
Wafe - An X Toolkit Based Frontend
for A pplication Programs in Various

Programming Languages
Gustaf Neumann− Wirtschaftsuniversität Wien

Stefan Nusser− Wirtschaftsuniversität Wien

ABSTRACT
Wafe provides a flexible and easy to use interface to theX Toolkit (Xt) and theAthenawidget set
(Xaw) using the embeddable command languageTcl [1]. It allows access to Xt’s functionality
from all compiler and interpreter languages, provided that they can communicate over stdout
andstdin via unbuffered I/O. A typical Wafe application consists of a frontend process and an
application program, which is executed as a child process of the frontend. Wafe provides a
relatively high level interface to the X Toolkit and widget programming, where the user interface
can be interactively developed without any need to program in C. Wafe can be used as a rapid
prototyping tool and allows easier migration from existing ASCII based programs to X Window
applications.

Intr oduction

When we started to work on the Wafe project in
Summer 91 we had the need to provide decent user
interfaces for applications in various (mostly inter-
preted) programming languages. As a matter of fact, at
this time most of our applications were running with
ASCII based user interfaces under terminal emulators
like xterm - which is a practical but suboptimal way of
using the graphical user interface of our equipment,
which consists mostly of X Window based worksta-
tions. We found out that for most (if not even all) of
our application programs a small set of X Toolkit
commands and the Athena widget library with its pro-
grammatic interface was completely sufficient to pro-
vide easy to use graphical interfaces.

On the one hand, it seemed impractical to imple-
ment widget functionality in all different program-
ming languages used for our applications, on the other
hand we did not even consider to port our existing pro-
grams to C.Therefore we chose a frontend approach
where all widget functionality is incorporated in one
separate program. We called our frontend Wafe, stand-
ing for Widget[Athena]FrontEnd. Wafe was imple-
mented using the embeddable command language Tcl
[1], which was augmented with widget specific facili-
ties. Tcl is an interpretative language using strings as
the only data type and provides a collection of built-in
utility commands as well as user defineable subrou-
tines.

Given the situation described so far, we decided
after a thorough analysis of the existing products to
implement our own solution using the following
design goals:
• Our frontend approach must be able to collaborate

with a broad variety of programming languages,
using a handy communication mechanism. This

implies that we cannot presume that the backend
application will support certain libraries (eg. sockets
or pipes), which are actually not available under
some of the programming languages used for the
examples presented in the last section.

• To support smoothly the different stages of the
developing and prototyping process, we want our
frontend application to provide three different
modes of operation: There is aninteractive mode,
where Wafe can be used as a single process reading
commands from standard input, which are interac-
tively interpeted. The user sees how the widget tree
is built and modified step by step.The interactive
mode offers the possibility to examine the effects of
different commands or to easily compare different
approaches to accomplish a certain task.
Furthermore, our frontend has to support the possi-
bility to execute command files (file mode). The file
mode offers two main usages: First, this mode can
be used to provide simple user interfaces just by
writing scripts in the Tcl language, where Tcl’s
built-in commands or the commands provided by
Wafe can be used. Typically such a script will start
with the#! magic supported by most of the shells.
This script can also be used later as a frontend.The
user interface (the frontend) can be developed
mostly independent from the application program
(the backend).
Finally, Wafe provides the so-calledfrontend mode
which uses interprocess communication facilities as
described in the sections below to support the sepa-
ration between the backend application and the fron-
tend process.

• Another requirement for the application develop-
ment was the extensibility of the chosen widget set.
This made us choose the X Toolkit as the basis for
our program, granting access to the broad range of

1992 Winter USENIX − January 25-29, 1993 − San Diego, CA 1

Wafe - A Widget Frontend Neumann& N usser

commercial or freely available widgets based upon
this toolkit.

• Finally, as mentioned above, we want to use Wafe as
a prototyping tool as well, for developing and test-
ing applications which will be implemented finally
in another programming language (mostly C). This
requires the incorporation of a widely available wid-
get set. We chose the Athena widgets as the basis for
our project, since they are part of the MIT standard
distribution of the X Window System. Accepting
that they do not offer a very exciting appearance, a
version supporting the commercial OSF/Motif wid-
get set is under development (at the time of this
writing).

The first section starts with a short comparison of
Wafe and Tk [2] which was one of the ancestors
(motivations) of the Wafe project. The following sec-
tion presents an overview of the components, followed
by a summary of the design principles and basic fea-
tures of Wafe. After that we will discuss how Wafe
can be used as a frontend for application programs in
arbitrary programming languages.This section con-
tains a programming example in Perl [3]. The sum-
mary of our experiences and an availability note end
this paper.

Comparison between Wafe and Tk

The regular USENIX conference visitor who is
confronted with the terms ‘‘Tcl’ ’ and ‘‘user interface’’
will associate immediately John K.Ousterhout’s work
on Tcl [1] and Tk [2]. Therefore we want to give a
short comparison of Wafe and Ousterhout’s work
before we concentrate on the details of Wafe.

In some of its components Wafe looks similar to
the Tk toolkit [2]. Tk comes with a Tcl shell (wish)
which allows to read in command sequences in Tcl
from a file. Wafe’s equivalent is the file mode men-
tioned above.

��������	��
������
��
�� ������ ������� �

if $i<2 ...

proc a {..

while

bind
pack

button

� �����������

��� ��!�!�"#�%$#&

��������	��
������
��
�� ' ����	����� �)(*� +�(

if $i<2 ...

proc a {..

while

� ��,	
��	�-.� /�01
��(

popUp
setValues

realize

form
text

command

�����2 ��� �3�41��
��	(*� ��)(

' ��56�/�/
7 7 7

8:9<;�=

Figure 1: Tk and Wafe components

The Tk intrinsics and Tk widgets have been
implemented by John Ousterhout since 1989; Tk
offers three dimensional appearance of its widgets, its
implementation compares favorably with the Motif
counterparts in terms of size (see [2]).

Wafe is - on the other hand - based on the stan-
dard X11R5 Xt Intrinsics [4] and the Athena widget
set [5] (see Figure 1). As a consequence it was easy to
extend Wafe with other Xt based widgets, widget sets
or libraries such as Xpm [6] or for example a drag and
drop library (Rdd [11]). A user interface designer can
use the standard X11R5 literature (knowledge, sup-
port) in order to develop Wafe applications. It is
straightforward to replace the Athena widgets by any
other Xt based widget set (such as Motif) or to aug-
ment Wafe with special purpose widgets. The current
Wafe distribution contains support for the Plotter wid-
get set (which supports bar graphs and line graphs
[12]) and theXmGraphwidget (a graph layout widget
for OSF/Motif used in Figure 2 [13]).Kaleb Keith-
ley’s three dimensional Athena widget library
(Xaw3d) [10] can be used simply by relinking Wafe.

In order to write larger applications in practically
arbitrary languages, Wafe provides its frontend mode.
Current versions of Tcl and Tk do not provide any
comparable facility.

Figure 2: Sample Wafe application using the
XmGraphwidget based on OSF/Motif

The Components of Wafe

This chapter is intended to present the most
important implementation issues and to explain some
design principles which build the basis of all user level
commands.

Wafe’s structure can be described globally by the
following formula:

Wafe = Tcl +
(Intrinsics + Widgets + Converters + Ext) +
(Memory Management + Communication)

The three main components of this formula are
described in the following sections.
Tcl

Wafe uses the embeddable command language
Tcl (first part of the formula) as a host language and
extends Tcl’s basic programming capabilities with
additional X Toolkit and widget specific commands.

2 1992 Winter USENIX − January 25-29, 1993 − San Diego, CA

Neumann & Nusser Wafe - A Widget Frontend

Tcl provides a parsing mechanism as well as a proce-
dural framework for the generic Wafe commands and
offers advantages to users already familiar with other
Tcl based tools.

In our point of view Tcl offers the following
advantages as a host language:
• Tcl has a simple syntax: Every command is simply a

list of words.
• Tcl is highly extensible, since it has a simple and

well documented interface to C where each argu-
ment is only a string.

• Tcl has a clean memory management, where it is
possible to specify whether Tcl should copy vari-
ables or where special routines can be specified to
free memory.

• Tcl uses only one type of argument - the string.
Since the string representation is also used to spec-
ify information in resource files, the standard Xt
converters can be used to convert from string to the
variety of Xt or widget specific data types.

Of course, the use of Tcl imposes some limita-
tions too (see also [2]):
• It is not suitable for more complex programs, since

it was designed to be a command language.
• The string representation of all data types is a disad-

vantage, when repetitious calculations have to be
made in Tcl.

BesidesTcl, two different groups of components
can be distinguished in theWafe formula above. For
the following part we assume a certain familiarity with
the X Window programming tools, which are exten-
sively described in [7] or [8].
X Toolkit Specific Components

The second unit in the above formula represents
all functions and commands actually implementing the
programmatic interface to the X Window System.
These commands provide access to the functionality
of the X Toolkit, which comprises all commands nec-
essary to manage a widget’s life cycle, the selection
mechanism and some information retrieving functions
as well as the basic widget classes. This functionality
is commonly called the X Toolkit Intrinsics. In most
cases, each toolkit function is represented by a corre-
sponding Wafe command.

In addition to the X Toolkit a suitable widget set
(Widgets) is needed. Examplesare the Athena widget
set, the OSF/Motif widget set, or the widgets of the
Open Look Intrinsic Toolkit (Olit). Every widget set
typically has a series specific functions, which are
called the ‘‘programmatic interface’’. In general, the
whole functionality of the programmatic interface is
accessible via corresponding Wafe commands.

Converters are an Intrinsics based concept to set
and read resources. The X Toolkit provides mecha-
nisms which allow to register additional application
specific converters. Wafe registers several converters
to ease the handling of certain resources or to

implement some additional functionality. This will be
discussed in detail later.
Inter nals

The third unit of the formula above comprises
the necessary internals which put Wafe to work: Since
the creation of a widget always implies the dynamic
allocation of memory for the associated resources,
Memory Managementis a topic of special importance.
Wafe has its own memory management: every time a
string resource, a callback - or other objects larger
than one word - are updated, the old value is freed. If a
widget is destroyed the associated resources in Wafe’s
memory are disposed too.

The other part of the internals deals mainly with
the Communication mechanism and its different
options, which are described in detail later when
Wafe’s frontend mode is discussed.Note that most of
these internals are hidden from the user, although
some commands offer the possibility to extend and
customize the communication mechanism.

Design Principles

We tried to present a consistent interface, which
is based upon certain design principles. We will pre-
sent them in the following section.
Tr ansparency

Internals should be hidden from the user as much
as possible.Interfaces to the corresponding X Toolkit
functions are simplified wherever possible. For exam-
ple, widgets and even windows are therefore refer-
enced by the widget’s name, or as another example,
function pointers to certain handlers or callbacks are
just executable Tcl string expressions, which are eval-
uated at the time the handler or callback is invoked.
Naming Conventions

Naming conventions are kept as follows: Wafe
commands corresponding to X Toolkit functions (eg.
XtDestroyWidget) hav ethe same name except that the
prefix ‘‘Xt’ ’, ‘ ‘Xaw’’ or ‘‘X’ ’ i s stripped and the first
letter of the remaining string is translated to lower
case (in our example, the resulting command is called
destroyWidget). Thesame principle is applied to
all commands associated with the Athena widget set.
For example XawFormAllowResizeis called for-
mAllowResize in the Wafe framework). It should
be noted that the Athena widget set is the primarily
supported library. On the contrary, OSF/Motif com-
mands stripped by the rules above result in Wafe com-
mands starting with the letterm. The OSF/Motif com-
mand XmCommandAppendValue is therefore called
mCommandAppendValue in the Motif version of
Wafe.

It should be noted that all Wafe commands are
generated automatically from a high level description
(for code generation, see below). During the code gen-
eration the naming rules above are applied. If one
prefers other naming conventions, or does not like the

1992 Winter USENIX − January 25-29, 1993 − San Diego, CA 3

Wafe - A Widget Frontend Neumann& N usser

prefix stripping at all, it is fairly easy to change the
names. In addition Tcl allows to register the same
command under various names.
Following the X Toolkit Programming Philosophy

In order to build a frontend Wafe offers com-
mands which should be explained in the X Toolkit
documentation. Widgets are created and configured,
then the widgets are realized, and during the run of the
application the execution flow is triggered by actions
and callbacks.

In general one Xt or widget specific call of a C
procedure corresponds to one Wafe command. In cer-
tain cases, Wafe provides convenience procedures,
which group several commands together and help to
hide internals.

The widget creation commandsare an exception
from this rule: Instead of implementing one command
to instantiate a widget from a certain class (namely
XtCreateManagedWidget), Wafe provides a different
command for each widget class to create an instance.
The names of these commands are derived from the
corresponding classes in an analogous manner. To cre-
ate an instance of the Athena Toggle widget class, the
command ‘‘ toggle Name Father’’ i s provided. In
order to create an OSF/MotifXmCascadeButton, the
creation command is calledmCascadeButton , and
so on.
Command Line Arguments

When command line arguments are passed to
Wafe, it has to be determined, for which part of the
application these parameter are relevant. In general,
there are three candidates:
• The X Window Toolkit,
• the frontend (Wafe), or
• the application program.

We hav echoosen the following approach: Com-
mand line arguments starting with a double dash (like
‘‘ --f ’’) are always handled by the frontend. The
remaining arguments are passed to the X Toolkit (to
interpret arguments like ‘‘ -display host-
name:0 ’’ o r ‘‘ -xrm application program, if Wafe
runs in the frontend mode.
Ar gument Style and Value Passing Conventions for

Wafe Commands
Wafe’s argument style is similar to other Tcl

based tools: Arguments are separated by spaces, can
be grouped as described in [1] and are all of data type
string. Xt function calls returning a single value are
implemented using the standard Tcl method of return
value passing. In C programs Xt functions returning
several values receive a pointer to a free memory area,
where the return value will be placed. The Wafe
counterparts of these functions take a name of a Tcl
associative array as an argument (instead of a pointer)
and create entries in the associative array correspond-
ing to the C-structure’s components. We did not have
the intention to implement all components of a

structure, since some components are rather meaning-
less in the Wafe context (for example: a display
pointer). If an Xt command is used which returns a
structure, it should therefore be checked with the Wafe
documentation which members are supported. When a
C procedure returns a list of a certain type and its
length, we return the number of elements as a function
value and provide a variable name for the list.

This principle can be illustrated by the following
example. The toolkit function XtGetRe-
sourceList has the following syntax:

void
XtGetResourceList(

WidgetClass,
XtResourceList* /*return*/,
Cardinal* /*return*/
);

The corresponding Wafe function is namedgetRe-
sourceList , accepts two arguments (widget and
varName) and returns as function value the number
of elements in the list named in the second argument.
Since Wafe applications do not deal with the structure
WidgetClass, we use a widget instance to refer to the
class. The string containing the widget name is used to
refer to a widget instance and is passed togetRe-
sourceList as first argument. Thereforewidget
references a previously created widget by its name.
The second argumentvarName is the name of the
Tcl variable to be created.Let’s consider the follow-
ing example, which can be issued interactively by
using Wafe in interactive mode:

label l topLevel
echo [getResourceList l retVal]
echo Resources: $retVal

The first command creates an instance of the Athena
label widget class namedl as child of thetopLevel
widget (which is a top level shell automatically cre-
ated in every Wafe program).When the second com-
mand is executed, the output of the command between
square brackets is printed on standard output. Thus, if
the command is executed, the number of resources
available for theLabel widget class is printed, which
is 42 using the X11R5 Xaw3d libraries. In addition, a
list of theLabelwidget’s resources is passed to a vari-
able named in the second argument. A Tcl variable
will be created containing the desired information as a
Tcl list structure. In the code example above the third
command prints the contents of this variable. (Note
that the dollar sign is used for variable substitution in
Tcl). The output of the third command looks as fol-
lows:

Resources: destroyCallback
ancestorSensitive x y width
height borderWidth sensitive
screen depth colormap background
(...)

The XtResource structure actually contains more

4 1992 Winter USENIX − January 25-29, 1993 − San Diego, CA

Neumann & Nusser Wafe - A Widget Frontend

members than just the resource’s name (such as the
default value or the data type for example), but Wafe
currently supports only the resource names.
Code generation

As noted above, all Tcl commands provided by
Wafe are generated automatically from a high level
description. The code generation is performed by a
Perl program, which takes as argument the specifica-
tion file and outputs the necessary C code for conver-
sion, argument passing, error messages, storage man-
agement, interpretation of percent codes for callbacks
(see section about callbacks below) and registrations
of commands.In addition the code generator outputs
TeX source for the short reference guide.The main
advantages of the code generator are that it (a) pro-
vides consistency in documentation and interface
code, (b) eases changes that effect code changes on
various different places, and (c) makes Wafe easily
extensible.

The following example of the specification suf-
fices to provide a mCascadeButton command in
Wafe.

˜widgetClass
XmCascadeButton

include <Xm/CascadeB.h>

The specification below creates the Wafe command
mCascadeButtonHighlight with two input
arguments. The command can be used to toggle the
state of a OSF/Motif cascade button widget.

void
XmCascadeButtonHighlight

in: Widget
in: Boolean

The Wafe source is currently about 13000 lines
of C code. About 60% of the code is generated auto-
matically from specifications like the two examples
above. For widget sets with highly regular patterns in
their man pages (like OSF/Motif), it is even possible
to derive a first draft version of the specification
directly from the manual pages.

Basic Features of Wafe

This section presents an overview of Wafe’s
functionality. In order to obtain a complete documen-
tation of all available Wafe commands refer to the
Wafe distribution referenced at the end of this paper.
Creating Widgets

The creation of a widget is certainly the most
fundamental task to accomplish with Wafe. It can eas-
ily be done using the widget creation commands pre-
sented in the last section. Note that these commands
correspond to the configuration of a specific Wafe
binary - if you choose to install the OSF/Motif ver-
sion, the command to create the Athena text widget,
asciiText , won’t be available, since in the current
version it is not possible to mix Athena and

OSF/Motif widgets and converters freely.

All widget creation commands take - after the
widget’s and the parent’s name - any number of
attribute-value pairs as additional arguments, which
are used to set resources at the widget’s creation time.

Consider the following example creating an
instance of the OSF/MotifXmPushButtonwidget class
under the top level shell:

mPushButton pressMe topLevel

This command will create a managedXmPushButton
widget namedpressMeas a child of the application’s
top level shell widget. The creation of unmanaged
widgets is easily accomplished by an optional argu-
ment.

When a Wafe application wants to display wid-
gets on multiple X servers it cancreate several appli-
cation shells where the display is specified instead of
the father widget.

applicationShell top2 dec4:0

The children widgets under top2 will be mapped to the
specified display.
Setting and Retrieving Resource Values

Resource Values are public variables of a widget
instance, which are intended to be set by the program-
mer or to be configured by the user. Wafe provides
several ways to set resource values:

• Using a resource description file, which is evaluated
at startup time of the application.

• Using the commandmergeResources .
• With arguments to the widget creation commands at

creation time.
• With the commandsetValues after a widget’s

creation.

Note that the order of these possibilities to set
resource values above corresponds to their prece-
dence. All of the commands will be described in the
next paragraphs.
The resource file mechanism

The resource file mechanism, extensively docu-
mented in [7], can be used by any Wafe application.
Note that Wafe provides some additional converter
procedures for the types Pixmap, Callback or
XmString. Such resources can be set in the current
version of Wafe only during widget creation or via
setValues .
The mergeResources command

An extension to the resource file mechanism is
provided by the Wafe commandmergeResources .
Whenever a widget is created, the per display database
of resource specifications is searched for entries rele-
vant for the new widget instance.

By using mergeResources the resource
database can be extended with additional specifica-
tions. The specified resources can refer to widget
classes as well as to instances. For short Wafe scripts

1992 Winter USENIX − January 25-29, 1993 − San Diego, CA 5

Wafe - A Widget Frontend Neumann& N usser

it is often preferable to have the code as well as the
resource specifications together in one file.

This possibility is illustrated by the following
example, which could be part of a Wafe script as well
as part of a front end application.

mergeResources \
*Font fixed \
*foreground blue \
*background red

(...)
label hello topLevel

The resource specifications are used as if they were
specified in an application defaults file. The label wid-
get created afterwards will use the three values speci-
fied, but they apply as well to every other widget cre-
ated in this application. ThemergeResources
command can be used at arbitrary places in a Wafe
application.
Arguments to widget creation commands

All widget creation commands take any number
of additional attribute-value pairs as arguments. Since
Wafe uses the standard Xt resource file mechanism in
order to convert the specified values to their corre-
sponding data types, you can as well use the features
provided by the additional type converters, which will
be described below.

Consider the following example, which creates
an instance of the AthenaLabel widget class using
red background and blue foreground colors.

label label1 topLevel \
background red \
foreground blue

As already explained these specifications override any
settings in resource files or settings made withmerg-
eResources and therefore reduce the configurabil-
ity of the application via resource file.

The setValues command
The setValues command is used to change a

resource value after the widget has been created. Note
that there are some resources which cannot be set after
creation time or after the widget is realized.For
detailed information refer to the documentation of the
specific widget class.

In order to change the resource value ofback-
ground and label of the previously created widget
label1 the following statement can be used

setValues label1 \
background tomato \
label "Hi Man"

For convenience the commandsetValues is regis-
tered as well under the namesV.

The Wafe command analogous tosV to retrieve
values from resources is the commandgetValue (or
gV for short).

echo [gV label1 label]

The Wafe command above outputs the content of the
label resource of the widgetlabel1 .
Callbacks and Actions

The X Toolkit provides two mechanisms to link
widgets to application code: Callbacks and Actions.
Since Wafe’s interface is slightly different from the
original Xt functions it is described in detail in this
section.
Callbacks

Callbacks are used to invoke a function when-
ev er certain predefined requirements are satisfied.
Callbacks are defined by the widget itself, which
declares a callback resource.An application program-
mer cannot configure a new callback, she/he can just
decide whether to use the callbacks provided by the
widget class or not. Actions are more flexible to use
since they can be bound to an arbitrary event but they
require a more complicated handling.

The most common use of callbacks in Wafe
applications will be of the form

command hello topLevel \
callback "echo hello world"

where the callback procedure is set via resources. This
converter will be discussed in the next section. Using
the converter an arbitrary Wafe command can be pro-
vided.

In addition to this facility special purpose call-
back functions offered by the X Toolkit can be used as
well. These predefined callback functions can be
bound to a widget’s callback resource by using the
Wafe commandcallback . The different predefined
functions available are summarized in the table below:

Predefined Callbacks
Type Description

none realizeshell, grab none
exclusive realize shell, grab exclusive
nonexclusive realize shell, grab nonexclusive
popdown unrealizeshell
position positionshell
positionCursor positionshell under pointer

All of these callback functions concern the han-
dling of popup shells, which are used for menus, dia-
log boxes and the like. Wafe’s access to the predefined
callback functions is illustrated by the following code
segment for the OSF/Motif version of Wafe, which
presumes a previously createdShell widget called
popup .

mPushButton b topLevel
callback b armCallback none popup

The Motif PushButtonwidget’s armCallback resource
triggers the specified function whenever the button is
pressed. In the example the specified predefined func-
tion with the namenone realizes the popup shell

6 1992 Winter USENIX − January 25-29, 1993 − San Diego, CA

Neumann & Nusser Wafe - A Widget Frontend

popup without constraining user events to it.
Actions

Wafe’s interface to actions is essentially the com-
mandaction , which is used to override, augment or
replace the translation table of a widget with transla-
tions specified as arguments. Note that a widget’s
translation table is actually maintained as a resource
calledtranslations .

Consider the following example: The Athena
MenuButtonwidget provides a simple mean to realize
and place a popup shell on a button press. To modify
the translations of this widget in order to let the menu
pop up whenever the pointer enters the button the fol-
lowing Wafe command can be used:

menuButton mb topLevel
action mb override \

"<EnterWindow>: PopupMenu()"

The first command creates an instance of the
MenuButtonwidget namedmb. The second command
binds the enter window event to the actionPopup-
Menu, which is provided by theMenuButtonwidget
class. PopupMenu is a built-in action of the X
Toolkit.

In addition to the built-in actions provided by Xt
and the used widget sets, Wafe provides the possibility
to bind the execution of an arbitrary Wafe command to
an event. Wafe registers a global actionexec which
accepts any Wafe command as argument. When the
action is activated, the Wafe command is executed.

One of the big advantages in using actions
instead of callbacks is the possibility to access infor-
mation from the event which triggered the execution.
This feature is supported in a restricted fashion by the
exec action with printf-like percent codes. The event
types supported in this way are:

• Button Press, Button Release
• Key Press, Key Release
• Enter Notify, Leave Notify

Since the information passed to an action
depends on the type of event that triggered it, only the
following combinations of percent codes and event
types are valid:

Event Types and Percent Codes of Actions
Code Information Events
%t event type all of the above
%w widget all of the above
%b numberof button BPress,BRelease
%x x-coordinate all of the above
%y y-coordinate all of the above
%X x-root-coordinate all of the above
%Y y-root-coordinate all of the above
%a ascii-character KPress, KRelease
%k keycode KPress,Ke yRelease
%s keysym KPress,Ke yRelease

It is the programmer’s responsibility to ensure by a
correct binding in the translation table that a percent
code substitution occurs only with a valid event type.
The%t code will expand tounknown , if the event is
not included in the list above.

Let us consider as an example an AthenaLabel
widget. With the following translation, the key-code,
character and keysym will be printed any time a key is
pressed in the label widget calledxev .

label xev topLevel
action xev override \

{<KeyPress>: exec(echo %k %a %s)}

If the input ‘‘w! ’’ i s typed on the label widgetxev ,
Wafe prints the following output to the associated ter-
minal:

198 w w
174 Shift_L
192 ! exclam

Converter Pr ocedures
Converters are an Xt Intrinsics based concept

which is used to implement conversion for the
resources of a widget. In Wafe, a converter always
converts a string to a certain target data type; the X
Toolkit provides easy mechanisms to provide addi-
tional converters.

We tried to use converter procedures whenever
we decided to extend the standard Xt mechanism.
Some of Wafe’s additional converter procedures will
be described in this section.

The Callback Converter
We hav ealready introduced Wafe’s callback

command in the last section; the callback converter is
used to bind the execution of a Wafe command to a
widget’s callback resource. Since this feature is imple-
mented as a converter, the standardsetValues
command can be used to set the resource, or the
resource can be provided in the resource list in a wid-
get creation command.

The following example shows how to provide the
callback resource in a widget creation command

command quit topLevel \
callback quit

or to set (or to alter) it later usingsV:

command quit topLevel
sV quit callback quit

In this examplecallback is the name of the Athena
Commandwidget’s callback resource andquit a
simple Wafe command used to terminate an applica-
tion.

Some widgets pass additional information to cer-
tain callback functions. To access this so-called
clientData, Wafe uses again printf-like percent codes.
Note that these percent codes are only interpreted for
certain Callback resources in certain widget classes.

1992 Winter USENIX − January 25-29, 1993 − San Diego, CA 7

Wafe - A Widget Frontend Neumann& N usser

The complete list of percent codes for each widget
class can be found in the Wafe short reference manual.
Below is a table of the percent codes for thecall-
back resource of the AthenaList widget class as an
example:

Athena List Widget Callback
Percent Code Description
%w widget’s name
%i index
%s active element

The X Toolkit passes the widget pointer referring
to the invoking widget to every callback function. This
widget pointer is evaluated by using%w. Since this
information is available for each callback function in
Wafe, %wcan be used in any callback function to
obtain the widget’s name. Thefollowing example
shows a statement to set a previously created Athena
label widget namedconfirmLab to the selected
item of a list widget namedchooseLst . Selecting
an item of aList widget activates the specified call-
back procedure.

sV chooseLst callback \
"sV confirmLab label %s"

Opposite to the X Toolkit it is possible in Wafe
to obtain the value of a callback resource. The follow-
ing Wafe script creates aForm widget with two Com-
mandwidgets as children.The callback of the second
command widget (c2) is set to the content of the call-
back resource ofc1 . When the widget tree is realized
and the callback ofc1 is activated, the string ‘‘i am
c1.’’ i s printed; if the callback forc2 is activated, the
output is ‘‘i am c2.’’ .

#!/usr/bin/X11/wafe --f
form f topLevel
command c1 f \

callback "echo i am %w."
command c2 f \

callback [gV c1 callback] \
fromVert c1

realize

The XmString Converter
The Wafe OSF/Motif version provides a con-

verter toXmString, which is Motif’s compound string
data type. A compound string is an extended string
format, which additionally contains font information
and the string’s writing direction. The converter proce-
dure allows to provide compound strings in a user
friendly way in a widget creation command or in asV
or gV command.

Please refer to [9] or any other OSF/Motif book
for a complete description of compound strings; the
following example using the OSF/Motif XmLabel
widget should illustrate the point:

#!/usr/bin/X11/mofe --f

mLabel l topLevel \
fontList \

"*b&h-lucida-medium-r*14*=ft,\
*b&h-lucida-bold-r*14*=bft" \

labelString \
"I’mˆbft boldˆft andˆrl strange"

realize

The syntax of Wafe’s compound string interface is
straightforward and similar to TeX’s text formatting
commands. A special character (we are using ‘‘ˆ’ ’
instead of TeX’s ‘‘\’ ’) is used for layout commands
which are either used to change the font or to change
the writing direction.The output of the sample script
is shown in Figure 3.

Figure 3: An OSF/Motif widget with compound strings

The Pixmap Converter
The X Window pixmap format (Xpm [6]) is a

graphical image file format similar to the standard
X11 bitmaps, but it supports colored images and shape
masks. Wafe provides an extended String-to-Bitmap
converter which checks additionally whether the spec-
ified file is in Xpm format, when the attempt to read
the file in the standard X bitmap format failed. This
converter can be used to set all resources of type
Pixmap, such as for example the background pixmap
of the AthenaLabelwidget.

Using Wafe as a Frontend

In our framework a typical Wafe application con-
sists of two parts, the frontend (Wafe) and an applica-
tion program, which typically run as separate pro-
cesses. Theapplication program talks to the frontend
via stdio. Each output line from the application pro-
cess starting with a certain prefix character is inter-
preted as a Wafe (or pure Tcl) command.So an appli-
cation program can dynamically submit requests to the
frontend to build up and modify the graphical user
interface; the application can even down load applica-
tion specific Tcl procedures to the frontend, which can
be executed in the frontend without interaction with
the application program. At the same time the applica-
tion program reads from stdin, which is connected to
Wafe, and awaits ASCII strings to control its actions.
Starting Applications in Wafe’s Frontend Mode

When Wafe is used in the frontend mode, an
application program is started as a subprocess of
Wafe. After the fork the necessary connections of the
I/O channels are established (see Figure 4, left hand

8 1992 Winter USENIX − January 25-29, 1993 − San Diego, CA

Neumann & Nusser Wafe - A Widget Frontend

side). Note that in interactive mode or in file mode no
subprocess is spawned, and Wafe behaves like a shell.

xwafeApp -display ...

Child Process

>@?BA*CEDGFHF

Parent Process

I ?JA�C

stdout stderrstdin

optional
data channel

#!/usr/bin/X11/wafe --f
command hello topLevel \
 label "Wafe new World" \
 callback "echo Goodbye; quit"
realize

TCL application

I ?BA*C

stdout stderrstdin

#!/usr/bin/X11/wafe --f

KML�N%OQP R�O�SUTVNESWR KMX*Y RGTVNZSQR

Figure 4: Wafe’s Communication Mechanism

The first question, however, was to figure out,
what application program should be launched as sub-
process. Although Wafe provides a command line
option to specify the name of the application program,
it is in many cases not convenient to be forced to spec-
ify this argument. Thereforewe chose the following
naming scheme:

Suppose an application program is named
wafeApp (see Figure 4). If a link like ln -s wafe
xwafeApp is established andxwafeApp is
executed, the programwafeApp is spawned as a sub-
process ofwafe and connects its stdio channels with
the frontend.

Lines written from the application program to
stdout are read by the Wafe process. If the line
received by Wafe starts with a certain character (such
as %) Wafe tries to interpret the remainder of the line
as a Tcl command.Note that each command issued
that way has to fit in a single line (which can be pretty
long depending on a preprocessor variable specified at
compilation time; the default length is 64KB).

The commands submitted to Wafe can be issued
from arbitrary programming languages provided that
they are able to write tostdoutunbuffered (the appli-
cation program must at least be able to flush the
buffer) and to read from stdio. The frontend is pro-
grammed by the application program to send back
string messages whenever certain events (like button
presses, etc.) occur. This way the application program
determines the syntax in which Wafe talks back.
Using Wafe’s Mass Transfer Mechanism

As indicated above, output lines from the appli-
cation program starting with a certain prefix character
are parsed and interpreted as Wafe commands.Other
lines from the application are printed by Wafe to std-
out. In some larger applications it is necessary to

transfer a bulk of data from the application program to
the frontend. In this case it is preferable to establish an
additional (optional) data channel (see Figure 4),
where no parsing or interpretation is performed. If an
application program wants to use this data channel, it
has to figure out first, on which file number Wafe is
listening. The application program can obtain this
information by sending the command

echo listening on [getChannel]

to Wafe which writes back for example ‘‘listening on
5’’. The data transferred will be stored in a Tcl vari-
able in the frontend. If the application program issues
the command

setCommunicationVariable \
C 100000 \
{sV text type string string $C}

the data transferred over the mass channel (5) will be
stored in the Tcl variable namedC. After 100000 bytes
are read, the Tcl command specified in the last argu-
ment will be executed. In this example it will set the
string resource of the AthenaasciiText widget to the
transferred content.
Typical Structure of Application Programs using

Wafe as a Frontend
Throughout this section we assume that Wafe is

used in frontend mode and an application program is
performing some meaningful computations that we do
not want to program in Tcl, or that we do not want to
bind to Wafe. When an application program is started
using Wafe as a frontend we can distinguish three
phases (see also Figure 5):

1) Wafe starts the application program as a subpro-
cess.

2) Theapplication program creates and configures the
widget tree, submits Tcl procedures and realizes
the widget tree.

3) In a read loop the application program accepts
commands in the form of ASCII strings from the
frontend. The commands are triggered by callbacks
or actions.

For some interpretative programming languages
it is preferable to send an initial command from the
frontend to the application process after the fork to
initiate step 2. For instance in Prolog, it is convenient
to send a startup goal ‘‘ [myapp], widget_tree,
read_loop. ’’ i n order to load the application
‘‘ myapp’’ and to cause Prolog to print the commands
necessary for 2 and to continue with 3.For this pur-
pose the resourceInitCom is provided, which can be
specified in a resource file or by using the ‘‘ -xrm
’*InitCom: .. ’’ command line option.

1992 Winter USENIX − January 25-29, 1993 − San Diego, CA 9

Wafe - A Widget Frontend Neumann& N usser

[\^]`_baZc`_ed
f�gih�j�kHl

monqp^rMcs_ed
f�tvuJwxkzy|{}{}~��#��h���#uJ��l

xAppl

Appl

� ����

��� � �
� ���� ���	���

���*� ����� �	�W�H� ��� � �Z� ����� ��� � �	� �	� � ��� � ��� � � ���� ��� � �	� �	�W� � �)� ��� � �

� ��h�����#�H�

 |h�~#~�¡�h���¢ �

y|����#uJ� �

��£ ���	�1� �	�W�H� ��� � ��� ������� ��� � ¤ � �	� �*� � �¥	� � � �

��£ ���	�1� �	�W�H� ��� � ��� ������� ��� � ¤ � �	� �*� � �¥	� � � �

� ��£ � �*� � � �	�1¦

� ��£ � �*� � � �	�1§
� ���� ���	�

� ���� ���	�

¨ kJh�©.ª`uJuJ{

« kJ��wx���%h��k

y|{}{<~#����h����u��
h������#uJ�

y|{}{<~#����h����u��
h������#uJ�

Figure 5: Using Wafe as a Frontend

The following short sample program written in
Perl demonstrates steps 2 and 3. The program com-
putes prime factors for integers typed into an Athena
asciiText widget.

#!/usr/local/bin/perl
$|=1; # set output unbuffered

build widget tree
print

"%form top topLevel\n"
."%asciiText input top editType edit"
." width 200\n"
."%action input override"
." {<Key>Return: exec("
." echo [gV input string])}\n"
."%label result top label {}"
." width 200 fromVert input\n"
."%command quit top fromVert result"
." callback quit\n"
."%label info top fromVert result"
." fromHoriz quit label {}"
." borderWidth 0 width 150\n"
."%realize\n";

r ead loop
while(<STDIN>) {

chop;
if (/ˆ\d+$/) {

print
"%sV info label thinking...\n";

$starttime = time;
for($d=2,@result=();$d<=$_;$d++){

while (!($_ % $d)) {
unshift(@result,$d);
$_ /= $d;

}
}

print "%sV result label {"
.join(’*’,@result)."}\n"
."%sV info label {"
. (time-$starttime)
. " seconds}\n" ;

} e lse {
print "%sV info label"

." {invalid input}\n";
}

}

Demo Applications of the Wafe Distribution
We hav edeveloped sample application programs

in Perl, GAWK, Prolog, Tcl, C and Ada talking to the
same Wafe binary. The following demo applications
are among the programs distributed together with the
Wafe sources:
• xwafedesign: interactive design program for

Wafe applications (see Figure 6)
• xwafeftp: FTP frontend
• xwafemail: Mail user frontend with faces, using

elm aliases
• xwafenews: NNTP based news reader, using elm

aliases
• xwafegopher: a simple gopher frontend
• xdirtree: tree directory browser
• xbm: bitmap and pixmap viewer
• xwafemc: multiple choice test answering program
• xruptimes: rwho monitor like xnetload
• xnetstats: network statistics, frontend for

netstat -i <interval>
• xvmstats: system statistics, frontend for

vmstat -i <interval>
• xiostats: I/O statistics, frontend foriostat

-i <interval>
• xwafeping: pings several machines and shows

up-status
• xwafecf: a simple read-only card filer
• xwafetel: a simple read-only Oracle front-end

for looking up telephone numbers
• xwafeora: a more elaborated Oracle frontend

with updates, capable to model an entity type with
distinct attribute defined subtypes, allowing multi
valued attributes. The sample program supports field
completion and other funky stuff. xwafeora is
configured via a parameter block containing the
sample applications ‘‘Filing Management’’ and
‘‘ Paper Base’’.

• perlwafe: an example program calling Wafe as a
subprocess of the application program (normally, it
is the other way round).

10 1992Winter USENIX − January 25-29, 1993 − San Diego, CA

Neumann & Nusser Wafe - A Widget Frontend

Figure 6: Sample Screen Shot ofxwafedesign
using Xaw3d and the Plotter Widget

Experiences
Our experiences proved that
• Wafe applications can be written in a wide range of

programming languages,
• Wafe provides a relatively high level interface to

widget applications,
• asingle Wafe binary serves multiple applications,
• Wafe achieves a better refresh behavior when the

application program is busy,
• click ahead is possible due to buffering in the I/O

channels,
• Wafe allows better separation between user interface

and application program matters,
• from its performance a user cannot distinguish

whether a widget application was developed using C
or Wafe,

• there is no need to program in C in order to develop
widget frontends, and

• migration from existing ASCII based programs to X
Window applications is easier using Wafe.

For the click ahead feature mentioned above it is
questionable whether this is a desireable feature. It can
be deactivated by setting widgets insensitive or by
writing a small Tcl procedure which checks for each
interesting callback procedure whether the program is
in a busy state or not and writes accordingly friendly
messages to the user.

The main disadvantage of Wafe is - when com-
pared to widget programming in C - the higher
resource consumption, because every Wafe application
needs an additional process (the frontend).Frequently
it is necessary to duplicate data (such as a text to be
displayed in a text widget), since one copy has to be
available in the frontend and another copy in the appli-
cation process.

Av ailability

Wafe was developed on DECstations 5000/200
under Ultrix 4.2 using X11R5, and has been compiled
on SparcStations under SunOS 4.1, RS6000/320 under
AIX and on HP 9000/720 under hpux 8.05. Wafe can
be compiled for X11R5 and X11R4. The preferred
program-to-program communication is done via sock-
etpair. Support for PIPES and SYS V streams is
included for systems without the socketpair system
call. Theactual Wafe version and the sample applica-
tions mentioned above can be obtained via anonymous
FTP from

ftp.wu-wien.ac.at:
pub/src/X11/wafe/*

(ip address: 137.208.3.4).At the time of the confer-
ence at least version 0.93 will be available. Since
Wafe was announced first in May 92, about 2200 FTP-
requests for Wafe were issued at the mentioned server.

References

[1] John K. Ousterhout,Tcl: An Embeddable Com-
mand Language, Proc. USENIX Winter Confer-
ence, January 1990.

[2] JohnK. Ousterhout,An X11 Toolkit Based on the
Tcl Language, Proc. USENIX Winter Conference,
January 1991.

[3] Larry Wall, Randal L. Schwartz, Programming
Perl , O’Reilly & Associates, Sebastopol 1991.

[4] Joel McCormack, Paul Asente and Ralph Swick,
X Toolkit Intrinsics - C Language Interface, Mas-
sachusetts Institute of Technology, 1990.

[5] Ralph Swick, Terry Weissman,X Toolkit Athena
Widgets - C Language Interface, Massachusetts
Institute of Technology, 1990.

[6] Arnaud Le Hors,The X PixMap Format, Part of
the xpm distribution, export.lcs.mit.edu, 1991.

[7] Adrian Nye, Tim O’Reilly, X Toolkit Intrinsics
Programming Manual, Second Edition, O’Reilly
and Associates Inc., Sebastobol 1990.

[8] X Toolkit Intrinsics Reference Manual, Third Edi-
tion, O’Reilly and Associates Inc.,Sebastobol
1992.

[9] ThomasBerlage,OSF/Motif, Concepts and pro-
gramming, Addison-Wesley, Wokingham 1991.

[10] Kaleb Keithley, Three-D Athena Widgets
(Xaw3d), export.lcs.mit.edu, 1992.

[11] RogerReynolds,Rdd2 - Drag and Drop Library,
export.lcs.mit.edu, 1992.

[12] PeterKlingebiel,AthenaTools Plotter Widget Set,
Version 6-beta, export.lcs.mit.edu, 1992.

[13] Doug Young, XmGraph, A Motif Graph Widget,
iworks.ecn.uiowa.edu, 1992.

1992 Winter USENIX − January 25-29, 1993 − San Diego, CA 11

Wafe - A Widget Frontend Neumann& N usser

Author Inf ormation

Gustaf Neumann is Assistant Professor at the
Vienna University of Economics and Business Admin-
istration, Department of Management Information
Systems, in Vienna, Austria. His main research inter-
ests are centered around the intergration of heteroge-
nous systems like the integration of different informa-
tion analysis methods, the integration of various lan-
guage layers (esp. in the field of logic programming
and program transformation), applications of deduc-
tive databases and user interface issues. He has devel-
oped several free packages spread over the internet
such as dvi2xx (a TeX dvi converter for HP LaserJets
and IBM 3812 printers) and diac (conversion program
for ASCII umlauts). Gustaf Neumann can be reached
electronically as neumann@wu-wien.ac.at.

Stefan Nusser is writing his master’s thesis at the
department mentioned above. He can be reached over
the network as nusser@wu-wien.ac.at.

12 1992Winter USENIX − January 25-29, 1993 − San Diego, CA

