
Active Hypertext for Distributed Web Applications
Eckhart Köppen, Gustaf Neumann

{ Eckhart.Koeppen,Gustaf.Neumann} @uni-essen.de

University of Essen, Information Systems and Software Techniques
Universitätsstraße 9, 45141 Essen, Germany

Published in: Proceedings of The Eighth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET-ICE’99),

June 16-18, 1999, Stanford.

Abstract

The prevailing architecture for web-based applications
relies on HTML, HTTP and loosely integrated functional
elements, propagating a strong distinction between client
and server. The proposed approach for active hypertext
documents however realizes applications through hypertext
documents with embedded application logic. Furthermore,
the need for separating the approach into a model, a
development method and supporting tools is identified. The
core model is based on open standards such as XML and
CSS. It is extended by idioms which describe important
concepts and reusable constructs. Examples for the
application of the model are given.

1 Introduction

Undoubtedly, the World Wide Web is the most
dominant of the Internet techniques to date. Using two
simple mechanisms (HTML and HTTP, [22] and [9]) a
very wide range of applications has been implemented.
Among those are large-scale distribution and retrieval of
information or electronic commerce. The process of
implementing the web-based information systems behind
these applications has however shown the deficiencies of
the existing mechanisms and the need for the specification
and implementation of new mechanisms. One of the new
mechanisms which was introduced are active hyperlinked
documents [13], using XML [6] and other Web and
Internet standards to combine data, behavior, state and
presentation. This paper wants to further elaborate and
discuss the proposed model and show how active
documents can be used to construct web-based
applications.

2 Why Active Documents?

The application domain of web techniques (mainly
HTML and HTTP) has changed over time from
information distribution and authoring to the
implementation of web-based information systems, i.e.
systems that provide functionality similar to conventional
information systems. They typically follow a very simple
client-server model: A web server distributes information
(HTML documents) and allows its modification through
predefined actions (CGI [8] scripts), while the web clients
are only used to display the distributed information and
invoke the available actions.

Looking at these systems, two aspects become obvious:
First, there is an imbalance between the tasks web clients
on the one hand and web servers on the other hand have to
fulfill. Second, the underlying processing and data model is
very simple, based on information structuring using HTML
and information processing by CGI scripts.

While the first aspect has been dealt with through
extensions on the client side (mostly Java [11] and
JavaScript [20]), appropriate and applicable solutions
which cover the second aspect are still not available.
Though it is possible to realize a sophisticated processing
model using Java, approaches to provide an equally
sophisticated information model are missing. Besides, the
advantages of hypertext systems like the WWW such as
easy information distribution and authoring are lost the
more the implemented systems come close to distributed
systems based on CORBA [21], RPC [25] or Java RMI
[26].

This leads to the idea of active documents. An active
document combines structured and hyperlinked
information like any other hypertext document, but it also
contains associated procedural information in the form of
scripts, program fragments or references to processing
instances accompanied by state information. The
applications which can be realized using active documents



cover a very wide range: simple standalone applications
like smart bookmarks, cooperative applications using
hyperlinked documents like intelligent catalogs or
applications involving mobile active documents to
implement an agent system. In this paper, a calendar for a
workgroup will be used as an example. Before, a more
precise definition of the underlying model is given.

3 The Active Hypertext Document Model

The basic idea of combining code and data will be
refined through the definition of the Active Hypertext
Document Model (AHDM). It builds upon the previously
referenced work in [13].

3.1 Information Model

The information carried by an active document is
subdivided into the following classes:

Behavior: Information which is used to describe
behavior is mostly made up of suitably sized units like
subroutines written in scripting languages. The scripts are
closely tied to the AHDM, i.e. in that context, they are an
essential part of the document. Outside the context of the
AHDM, they are not considered to contribute to the
information carried by the enclosing document.

State: Like the information used to describe behavior,
the state of an active document contributes to a distinct
class of information. It contains the information which
only serves the purpose to control the behavior of an active
document. This is in contrast to the general data contained
in a hypertext document (see below). The state information
is only used in the AHDM and can be removed from the
document in other contexts.

Presentation: The presentation of a document is
controlled by dedicated presentation information. Similar
to the description of state and behavior, the presentation
information is only considered an essential part of a
document if it is used in an appropriate context. Here, this
context is the consumption of a document by end users.

Linking: Assuming uni-directional linking, the
information used to link two documents together consists
of three parts: The starting point or anchor within the
source document, the target of the link (either a whole
document or parts of it) and additional link information
like invocation semantics. The linking information is part
of the source document. Because of the importance of
hyperlinking not only for the AHDM, it is an essential part
of the document in any context.

Data: Any information not used to describe behavior,
state or presentation contributes to the class of general
data. The linking information plays a special role here,
because it may overlap with the general data. The general
data within a document is the information which is not

explicitly tied to the AHDM, though the behavior of an
active document is not only dependent on the state
information but can also refer to and modify general data.

3.2 Elements of the AHDM

The basic elements are those parts of the AHDM which
can be generally used in conjunction with hypertext
documents:
• XML and XML Namespaces  [7]: Information

structuring and combination
• XLink [16] and XPointer [17]: Information linking
• Cascading Style Sheets [15]: Information presentation
• Document Object Model [29]: Programming Interface

for document manipulation
• Intrinsic Event Model [22]: Connection of external

events to behavior descriptions
• HTTP: Information distribution and remote method

invocation
• Scripting Languages: Description of behavior

3.3 AHDM Schema

The most important element of the AHDM is the
AHDM schema or namespace. It contains the declaration
of XML elements needed to construct an active hypertext
document. Following the requirements, two elements are
defined in the namespace: Behavior is described using the
func element and State is held in var elements. To provide
greater flexibility and scalability, a third element is
introduced: The delegate element denotes a link to a
remote document which can be used to delegate behavior.
This will be clarified in the section on the runtime
environment. The resulting DTD consists of the following
declarations:

<! ELEMENT var  ( #PCDATA) >
<! ATTLI ST var

NAME CDATA #REQUI RED>

<! ELEMENT f unc ( #PCDATA) >
<! ATTLI ST f unc

name CDATA #REQUI RED
name CDATA #REQUI RED>

<! ELEMENT del egat e EMPTY>
<! ATTLI ST del egat e

xml : l i nk CDATA " SI MPLE"  #FI XED
act uat e CDATA " aut o"  #FI XED
show CDATA " new"  #FI XED>

Figure 1: The AHDM DTD

3.4 Runtime Environment

The runtime environment exports the main AHD
support functions which can be used from within the
program fragments in an AHD. In short, these functions
cover the following aspects: Invocation of func elements
(call), query and modification of var and other elements
(get, put), loading remote documents (load) and obtaining a
persistent version of the current active document (toText).



All AHD elements are referenced through their name
attribute. Furthermore, the type attribute of the func
element denotes the MIME type [5] of the embedded
script.

The runtime functions enforce a certain document
architecture through parent delegation. In this architecture,
elements with sub-elements from the AHDM namespace
are similar to objects in the respect that all sub-elements
are considered to be in the same scope. If for example an
element with the general ID article has the sub-elements
with tag names func or var, these sub-elements are
associated functions and variables for the article element.
If another function element is to be invoked from one of
these sub-elements, the lookup for the called element starts
at the direct parent, considering all direct children of this
element. If the called element is not found, the lookup
continues at the grandparent of the calling function element
until the root element is reached.  In the example shown
below, the function update_total is first searched within the
scope of the article element and then in the scope of the
invoice element.

<invoice> ⇐ 
���������
	���

<f unc name=" updat e_t ot al " > . . .  </ f unc>
<article> ⇐ ��� �����
����

<f unc name=" pr i nt " > . . .  </ f unc>
<f unc name=" add_i t em" >

... this function invokes updat e_t ot al

</ f unc>
<var  name=" st at us" > . . .  </ var >
. . .

Figure 2: Parent Lookup

In addition to parent delegation, remote delegation is
possible through the delegate element. This is a simple
XLink, where the HREF attribute references a remote
active document. The runtime environment follows this
link if an element cannot be found in the parent chain of a
referring element. In the case of function invocations, the
referenced function will be invoked in the remote
document if it cannot be found in the local document. This
works likewise for variable access.

func elements can be invoked either locally (following
parent delegation) or remote. The remote invocation is
realized through a HTTP POST request. Parameters are
passed in the body of the POST request and will be
decoded into named parameters on the receiver side.
Variables and other resources like remote XML entities
and documents are accessed through the HTTP GET and
PUT elements.

The interface to the runtime environment is defined by a
IDL interface (using the DOM IDL interfaces):

i nt er f ace AHDRunt i me {
voi d put  ( i n El ement  cur r ent ,

i n DOMSt r i ng var Name,
i n DOMSt r i ng var Val ue) ;

DOMSt r i ng get  ( i n El ement  cur r ent ,
i n DOMSt r i ng var Name) ;

DOMSt r i ng cal l  ( i n El ement  cur r ent ,
i n DOMSt r i ng f uncName,
i n DOMSt r i ng par amSt r i ng) ;

Document  l oad ( i n DOMSt r i ng ur n) ;

DOMSt r i ng t oText  ( i n Document  doc) ;
} ;

Figure 3: Runtime Interface

The AHDRuntime interface exports methods for
variable access (get and put) as well as the call function for
method invocation. A remote document is transferred to
the local runtime via the load function which fetches and
activates the document. The toText function can be used to
store or transmit a textual representation of an AHD.

A sample runtime environment is currently
implemented as part of the Kino XML/CSS processor [14].

4 A Sample Application

To show the potential of active documents and to point
out some differences  to traditional approaches, a sample
application involving a distributed calendar shall be
presented here. The scenario is characterized  as follows:
• A group of people coordinates appointments via a

shared calendar. An appointment is defined through
start and end times, title, location and participants.

• The shared data is held at multiple locations (i.e. every
user has a local copy of the calendar data).

• Appointments are made and modified by sending the
appointment data from the person who wishes to
arrange or change an appointment to any of the other
group members.

An application built using active documents could have
the following architecture:

Appointment
AHD

User C

User B

Runtime Environment

Calendar AHD

User A



Figure 4: Application based on Active Documents

The application is solely based on independent
documents which communicate with each other: the
calendar data is stored in an active document within the
runtime environments and new or changed appointments
are transmitted as active documents between the runtime
environments of the group members.

The most important parts of the appointment and
calendar document are shown in Figure 5 and Figure 6
(note that most elements have default attributes assigned in
DTDs not included here). Figure 5 shows a sample code
fragment for a single appointment, containing start and end
times and a participant list.

<appoi nt ment >
<i d>0</ i d>

<f i el d>
<l abel >St ar t :  </ l abel >
<st ar t t i me>05/ 11/ 99 12: 30</ st ar t t i me>

</ f i el d>

<f i el d>
<l abel >End:  </ l abel >
<endt i me>05/ 11/ 99 14: 00</ endt i me>

</ f i el d>

<par t i c i ant l i s t >
<l abel >Par t i c i pant s:  </ l abel >
<par t i c i pant  cal endar =" ur n: Dr i di : cal endar " >

Dr i di
</ par t i c i pant >
…

</ par t i c i pant l i s t >
…

</ appoi nt ment >

Figure 5: Appointment Document

In Figure 6, the container document for the
appointments is shown. The appointments are embedded in
an appointment list, furthermore, func elements are used to
implement the calendar functionality.

<cal endar >
<f unc name=" new_appoi nt ment " >…</ f unc>

<f unc name=" submi t _appoi nt ment " >…</ f unc>

<f unc name=" del et e_appoi nt ment " >…</ f unc>

<headi ng>Per sonal  Cal endar </ headi ng>

<appoi nt ment l i s t >
<appoi nt ment >

…
</ appoi nt ment >

…
</ appoi nt ment l i s t >
…

</ cal endar >

Figure 6: Personal Calendar Document

Figure 7 shows a screenshot of a personal calendar. The
document provides four functionalities: the ability to
change appointment data like the start time or the title,
submission of this changed data to the other group
members, deletion of an appointment and creation of a new
appointment. The functions are invoked through IEM

events, in this case the onclick event which is handled by
the HTML link-styled words or by the labels for the
appointment data.

Figure 7: Personal Calendar Screenshot

It is important to note that the distinction between client
and server is practically removed because the original
functionality of the server (e.g. providing an CGI interface
to a database,  executing CGI scripts) is now implemented
in the active documents and can also be utilized in the
clients. Additionally, the documents may be used in place
of databases, a field where XML shows promising
features. Though the above example utilizes a
decentralized approach, it would also be possible to use a
central monitor document which coordinates the
application Figure 8 shows a fragment of the personal
calendar where a DELEGATE element at the root of the
calendar document is used to delegate behavior (i.e.
function calls) to a central document, and the method call
in the submit_appointment function, where the
appointment data is passed as an XML string to the
change_appointment function. The programming language
used here is Tcl, but other languages with an extensible
DOM binding could be used as well.

<cal endar >
<del egat e hr ef =" ur n: SWT: moni t or " >
…
<f unc name=" submi t _appoi nt ment "  t ype=" t ext / t c l " >

…
ahd: : cal l  change_appoi nt ment  \

appoi nt ment  $t ext
</ f unc>
…

</ cal endar >

Figure 8: Personal Calendar Document.

The behavior of this document can now easily be
changed, for instance if the delegate document is not
reachable, by simply modifying the reference to the



delegate document. This is also described in the next
section on idioms and patterns.

5 Idioms

To enhance the usability of a model like the AHDM,
Idioms can be used. Idioms describe recurring themes and
name them with a simple term, patterns offer predefined,
customizable solutions to recurring problems, differing
only in the scale of their applicability. In the above
example, a number of idioms can be identified which may
also be found used in other applications. Idioms can be
encapsulated and formalized using patterns.

Activity: The current architecture of web-based
information systems implies that active hypertext
documents generally have two states: They are either filed
in a database or file system, thus inactive, or they are
loaded into some kind of web or application server, where
they are active. The transition between the two stages is
only triggered by external events: Requests for an AHD or
parts thereof, invocation of a func element in an AHD or
explicit saving of an AHD to the file system upon the
termination of the runtime environment. An AHD is
notified about the state changes through the IEM events
onload and onunload.

Persistence: Very closely tied to the notion of activity
is the concept of persistence. An active hypertext
document is made persistent by making it inactive and
saving it to some kind of persistent storage. It is very
important to note that only the parts of an AHD are
considered to be persistent that are part of the document’s
structure. This includes all XML elements, their attributes
and their contents, but it excludes variables of the program
fragments in the func elements.

Reference: The reference to an AHD is made through
Uniform Resource Identifiers which can have a wide range
of semantics. The most prominent URI is the URL which
describes a physical location for a document. The idiom of
a change of reference denotes in most cases a change of
the physical location of an AHD. The AHDM does not
propose any explicit mechanisms to deal with those
location changes, but it is clear that they can result in
problems like link consistency. Generally, no assumptions
about the meaning reference to an active document shall be
made. This might change with a centralized name service
that can map meaningful URIs or URNs to physical
location identifiers.

Modification of Behavior: An interesting aspect which
results from the concept of parent delegation is the ability
to change the behavior of an AHD. The rules for the
element lookup make it possible to implicitly refer to AHD
elements in the parent chain of an element. An element can

therefore be moved into a different context without
changing the associated behavior descriptions. Equally, the
context of an element can be changed. With this approach,
it is possible to build libraries of independent elements
which can be reused in other documents. The concept of
remote delegation even allows for flexible reconfiguration
of behavior by changing the delegate documents.

It is interesting to note that the above idioms result
mostly from the change of the properties or state of an
active document, e.g. activation or deactivation or
reference changes.

6 Related Work

Work related to active documents can be found in
various areas. Besides techniques to be used in web-based
systems (see for example the approaches concentrating on
the client side like [1], [12], [18], [20] and [24], or on the
server side like [27] or [28]), other approaches exist in
electronic publishing [2], workflow systems [3] or mail
systems ([4], [10]). In this paper however we concentrate
on work that can complement the AHDM directly or
indirectly to make clear that the AHDM is intended to
integrate other models and techniques and not to compete
with them.

While many of the above approaches consider only
single aspects of the implementation of web-based
information systems, the AHDM covers multiple aspects
by removing the distinction between client and server and
by providing an information model. However, many of the
alternative approaches can be integrated into or used in
conjunction with the AHDM. The AHDM can provide a
uniform, document-centric interface for other information
and active resources on the web. It can serve the role of an
integrating middleware, making technologies that can
complement the AHDM in this respect interesting. Among
those technologies is for example CORBA: An active
document could be exported by the runtime environment
through a CORBA object request broker. This is facilitated
by the document structure where any element with sub-
elements from the AHDM namespace can be viewed as
objects with methods and state variables. Likewise, it
would be possible to implement CORBA services over
HTTP to reference CORBA objects transparently using the
AHDM runtime from within an AHD, comparable to the
approach in [19].

7 Future Directions and Conclusion

As a result of separating the different parts of an active
document, a set of reusable components (mostly style
sheets and behavior descriptions) can evolve. They can be



gained by factoring out generally usable parts of a
document. In a context where the structure of the
documents play an important role, the reusable components
include schema definitions (e.g. DTDs) as well. The
components can be reused by simply linking them to the
base documents, supporting truly distributed authoring.

The architectural approach which was shown above can
be used to implement computer supported workflow
systems on a larger scale. It is based on the notion of
personal repositories, where active documents are stored.
They are accessed using personal web servers and are
associated to one or more persons. This architecture relies
on the migration of documents between repositories and
the implementation of a workflow logic inside the
documents.

The AHDM provides a stable core for implementing
autonomous, active documents which can be linked
together to form web-based applications. However, a
development method still needs to be defined to enforce
certain software quality characteristics such as flexibility
or reusability. Other issues not dealt with in this paper
include security aspects. They can be addressed on
multiple levels: Implementing security mechanisms at the
application level, in the runtime environment or at the
document level.

References

[1] S. Ball: Embeddable Components For Stand-Alone Web
Applications, Proc. of AusWeb97, Lismore 1997.

[2] E. A. Bier: Documents as User Interfaces, Proc. of the Intl.
Conference on Electronic Publishing, Document
Manipulation and Typography, 1990.

[3] R. Bentley, T. Horstmann, K. Sikkel, J. Trevor: Supporting
Collaborative Information Sharing with the World Wide
Web: The BSCW Shared Workspace System, Proc. of the 4th
World Wide Web Conference, Boston 1995.

[4] N. Borenstein: Computational Mail as Network
Infrastructure of Compter-Supported Cooperative Work,
Proc. of the Conference on CSCW, Toronto 1992.

[5] N. Borenstein and N. Freed: Multipurpose Internet Mail
Extensions, Standards Track Protocol, RFC 1521, September
1993.

[6] T. Bray, J. Paoli, C.M. Sperberg-Queen: Extensible Markup
Language (XML) 1.0, W3C Recommendation, , February
1998.

[7] T. Bray, D. Hollander, A. Layman: Namespaces in XML,
W3C Recommendation, January 1999.

[8] K. A. L. Coar, D. R. T. Robinson: The WWW Common
Gateway Interface Version 1.1, Internet Draft, May 1998.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee:
Hypertext Transfer Protocol - HTTP/1.1, Standards Track
Protocol, RFC 2068, January 1997.

[10] Y. Goldberg, M. Safran, E. Shapiro: Active Mail - A
Framework for Implementing Groupware, Proc. of the
Conference on CSCW, Toronto 1992.

[11] J. Gosling, B. Joy, G. Steele: The Java Language
Specification, Addison Wesley Longman, Reading 1996.

[12] M. F. Kaashoek, T. Pinckney and J.A. Tauber: Dynamic
Documents: Extensibility and Adaptability in the WWW,
Proc. of the 2nd World Wide Web Conference, Chicago,
1994.

[13] E. Köppen, G. Neumann: A Practical Approach towards
Active Hyperlinked Documents, Proc. of the 7th World Wide
Web Conference, Brisbane 1998.

[14] E. Köppen, G. Neumann: Implement, Gustaf! – The Kino
XML/CSS Processor, Poster Proc. of the 8th World Wide
Web Conference, Torono 1999.

[15] H. W. Lie and B. Bos: Cascading Style Sheets, level 1, W3C
Recommendation, December 1996.

[16] E. Maler, S. DeRose: XML Linking Language (XLink), W3C
Working Draft, March 1998.

[17] E. Maler, S. DeRose: XML Pointer Language (XPointer),
W3C Working Draft, March 1998.

[18] D. Massy, S. Williams, R. Norlander, L. Kurata, T.
Reardon: HTML Components, W3C Note, October 1998.

[19] P. Merle, C. Gransart, J.-M. Geib: CorbaWeb: A Generic
Object Navigator, Proc. of the 5th World Wide Web
Conference, Paris 1996.

[20] Netscape Communications Corp.: JavaScript Reference,
December 1997.

[21] Object Management Group: The Common Object Request
Broker: Architecture and Specification,  August 1997.

[22] J. K. Ousterhout: Tcl: An embeddable Command Language,
Proc. of the USENIX Winter Conference, January 1990.

[23] D. Raggett, A. Le Hors, I. Jacobs: HTML 4.0 Specification,
W3C Recommendation, April 1998.

[24] R. Stevahn: Adding Style and Behavior to XML with a dash
of Spice, W3C Note, February 1998.

[25] Sun Microsystems: RPC: Remote Procedure Call Protocol
Specification Version 2, RFC 1057, June 1988.

[26] Sun Microsystems: Java Remote Method Invocation -
Distributed Computing for Java, May 1998.

[27] Sun Microsystems: Java Servlet API Specification,
November 1998.

[28] R. Wodaski: ASP Technology Feature Overview, August
1998.

[29] L. Wood et al.: Document Object Model (DOM) Level 1
Specification, W3C Recommendation, October 1998.


