingg® commands.

Corverters are an Intrinsics based concept to set
and read resources. The Xdlkit provides mecha-
nisms which allov to regster additional application
specific comerters. Wafe ragisters seeral corverters
to ease the handling of certain resources or to

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA

implement some additional functionaliffhis will be
discussed in detail later

Inter nals

The third unit of the formula ake cmprises
the necessary internals which puaf/to work: Since
the creation of a widgetwabys implies the dynamic
allocation of memory for the associated resources,
Memory Mangementis a topic of special importance.
Wafe has its wn memory managementveey time a
string resource, a callback - or other objectgdar
than one wrd - are updated, the oldlve is freed. If a
widget is destrged the associated resources iafg
memory are disposed too.

The other part of the internals deals mainly with
the Communication mechanism and its dérent
options, which are described in detail later when
Wafe’s frontend mode is discusseblote that most of
these internals are hidden from the usathough
some commands feir the possibility to xtend and
customize the communication mechanism.

Design Principles

We tried to present a consistent intar&, which
is based upon certain design principles Wil pre-
sent them in the folleing section.

Transparency

Internals should be hidden from the user as much
as possible Interfaces to the corresponding Xdikit
functions are simplified whever possible. Br exam-
ple, widgets and ven windows are therefore refer
enced by the widget’rame, or as anothexample,
function pointers to certain handlers or callbacks are
just executable Tcl string xpressions, which areva-
uated at the time the handler or callback i®lked.

Naming Cornventions

Naming comentions are kpt as follovs: Wafe
commands corresponding to Xdlkit functions (g.
XtDestoyWdget) havethe same namexeept that the
prefix “Xt"’, “Xaw" or “X"" is dripped and the first
letter of the remaining string is translated tovéo
case (in ourxample, the resulting command is called
destroyWidget). Thesame principle is applied to
all commands associated with the Athena widget set.
For example XawFormAllowResizeis called for-
mAllowResize in the Wafe framevork). It should
be noted that the Athena widget set is the primarily
supported libraryOn the contrary OSF/Motif com-
mands stripped by the rules abaesult in Wafe com-
mands starting with the letten. The OSF/Motif com-
mand XmCommandAppendNie is therefore called
mCommandAppendValue in the Motif wversion of
Wefe.

It should be noted that all & commands are
generated automatically from a higlvéedescription
(for code generation, see belo During the code gen-
eration the naming rules alm ae applied. If one
prefers other naming ceentions, or does not lkthe

prefix stripping at all, it isdirly easy to change the
names. In addition Tcl aNes to reister the same
command underarious names.

Following the X Toolkit Programming Philosopty

In order to hild a frontend Vdfe ofers com-
mands which should bexglained in the X ®olkit
documentation. \dgets are created and configured,
then the widgets are realized, and during the run of the
application the xecution flow is triggered by actions
and callbacks.

In general one Xt or widget specific call of a C
procedure corresponds to onefé/command. In cer
tain cases, Wfe prwides comenience procedures,
which group seeral commands together and help to
hide internals.

The widget creation commandare an rception
from this rule: Instead of implementing one command
to instantiate a widget from a certain class (hamely
XtCreateMangedWdget), Wafe praiides a diferent
command for each widget class to create an instance.
The names of these commands arevedrirom the
corresponding classes in an analogous maifonere-
ate an instance of the Athenagble widget class, the
command ‘toggle Name Rther’ is provided. In
order to create an OSF/Mot¥mCascadeButtorthe
creation command is calledCascadeButton , and
so on.

Command Line Arguments

When command line guments are passed to
Wafe, it has to be determined, for which part of the
application these parameter are vate. In general,
there are three candidates:

» The X Window Toolkit,
« the frontend (Wdfe), or
« the application program.

We havechoosen the follwing approach: Com-
mand line aguments starting with a double dash&lik
“-f ") are alvays handled by the frontend. The
remaining aguments are passed to the ¥olkit (to
interpret aguments like “-display host-
name:0” or “-xrm application program, if \Afe
runs in the frontend mode.

Argument Style and \alue Passing Cowentions for
Wafe Commands

Wafe's agument style is similar to other Tcl
based tools: Ajuments are separated by spaces, can
be grouped as described in [1] and are all of data type
string. Xt function calls returning a singlealue are
implemented using the standard Tcl method of return
value passing. In C programs Xt functions returning
several values receie a pinter to a free memory area,
where the return alue will be placed. The Wafe
counterparts of these functions ¢at rame of a Tcl
associatie aray as an gument (instead of a pointer)
and create entries in the assoemtitray correspond-
ing to the C-structure’components. W dd not hae
the intention to implement all components of a

structure, since some components are rather meaning-
less in the \&fe contet (for example: a display
pointer). If an Xt command is used which returns a
structure, it should therefore be chedkwvith the Viife
documentation which members are supported. When a
C procedure returns a list of a certain type and its
length, we return the number of elements as a function
value and preide a \ariable name for the list.

This principle can be illustrated by the follimg
example. The toolkit function XtGetRe-
sourcelList has the follaving syntax:

void
XtGetResourceList(

WidgetClass,

XtResourceList* /*return*/,

Cardinal* [*return*/

)i
The corresponding ¥fe function is namedetRe-
sourcelist , accepts tw aguments yidget and
varName) and returns as functionalue the number
of elements in the list named in the secorglarent.
Since Wafe applications do not deal with the structure
WidgetClass we use a widget instance to refer to the
class. The string containing the widget name is used to
refer to a widget instance and is passedgtRe-
sourceList as first agument. Thereforavidget
references a pveusly created widget by its name.
The second gumentvarName is the name of the
Tcl variable to be created.et’'s mnsider the folla-
ing example, which can be issued interagi by
using Wafe in interactie node:

label | topLevel
echo [getResourcelist | retVal]
echo Resources: $retVal

The first command creates an instance of the Athena
label widget class namédas child of theéopLevel
widget (which is a top lel shell automatically cre-
ated in gery Wafe program).When the second com-
mand is ®ecuted, the output of the command between
square braakts is printed on standard output. Thus, if
the command is xecuted, the number of resources
available for theLabel widget class is printed, which

is 42 using the X11R5 XeBd libraries. In addition, a
list of theLabelwidget's resources is passed toaiv
able named in the secondgament. A Tcl wariable

will be created containing the desired information as a
Tcl list structure. In the codexample abwe the third
command prints the contents of thiariable. (Note
that the dollar sign is used foanable substitution in
Tcl). Theoutput of the third command looks as fol-
lows:

Resources: destroyCallback
ancestorSensitive x y width

height borderWidth sensitive
screen depth colormap background

(.)

The XtResoute structure actually contains more

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA

members than just the resousce@ame (such as the
default value or the data type foxample), lut Wafe
currently supports only the resource names.

Code generation

As noted abee, dl Tcl commands praded by
Wafe are generated automatically from a highelle
description. The code generation is performed by a
Perl program, which tas as ajument the specifica-
tion file and outputs the necessary C code fow@en
sion, agument passing, error messages, storage man-
agement, interpretation of percent codes for callbacks
(see section about callbacks heloand registrations
of commands.In addition the code generator outputs
TeX source for the short reference guidéhe main
adwantages of the code generator are that it (a) pro-
vides consistenc in documentation and intexte
code, (b) eases changes thdeafcode changes on
various diferent places, and (c) mek Wafe easily
extensible.

The folloving example of the specification suf-
fices to preide amCascadeButton command in
Wefe.

“widgetClass
XmCascadeButton
include <Xm/CascadeB.h>

The specification belo creates the \afe command
mCascadeButtonHighlight with two input
arguments. The command can be used to toggle the
state of a OSF/Motif cascadatton widget.

void
XmCascadeButtonHighlight
in: Widget
in: Boolean

The Wafe source is currently about 13000 lines
of C code. About 60% of the code is generated auto-
matically from specifications l&k the two examples
above. For widget sets with highly galar patterns in
their man pages (l&k OSF/Motif), it is ezen possible
to derve a fist draft ersion of the specification
directly from the manual pages.

Basic Features of Wafe

This section presents arvenview of Wafe's
functionality. In order to obtain a complete documen-
tation of all aalable Wafe commands refer to the
Wafe distribution referenced at the end of this paper

Creating Widgets

The creation of a widget is certainly the most
fundamental task to accomplish witha¥#. It can eas-
ily be done using the widget creation commands pre-

OSF/Motif widgets and caerters freely

All widget creation commands tak- dter the
widgets and the parent’ rame - ay number of
attribute-\alue pairs as additional guments, which
are used to set resources at the widge#ation time.

Consider the follwing example creating an
instance of the OSF/MotfmPushButtomvidget class
under the top el shell:

mPushButton pressMe topLevel

This command will create a manag&thPushButton
widget namedoressMeas a child of the applicatia’
top level shell widget. The creation of unmanaged
widgets is easily accomplished by an optionguar
ment.

When a Vdfe application wants to display wid-
gets on multiple X semrs it cancreate seeral appli-
cation shells where the display is specified instead of
the father widget.

applicationShell top2 dec4:0

The children widgets under top2 will be mapped to the
specified display
Setting and Retrieving Resouice Values

Resource ¥lues are publicariables of a widget
instance, which are intended to be set by the program-
mer or to be configured by the usaiafe praides
several ways to set resourcabhies:

» Using a resource description file, which \sleated
at startup time of the application.

» Using the commanthergeResources

» With aguments to the widget creation commands at
creation time.

* With the commandsetValues
creation.

Note that the order of these possibilities to set
resource #&lues abwe wrresponds to their prece-
dence. All of the commands will be described in the
next paragraphs.

The esouce file melsanism

The resource file mechanisnxtensely docu-
mented in [7], can be used byyawafe application.
Note that Vdfe praides some additional coeerter
procedures for the types Pixmap, Callback or
XmString. Such resources can be set in the current
version of Wafe only during widget creation or via
setValues

The megeResouces command

An extension to the resource file mechanism is
provided by the Vdfe commandnergeResources
Whenever a widget is created, the per display database

after a widges

sented in the last section. Note that these commands Of resource specifications is searched for entries rele-

correspond to the configuration of a specifiafgV
binary - if you choose to install the OSF/Motiérv
sion, the command to create the Athend teidget,
asciiText , won't be available, since in the current
version it is not possible to mix Athena and

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA

vant for the ner widget instance.

By using mergeResources the resource
database can bextended with additional specifica-
tions. The specified resources can refer to widget
classes as well as to instancest Short fe scripts

it is often preferable to ka the code as well as the
resource specifications together in one file.

This possibility is illustrated by the folling
example, which could be part of adfé script as well
as part of a front end application.

mergeResources \
*Font fixed
*foreground blue \
*background red

\

label hello topLevel

The resource specifications are used as i there
specified in an application deflts file. The label wid-
get created afteravds will use the threealues speci-
fied, tut they apply as well to eery other widget cre-
ated in this application. ThenergeResources
command can be used at arbitrary places inadieW
application.

Arguments to widgf creation commands

All widget creation commands takany number
of additional attrinte-value pairs as guments. Since
Wafe uses the standard Xt resource file mechanism in
order to cowmert the specified alues to their corre-
sponding data types, you can as well use the features
provided by the additional type ceerters, which will
be described bela

Consider the follwing example, which creates
an instance of the Atherlaabel widget class using
red background and blue fgreund colors.

label labell topLevel \
background red \
foreground blue

As already eplained these specificationgenride ary
settings in resource files or settings made witrg-
eResources and therefore reduce the configurabil-
ity of the application via resource file.

The set®lues command

The setValues command is used to change a
resource alue after the widget has been created. Note
that there are some resources which cannot be set after
creation time or after the widget is realize&or
detailed information refer to the documentation of the
specific widget class.

In order to change the resourcaue ofback-
ground andlabel of the preiously created widget
labell the following statement can be used

setValues labell \
background tomato \
label "Hi Man"

For convenience the commansetValues
tered as well under the narsé.

The Wafe command analogous $¥ to retriese
values from resources is the commagedValue (or
gV for short).

is regis-

echo [gV labell label]

The Wafe command alwe autputs the content of the
label resource of the widgktbell

Callbacks and Actions

The X Toolkit provides two mechanisms to link
widgets to application code: Callbacks and Actions.
Since Wafe's interface is slightly diierent from the
original Xt functions it is described in detail in this
section.

Callbacks

Callbacks are used tovioke a finction when-
eveg certain predefined requirements are satisfied.
Callbacks are defined by the widget itself, which
declares a callback resourc&n application program-
mer cannot configure a wecallback, she/he can just
decide whether to use the callbacksvited by the
widget class or not. Actions are morexitde to use
since thg can be bound to an arbitraryeat but they
require a more complicated handling.

The most common use of callbacks inafé/
applications will be of the form

command hello topLevel \
callback "echo hello world"

where the callback procedure is set via resources. This
converter will be discussed in the xtesection. Using

the cowerter an arbitrary \&fe command can be pro-
vided.

In addition to this dcility special purpose call-
back functions déred by the X ®olkit can be used as
well. These predefined callback functions can be
bound to a widget' allback resource by using the
Wafe commandcallback . The diferent predefined
functions &ailable are summarized in the table helo

Predefined Callbacks

Type Description
none realizeshell, grab none
exclusive realize shell, grabxelusive
noneclusive realize shell, grab nowelusive
popdavn unrealizeshell
position positiorshell
positionCursor| positioshell under pointer

All of these callback functions concern the han-
dling of popup shells, which are used for menus, dia-
log boxes and the li&. Wafe's access to the predefined
callback functions is illustrated by the folling code
segment for the OSF/Motif ersion of Vfe, which
presumes a pveously createdShell widget called
popup .

mPushButton b topLevel
callback b armCallback none popup

The Motif PushButtorwidget’s armCallbadk resource
triggers the specified function whesme the hutton is
pressed. In thexample the specified predefined func-
tion with the namenone realizes the popup shell

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA

popup without constraining usenents to it.
Actions

Wafe's interface to actions is essentially the com-
mandaction , which is used towerride, augment or
replace the translation table of a widget with transla-
tions specified as gomments. Note that a widget’
translation table is actually maintained as a resource
calledtranslations

Consider the follwing example: The Athena
MenuButtorwidget pravides a simple mean to realize
and place a popup shell on atton press. @ modify
the translations of this widget in order to let the menu
pop up wheneer the pointer enters theution the fol-
lowing Wafe command can be used:

menuButton mb topLevel
action mb override \
"<EnterWindow>: PopupMenu()"

The first command creates an instance of the
MenuButtorwidget namednh The second command
binds the enter windwo event to the actionPopup-
Menu, which is praoided by theMenuButtonwidget
class. PopupMenu is a hiilt-in action of the X
Toolkit.

In addition to the bilt-in actions preided by Xt
and the used widget setsaf¥ pravides the possibility
to bind the gecution of an arbitrary \Afe command to
an event. Wafe rayisters a global actioaxec which
accepts an Wafe command as gument. When the
action is actiated, the Vdfe command isxecuted.

One of the big adntages in using actions
instead of callbacks is the possibility to access infor
mation from the @ent which triggered thexecution.
This feature is supported in a restrictedHion by the
exec action with printf-like percent codes. Thevent
types supported in thisay are:

« Button Press, Button Release
» Key Ress, Ky Release
» Enter Notify, Leare Notify

Since the information passed to an action
depends on the type ofemt that triggered it, only the
following combinations of percent codes andng
types are alid:

Event Types and Rercent Codes of Actions
Code Information Events
%t event type all of the abwe
%w widget all of the abwe
%b numbeof button | BPressBRelease
%X x-coordinate all of the abwe
%y y-coordinate all of the abwe
%X x-root-coordinate| all of the abwe
%Y y-root-coordinate| all of the abwe
%a ascii-character KPress, KRelease
%k keycode KPresKeyRelease
%s keysym KPresskeyRelease

It is the programmes’ responsibility to ensure by a
correct binding in the translation table that a percent
code substitution occurs only with alid event type.
The %t code will xpand tounknown, if the event is

not included in the list alve.

Let us consider as arxample an Athen&abel
widget. With the following translation, the éy-code,
character anddysym will be printed aptime a ley is
pressed in the label widget callegd .

label xev topLevel
action xev override \
{<KeyPress>: exec(echo %k %a %s)}

If the input ‘w!” i s typed on the label widgetev ,
Wafe prints the follving output to the associated-ter
minal:

198 w w
174 Shift_L
192 ! exclam

Converter Procedures

Corverters are an Xt Intrinsics based concept
which is used to implement cemsion for the
resources of a widget. In afé, a cowerter alvays
corverts a string to a certain gt data type; the X
Toolkit provides easy mechanisms to yide addi-
tional cowerters.

We ftried to use corerter procedures whener
we decided to xend the standard Xt mechanism.
Some of Vdfe's additional cowerter procedures will
be described in this section.

The Callbak Converter

We havealready introduced Wfe’s callback
command in the last section; the callbackvenier is
used to bind thexecution of a Vdfe command to a
widget’s allback resource. Since this feature is imple-
mented as a cosrter, the standardsetValues
command can be used to set the resource, or the
resource can be priged in the resource list in a wid-
get creation command.

The folloving example shars hav to provide the
callback resource in a widget creation command

command quit topLevel \
callback quit

or to set (or to alter) it later usimy:

command quit topLevel
sV quit callback quit

In this ekamplecallback is the name of the Athena
Commandwidget’s allback resource anduit a
simple Wafe command used to terminate an applica-
tion.

Some widgets pass additional information tc cer
tain callback functions. To acess this so-called
clientDatg Wafe uses ajn printf-like percent codes.
Note that these percent codes are only interpreted for
certain Callbad resources in certain widget classes.

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA 7

The complete list of percent codes for each widget
class can be found in theafé short reference manual.
Below is a tble of the percent codes for tball-

back resource of the Athenlaist widget class as an
example:

Athena List Widget Callback
Pecent Code | Description
%w widgets rame
%i index

%s actve dement

The X Toolkit passes the widget pointer referring
to the irvoking widget to gery callback function. This
widget pointer is eduated by usingw Since this
information is &ailable for each callback function in
Wafe, %wcan be used in gncallback function to
obtain the widge§ name. Thefollowing example
shavs a statement to set a yiusly created Athena
label widget namecdconfirmLab to the selected
item of a list widget namedhooseLst . Selecting
an item of alist widget actvates the specified call-
back procedure.

sV chooselst callback \
"sV confirmLab label %s"

Opposite to the X dolkit it is possible in \@fe
to obtain the &lue of a callback resource. The fallo
ing Wafe script creates Eorm widget with two Com-
mandwidgets as childrenThe callback of the second
command widgetdR) is st to the content of the call-
back resource afl. When the widget tree is realized
and the callback ofl is actvated, the string‘i am
cl” i s printed; if the callback for2 is actvated, the
output is i am c2? .

#!/usr/bin/X11/wafe --f
form f topLevel
command c1 f\
callback "echo i am %w."
command c2 f\
callback [gV c1 callback] \
fromVert c1
realize

The XmString Corerter

The Wafe OSF/Motif ersion preides a con-
verter to XmString which is Motifs compound string
data type. A compound string is artended string
format, which additionally contains font information
and the string writing direction. The coverter proce-
dure allavs to praoide compound strings in a user
friendly way in a widget creation command or is\a
or gV command.

Please refer to [9] or grother OSF/Motif book
for a complete description of compound strings; the
following example using the OSF/Motif XmLabel
widget should illustrate the point:

#!/usr/bin/X11/mofe --f

mLabel | topLevel \
fontList \
"*b&h-lucida-medium-r*14*=ft,\
*p&h-lucida-bold-r*14*=bft" \
labelString \
"I'm”bft bold"ft and’rl strange"
realize

The syntax of \lfe's compound string intedfce is
straightforvard and similar to 8X's text formatting
commands. A special character (we are usifig *
instead of €X's “\"") is used for layout commands
which are either used to change the font or to change
the writing direction. The output of the sample script

is shavn in Figure 3.

I'm
bold
and

egnarts
]]

Figure 3 An OSF/Motif widget with compound strings

The Pixmap Corerter

The X Window pixmap format (Xpm [6]) is a
graphical image file format similar to the standard
X11 bitmaps, bt it supports colored images and shape
masks. Vidfe praides an gtended String-to-Bitmap
converter which checks additionally whether the spec-
ified file is in Xpm format, when the attempt to read
the file in the standard X bitmap formatléd. This
corverter can be used to set all resources of type
Pixmap such as for gample the background pixmap
of the Athend_abelwidget.

Using Wafe as a Fontend

In our framavork a typical Wafe application con-
sists of tvo parts, the frontend (@fe) and an applica-
tion program, which typically run as separate pro-
cesses. Thapplication program talks to the frontend
via stdio. Each output line from the application pro-
cess starting with a certain prefix character is inter
preted as a ¥fe (or pure Tcl) commandso an appli-
cation program can dynamically submit requests to the
frontend to hild up and modify the graphical user
interface; the application caiven down load applica-
tion specific Tcl procedures to the frontend, which can
be eecuted in the frontend without interaction with
the application program. At the same time the applica-
tion program reads from stdin, which is connected to
Wafe, and avaits ASCII strings to control its actions.

Starting Applications in Wafe's Frontend Mode
When Wafe is used in the frontend mode, an
application program is started as a subprocess of

Wafe. After the fork the necessary connections of the
I/O channels are established (see Figure 4, left hand

8 1992 Winter USENIX - January 25-29, 1993 — San Diego, CA

side). Note that in interagg node or in file mode no
subprocess is spmed, and \&fe behaes like a $ell.

Frontend Mode File Mode

xwafeApp -display ... #!/usr/bin/X11/wafe --f

stdin stdout stderr stdin stdout stderr

l Parent Process l TCL application

Wafe Wafe

optional
data channel

#l/usr/bin/X11/wafe --f
command hello topLevel \
label "Wafe new World" \
callback "echo Goodbye; quit"
realize

Child Process

wafeApp

Figure 4 Wafe's Communication Mechanism

The first question, wever, was to figure out,
what application program should be launched as sub-
process. Although Wfe praides a command line
option to specify the name of the application program,
it is in mary cases not corenient to be forced to spec-
ify this agument. Thereforeve chose the follwing
naming scheme:

Suppose an application program is named
wafeApp (see Figure 4). If a link l&In -s wafe
xwafeApp is established andxwafeApp is
executed, the prograrwafeApp is spavned as a sub-
process ofvafe and connects its stdio channels with
the frontend.

Lines written from the application program to
stdout are read by the W®Wie process. If the line
receved by Wafe starts with a certain character (such
as %) Wafe tries to interpret the remainder of the line
as a Tcl commandNote that each command issued
that way has to fit in a single line (which can be pretty
long depending on a preprocessariable specified at
compilation time; the defilt length is 64KB).

The commands submitted toa¥& can be issued
from arbitrary programming languages yided that
they are able to write testdoutunhkuffered (the appli-
cation program must at least be able to flush the
buffer) and to read from stdio. The frontend is pro-
grammed by the application program to send back
string messages wheree certain eents (like kutton
presses, etc.) occuirhis way the application program
determines the syntax in whichafé talks back.

Using Wafe’'s Mass Tansfer Mechanism

As indicated abee, output lines from the appli-
cation program starting with a certain prefix character
are parsed and interpreted aafé/commandsOther
lines from the application are printed byai® to std-
out. In some lager applications it is necessary to

transfer a blk of data from the application program to
the frontend. In this case it is preferable to establish an
additional (optional) data channel (see Figure 4),
where no parsing or interpretation is performed. If an
application program ants to use this data channel, it
has to figure out first, on which file numbeal® is
listening. The application program can obtain this
information by sending the command

echo listening on [getChannel]

to Wafe which writes back forxample ‘listening on

5”. The data transferred will be stored in a Tariv
able in the frontend. If the application program issues
the command

setCommunicationVariable \
C 100000\
{sV text type string string $C}

the data transferredver the mass channel (5) will be
stored in the Tclariable named. After 100000 bytes
are read, the Tcl command specified in the lagt-ar
ment will be gecuted. In this xample it will set the
string resource of the AtherasciiTex widget to the
transferred content.

Typical Structure d Application Programs using
Wafe as a Fontend

Throughout this section we assume thatfé\is
used in frontend mode and an application program is
performing some meaningful computations that we do
not want to program in Tcl, or that we do noamt to
bind to Wafe. When an application program is started
using Wafe as a frontend we can distinguish three
phases (see also Figure 5):

1) Wafe starts the application program as a subpro-
cess.

2) Theapplication program creates and configures the
widget tree, submits Tcl procedures and realizes
the widget tree.

3) In a read loop the application program accepts
commands in the form of ASCII strings from the
frontend. The commands are triggered by callbacks
or actions.

For some interpretatie programming languages
it is preferable to send an initial command from the
frontend to the application process after the fork to
initiate step 2. Br instance in Prolog, it is ceenient
to send a startup goalrhyapp], widget_tree,
read loop. " in order to load the application
“myapp” and to cause Prolog to print the commands
necessary for 2 and to continue with Bor this pur
pose the resourdaitCom is provided, which can be
specified in a resource file or by using therm
*InitCom: .. " command line option.

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA 9

Frontend Backend
(Wafe) (Some Application)
starting XxAppl fork
Creating widget tree /
defining callbacks, Wafe
defining Tecl procs commands
Read Loop
Callbacks echo stringl
changing widget tree / Application
modifying resources command action
. echo string2
Actions £ o
Application
changing widget tree % i
modifying resources SCUIOIT
o /
Terminate

Figure 5 Using Wafe as a Frontend

The following short sample program written in
Perl demonstrates steps 2 and 3. The program com-
putes prime dctors for intgers typed into an Athena

asciiText widget.

#!/usr/local/bin/perl
$|=1; # set output unbuffered

build widget tree
print
"%form top topLevel\n"
"%asciiText input top editType edit"
S width 200\n"
"%action input override"
M {<Key>Return: exec("
" echo [gV input string]))}\n"
"%label result top label {}"

S width 200 fromVert input\n”
."%command quit top fromVert result"
" callback quit\n"
"%label info top fromVert result"
" fromHoriz quit label {}"
" borderWidth 0 width 150\n"
"%realize\n";
r ead loop
while(<STDIN>) {
chop;
if (N\d+$/) {
print

"%sV info label thinking...\n";
$starttime = time;
for($d=2,@result=();$d<=$_;$d++){

while (1($_ % $d)) {

unshift(@result,$d);
$_/=$d,

}

}

print "%sV result label {"
Join("™*,@result)."\n"
"%sV info label {"
(time-$starttime)
" secondsi\n";
} else{
print "%sV info label"
S {invalid inputi\n®;
}

}

Demo Applications of the Wafe Distribution

We havedeveloped sample application programs

in Perl, GAWK, Prolog, Tcl, C and Ada talking to the
same Vdfe binary The folloving demo applications
are among the programs distribd together with the
Wafe sources:

xwafedesign: interactve design program for
Weafe applications (see Figure 6)

o xwafeftp: FTP frontend

» xwafemail: Mail user frontend withéces, using
elm aliases

« xwafenews: NNTP based ngs readerusing elm
aliases

» xwafegopher: a dmple gopher frontend

* xdirtree: tree directory brarser

» xbm: bitmap and pixmap vieer

» xwafemc: multiple choice test answering program

e xruptimes: rwho monitor like xnetload

* Xnetstats: network statistics, frontend for
netstat -i <interval>

e Xvmstats: system statistics, frontend for
vmstat -i <interval>

* xiostats: I/O statistics, frontend forostat
-i <interval>

» xwafeping: pings seeral machines and she
up-status

» xwafecf: admple read-only card filer

» xwafetel: a dmple read-only Oracle front-end

for looking up telephone numbers

xwafeora: a more elaborated Oracle frontend
with updates, capable to model an entity type with
distinct attriute defined subtypes, alling multi
valued attrilutes. The sample program supports field
completion and other fugkstuff. xwafeora is
configured via a parameter block containing the
sample applications ‘Filing Management’ and
“Pgper Baseé!

perlwafe: an xample program calling @fe as a
subprocess of the application program (normaily

is the other ay round).

10 1992Winter USENIX — January 25-29, 1993 — San Diego, CA

[®] xwafedesign
current Hidgets: barPlotl
widgets: Tree:
asciiText barPlotAttachData foreground J
e background :g:dNne
4 TneStyle
barPlot hocyriiieg : - pri
ek ey ! Enter Ressource Value e
ing: legendName |, comman 2; exit
] destroyCallback sor] SLYING: legendame Sommandz:exif
A o
use
PO Q) Preview: plotperl 2] PR i
in:

Preview: Shift<Btn1> move, Shift<Bin3>: select

280 | printf Widget Verkauf
,.?..’f.i.l..l 100

Legende
B Gewinn

o
paned
plotte|
porthol
simpleM
transie nt:
tree
v iEwEn
Quit. Gen
oo
Duplicate] Remove]

Figure 6 Sample Screen Shot ofwafedesign
using Xav3d and the Plotter Wfget

Experiences

Our periences pneed that

» Wafe applications can be written in a wide range of
programming languages,

» Wafe prwides a relatiely high level interface to
widget applications,

« asingle Wafe binary semes multiple applications,

» Wafe achiges a tetter refresh belér when the
application program isusy

* click ahead is possible due taiffering in the 1/O
channels,

» Wafe allavs better separation between user iaieef
and application program matters,

» from its performance a user cannot distinguish
whether a widget applicationas deeloped using C
or Wafe,

* there is no need to program in C in order toelts
widget frontends, and

» migration from &isting ASCII based programs to X
Window applications is easier usingafé.

For the click ahead feature mentioned abd is
guestionable whether this is a desireable feature. It can
be deactiated by setting widgets insens#i a by
writing a small Tcl procedure which checks for each
interesting callback procedure whether the program is
in a lusy state or not and writes accordingly friendly
messages to the user

The main disadantage of \dfe is - when com-
pared to widget programming in C - the higher
resource consumption, becauserg Wafe application
needs an additional process (the fronterkequently
it is necessary to duplicate data (such asxattebe
displayed in a te& widget), since one cgphas to be
awailable in the frontend and another gap the appli-
cation process.

1992 Winter USENIX - January 25-29, 1993 - San Diego, CA

Availability

Wafe was deeloped on DECstations 5000/200
under Ultrix 4.2 using X11R5, and has been compiled
on SparcStations under SunOS 4.1, RS6000/320 under
AIX and on HP 9000/720 under hpux 8.05afé&/can
be compiled for X11R5 and X11R4. The preferred
program-to-program communication is done via sock-
etpair Support for PIPES and SYS V streams is
included for systems without the setkair system
call. Theactual Wafe \ersion and the sample applica-
tions mentioned ab@ can be obtained via angmous
FTP from

ftp.wu-wien.ac.at:

pub/src/X11/wafe/*
(ip address: 137.208.3.4At the time of the confer
ence at leastersion 0.93 will be ilable. Since
Wafe was announced first in May 92, about 2200 FTP-
requests for \&fe were issued at the mentioned serv

References

[1] John K. Ousterhout,Tcl: An Embeddable Com-
mand Languge, Proc. USENIX Wnter Confer
ence, January 1990.

JohnK. OusterhoutAn X11 ©olkit Based on the
Tcl Langua@e, Proc. USENIX Winter Conference,
January 1991.

Larry Wall, Randal L. Schwrtz, Programming
Perl, O'Reilly & Associates, Sebastopol 1991.

(2]

(3]

[4] Joel McCormack, Rul Asente and Ralph Swick,
X Toolkit Intrinsics - C Languge Interface Mas-

sachusetts Institute oeThnology 1990.

Ralph Swick, Terry WeissmanX Toolkit Athena
Widgets - C Languge Interface Massachusetts
Institute of Bchnology 1990.

Arnaud Le Hors, The X PixMap &rmat Part of
the xpm distrilition, eport.lcs.mit.edu, 1991.

[5]

[6]
[7] Adrian Nye, Tim O’Reilly, X Toolkit Intrinsics
Programming Manual Second Edition, O'Reilly
and Associates Inc., Sebastobol 1990.

X Toolkit Intrinsics Refeance ManualThird Edi-
tion, O’Reilly and Associates Inc.Sebastobol
1992,

ThomasBerlage, OSF/Motif Concepts and @r
gramming Addison-Wésley, Wokingham 1991.

[10] Kaleb Keithley, Three-D Athena \#lgets
(Xaw3d) export.lcs.mit.edu, 1992.

[11] RogerReynolds,Rdd2 - Dag and Drop Library,
export.Ics.mit.edu, 1992.

[12] PeterKlingebiel, Athena®ols Plotter Vilget Set,
Version 6-beta export.lcs.mit.edu, 1992.

[13] Doug Young, XmGraph, A Motif Gaph Wdget,
iworks.ecn.uiwa.edu, 1992.

(8]

9]

11

Author Inf ormation

Gustaf Neumann is Assistant Professor at the
Vienna Unversity of Economics and Business Admin-
istration, Department of Management Information
Systems, in ‘énna, Austria. His main research inter
ests are centered around the igtation of heteroge-
nous systems lkthe intgyration of diferent informa-
tion analysis methods, the igration of \arious lan-
guage layers (esp. in the field of logic programming
and program transformation), applications of deduc-
tive catabases and user inté issues. He hasvae
oped seeral free packages spreadep the internet
such as dvi2xx (aéX dvi corverter for HP LaserJets
and IBM 3812 printers) and diac (a@nsion program
for ASCIl umlauts). Gustaf Neumann can be reached
electronically as neumann@wu-wien.ac.at.

Stefan Nusser is writing his mastethesis at the
department mentioned al® He can be reachedver
the netvork as nusser@wu-wien.ac.at.

12 1992Winter USENIX - January 25-29, 1993 - San Diego, CA

