Filters as a Language Support for Design Patterns in
Object-Oriented Scripting Languages*

Gustaf Neumann and Uwe Zdun
Information Systems and Software Techniques
University of Essen, Germany
{gustaf.neumann,uwe.zdun}Quni-essen.de

Abstract

Scripting languages are designed for glueing soft-
ware components together. Such languages pro-
vide features like dynamic extensibility and dynamic
typing with automatic conversion that make them
well suited for rapid application development. Al-
though these features entail runtime penalties, mod-
ern CPUs are fast enough to execute even large ap-
plications in scripting languages efficiently.

Large applications typically entail complex pro-
gram structures. Object-orientation offers the
means to solve some of the problems caused by this
complexity, but focuses only on entities up to the
size of a single class. The object-oriented design
community proposes design patterns as a solution
for complex interactions that are poorly supported
by current object-oriented programming languages.
In order to use patterns in an application, their im-
plementation has to be scattered over several classes.
This fact makes patterns hard to locate in the ac-
tual code and complicates their maintenance in an
application.

This paper presents a general approach to com-
bine the ideas of scripting and object-orientation in
a way that preserves the benefits of both of them.
It describes the object-oriented scripting language
XOTcL (Ezxtended OTcL), which is equipped with
several language functionalities that help in the im-
plementation of design patterns. We introduce the
filter approach which provides a novel, intuitive, and
powerful language support for the instantiation of
large program structures like design patterns.

*Published in: “Proceedings of COOTS’99, 5th Confer-
ence on Object-Oriented Technologies and Systems”, San
Diego, May 3-9 1999.

1 Introduction

1.1 Scripting Languages

In applications, where the emphasis lays on the
flexible reuse of components, scripting languages,
like Tcr (Tool Command Language [25]), are very
useful for a fast and high-quality development of
software. The application development in scripting
languages differs fundamentally from the develop-
ment in systems programming languages [26] (like
C, C++ or Java), where the whole system is de-
veloped in a single language. A scripting language
follows a two-level approach, distinguishing between
components (reusable software modules) and glue-
ing code, which is used to combine the components
according to the application needs. This two level
approach leads to a rapid application development
[26].

Scripting languages are typically interpreted and
use a dynamic type system with automatic conver-
sion. The application developer uses a single data
type (strings) for the representation of all data.
Therefore, the interfaces of all components fit to-
gether automatically and the components can be
reused in unpredicted situations without change.
The disadvantages of scripting languages are a loss in
efficiency (e.g. for dynamic conversions and method
lookup) and the lack of reliability properties of a
static type system [18]. But these disadvantages can
be compensated to a certain degree:

e For several application tasks, the loss of effi-
ciency is not necessarily relevant, because the
time critical code can be placed into compo-
nents written in efficient systems programming
languages. Only the code to control these com-
ponents is kept in the highly flexible scripting
language.

e Since the components are typically written in
a language with a static type system the relia-
bility argument applies only on the glue code,
used to combine the components. To address
these remaining problems we have integrated
an assertion concept based on pre- and post-
conditions and invariants (see [24]).

Since Tcr is designed for glueing components to-
gether, it is equipped with appropriate functionali-
ties, such as dynamic typing, dynamic extensibility
and read/write introspection. Many object-oriented
Tcr-extensions do not support well these abilities in
their language constructs. They integrate foreign
concepts and syntactic elements (mostly adopted
from C++) into Tcr (see e.g. [15, 9]). Even less
appropriate is the encouraged programming style in
structured blocks and the corresponding rigid class
concept, which sees classes as write-once, unchange-
able templates for their instances. This concept is
not compatible with the highly dynamic properties
of the underlying scripting language.

1.2 Scripting and Object Orientation

The three most important benefits of object-
orientation are encapsulation of data and operations,
code reuse through inheritance, and polymorphism.
These should help to reduce development time, to
increase software reuse, to ease the maintenance of
software and to solve many other problems.

But these claims are not undoubted: For example
Hatton [11] argues that the non-locality problems
of inheritance and polymorphism in languages, like
C++, do not match the model of the human mind
well.

Encapsulation lets us think about an object in iso-
lation; this is related to the notion of manipulating
something in short-term memory exclusively. There-
fore, encapsulation fits the human reasoning. Since
in scripting languages a form of code reuse is already
provided through reusable components, the foremost
reason for the use of object-orientation in a scripting
language is the encapsulation. For that reason, the
inheritance problem also seems less conflicting, be-
cause the inheritance is mainly used to structure the
system and to put the components together prop-
erly. Inheritance in scripting applications normally
does not lead to large and complex classes that are
strongly dependent on each other.

Hatton [11] criticizes the polymorphism in C++
as damaging, because objects become more difficult

to manipulate through the evolving non-locality in
the structures. They involve a pattern-like matching
of similar behavior in long-term memory. The string
as an uniform and flexible interface instead of the
use of polymorphism makes the objects easier to be
put together. They get one unique behavior and one
unique interface. They may be used in different situ-
ations differently, but the required knowledge about
the object remains the same.

These arguments account for the glueing idea of
the scripting language in the scope of a single class
and its environment. This scope of a “program-
ming in the small” is the strength of current object-
oriented (language) concepts. Their weakness is the
“programming in the large”, where all components
of a system have to be configured properly. The
concepts only provide a small set of functionalities
that work on structures larger than single classes,
e.g. from languages like Java or C++ the following
are known:

e virtual properties are used to define additional
object- and class-properties,

e abstract classes specify formal interfaces and re-
quirements for a set of classes,

e parametric class definitions are used for differ-
ent data types on one class-layout.

Beneath such language constructs, methodical ap-
proaches, like frameworks, exist. Since they are
coded using conventional language constructs the
problems due to the language insufficiencies are not
eliminated. The main insufficiency is that classes
and objects are relatively small system-parts com-
pared to an entire, complex system. Therefore, the
wish for a language construct, which maps such a
large structure to an instantiable entity of the pro-
gramming language, arises.

1.3 OTcl — MIT Object Tcl

We believe OTcrL [32] is an extraordinary object-
oriented scripting language which supports several
features for handling complexity. It preserves and
extends the properties of TcL like introspection and
dynamic extensibility. Therefore, we used OTcL as
the starting point for the development of XOTcL.

In OTcL each object is associated with a class.
Classes are ordered by the superclass relationship
in a directed acyclic graph. The root of the class

hierarchy is the class Object that contains the meth-
ods available in all instances. A single object can
be instantiated directly from this class. In OTcL
classes are special objects with the purpose of cre-
ating and managing other objects. Classes can be
created and destroyed dynamically like regular ob-
jects. Classes contain a repository of instance meth-
ods (“instprocs”) for the associated objects and pro-
vide a superclass relationship that supports multiple
inheritance.

Since a class is a special (managing) kind of object,
it is managed by a special class called “meta-class”
(which manages itself). The meta-class is used to
create and to instantiate ordinary classes. By modi-
fying meta-classes it is possible to change the behav-
ior of the derived classes widely. All inter-object and
inter-class relationships are completely dynamic and
can be changed at arbitrary times with immediate
effect.

2 Design Patterns in Scripting Lan-
guages

The complexity of many large applications is
caused by the combination of numerous, often in-
dependently developed components, which have to
work in concert. Typically, many classes are in-
volved, with different kinds of non-trivial relation-
ships, like inheritance, associations, and aggrega-
tions. Design patterns provide abstractions over
reusable designs, that can typically be found in the
“hot spots” [28] of software architectures. Patterns
are designed to manage complexity by merging in-
terdependent structures into one (abstract) design
entity.

Design patters are considered increasingly often as
reusable solutions for general problems. Specialized
instances of design patterns can be used in a diver-
sity of applications. Soukup [30] defines a pattern
as follows:

“A pattern describes a situation in which sev-
eral classes cooperate on a certain task and
form a specific organization and communica-
tion pattern.”

Design patterns are collected in pattern catalogs
[10, 6]. Typically, these catalogs contain general
patterns, but there are also catalogs which collect
domain specific patterns. In this paper, we see a de-
sign pattern as an abstract entity with normative,
constructive and descriptive properties, that is iden-
tified in the design process and has to be preserved

(with documentation and usage constraints) in the
implementation as well.

2.1 Language Support for Design Pat-
terns

Most efforts in the literature of design patterns
collect and catalog patterns. These activities are
very important, since they are the basis for new soft-
ware architectures using design patterns. Soukup
[30] remarks that this basic work is not yet ended.

Most authors present design patterns as guidelines
for the design. When they are used in the design
phase, the abstract pattern has to be transformed
into a concrete implementation for each usage. A
basic idea of this paper is to allow one to code a
pattern once in an abstract way (e.g. for a pattern-
library) and reuse it later in a specialized manner.
The gained advantage is that patterns become (ab-
stract) entities of the design process as well as of the
implementation. This is similar to the use of the
design process entities “object” and “class” which
are also entities in object-oriented programming lan-
guages.

There are only a few efforts in the direction of
language support for design patterns so far. We
believe that one reason for this lack of support is
due to the targeted languages. Conventional object-
oriented programming languages, like C++, offer no
support for reproduction of larger structures than
classes (like design patterns). Therefore, it is nearly
impossible to get a sufficient reproduction of such
structures as an entityl. But there are more reasons
[4], why language support for design patterns should
be improved:

o Traceability: The pattern is scattered over the
objects and, therefore, hard to locate and to
trace in an implementation.

e Self-Problem: The implementation of several
patterns requires forwarding of messages, e.g.
an object A receives a message and forwards
it to an object B. Once the message is for-
warded, references to self refer to the delegated
object B, rather than to the original receiver A.
(known as the self-problem [17]).

e Reusability: The implementation of the pattern
must be recoded for every use.

1Soukup [30] shows that some design patterns can be im-
plemented as classes in C++ using friend, but Bosch [4]
points out that these are only a few.

o Implementation Overhead: The pattern imple-
mentation requires several methods with only
trivial behavior, e.g. methods solely defined for
message forwarding.

Pree [28] identifies seven meta-patterns that define
most of the patterns of Gamma et.al. [10]. This indi-
cates that it is possible to find language constructs,
which are able to represent all structures definable
by these meta-patterns. In this work, we present the
filter as such a language construct.

2.2 Language Support for Design Pat-
terns in XOTecl

In the following sections, we describe the lan-
guage support for design patterns we have devel-
oped. We introduce our ideas with examples from
the language Extended OTcrL (XOTcL, pronounced
exotickle) which is an extension of OTcL, but we give
no introduction to the language. Figure 1 shows the
relationship between XOTcL and OTcL and lists im-
portant properties of OTcL.

e
Tcl

namespaces
introspection
extensibility

Extended OTcl

New Functionalities: Adopted from OTcl: Other

dynamic aggregations object-orientation: Extensions

nested classes encapsulation

assertions inheritance

meta-data

per-object mix-ins multiple inheritance

filter method chaining
meta-classes
read/write introspection
dynamic extensibility

. v

Figure 1: Language Extensions of XOTcL

Tcr and OTcL already have many properties that
are very helpful for the implementation of patterns.
Dynamic typing, as stated above, eases the man-
agement of highly generic structures. The definition
of pattern parts as meta-classes makes them enti-
ties of the programming language and instantiable
with the name of the pattern. Introspection allows
self-awareness and adaptive programs, and simpli-
fies the maintenance of relationships such as aggre-
gations. Per-object specialization eases implemen-
tation of single objects with varying behavior, e.g.
non-specializable singleton patterns.

In addition to the abilities of OTcL, we imple-
mented in XOTcL new functionality specially tar-

geted on complex software architectures and pat-
terns. In particular, we added:

e nested objects based on TcL’s namespaces to (a)
reduce the interference of independently devel-
oped program structures, (b) to support nested
classes and (c) to provide dynamic aggregations
of objects.

e assertions to reduce interface problems, to im-
prove the reliability weakened by dynamic typ-
ing and, therefore, to ease the combination of
many components,

e meta-data to provide self-documentation of ob-
jects and classes,

e per-object mirins as a flexible means to give
an object access to several different addition-
classes, which may be changed dynamically, and
finally,

e filters as a means of abstractions over method
invocations to implement patterns (see Section
2.3).

The first three extensions are variations of known
concepts, which we have adopted in a dynamical and
introspective fashion, the last two are both novel
approaches. In [24, 33] we describe all these features
in detail, in this paper we solely describe the filter
approach.

2.3 The Filter Approach

We have pointed out that the realization of design
patterns as entities is a valuable goal and that the
object-oriented paradigm is not able to achieve this
through classes alone. OTcL offers a means for the
instantiation of large structures, like entire design
patterns: the meta-classes. But in pure OTcL only
a few patterns are instantiable this way (e.g. the
abstract factory as in [33]), without suffering from
the problems stated in Section 2.1. Typically, these
patterns do not rely on a delegation or aggregation
relationship.

Even though object-orientation orders program
structures around the data, objects are character-
ized primarily by their behavior. Object-oriented
programming style encourages the access of encap-
sulated data only through the methods of the object,
since this allows data abstractions [31]. A method
invocation can be interpreted as a message exchange
between the calling and the called object. Therefore,

objects are only traceable at runtime through their
message exchanges. At this point the filters can be
applied, which are able to catch and manipulate all
incoming and outgoing messages of an object.

A filter is a special instance method registered
for a class C. Every time an object of class C
receives a message, the filter is invoked auto-
matically.

A filter is implemented as an ordinary instance
method (instproc) registered on a class. When the
filter is registered, all messages to objects of this
class must go through the filter, before they reach
their destination object. The filter is free in what
it does with the message, especially it can (a) pass
(the potentially modified) message to other filters
and finally to the object, or (b) it can redirect it to
another destination, or (c) it can decide to handle
the message solely.

The forward passing of messages is implemented
as an extension of the next primitive of OTCL. next
implements method chaining without explicit nam-
ing of the “mixin”-method. It mixes the same-
named superclass methods into the current method
(modeled after CLOS [5]). All classes are ordered in
a linear next-path. At the point marked by a call to
next the next shadowed method on this next-path is
searched and, when it is found, it is mixed into the
execution of the current method.

In XOTcr, a single class may have more than one
filter. All the filters registered for a class form an
ordered filter chain. Since every filter shadows all
instance methods, next appears as a suitable mech-
anism to call the next filter in the chain. When all
filters are worked through, the actual called method
is invoked. By placement of the next-call, a filter
defines if and at which point the remaining filters
(and finally the actual method-chain) are invoked.

Class A

A instproc Filter-1 args {
puts "pre-part of [self proc]" ;# pre part
next ;# next call
puts "post-part of [self proc]" ;# post part

}

A filter Filter-1

A al

al set x 1

This introductory example defines a single class
and a single filter instproc. It registers the filter
for the class using the filter instance method. An
object a1l is created. In the last line the predefined
set method is invoked. Automatically the registered
filter Filter-1 of class A receives the message set.
The filter instproc consists of three (optional) parts:
The pre-part consists of the actions before the actual

method is called, the next call invokes the message
chaining, and the post-part contains the actions to
be executed before the filter is left. In this example
the pre- and post-parts are simple printing state-
ments, but in general they may be filled with arbi-
trary XOTcL-statements. The distinction between
the three parts is just a naming convention for ex-
planation purposes.

message (c) , Filter 3 } filter-chain

Filter_2 Class A

message (b) , // F/ilterj

A

Figure 2: Cascaded Message Filtering

The following extension of the introductory exam-
ple shows how to apply more than one filter, which
are cascaded through next (see Figure 2). In this
extended example a filter chain consisting of two fil-
ters is used. Again next forwards messages to the
remaining filters in the chain or to the actual called
method. The method filter registers the list of fil-
ters to be used.

A instproc Filter-2 args {

puts "only a pre-part in [self proc]"
next

}

A instproc Filter-3 args {

next

puts "only a post-part in [self procl"

}
A filter {Filter-1 Filter-2 Filter-3}

When an instance a1l of class A receives a message,
like “al set x 1”7, it produces the following output.
The next-call in the last filter Filter-3 of the chain
invokes the actual called method set.

pre-part of Filter-1

only a pre-part in Filter-2

only a post-part in Filter-3
post—part of Filter-1

The filter method can be used to remove filters

dynamically as well. E.g. the filters Filter-1 and
Filter-3 can be removed by:

A filter Filter-2

On each class the filters are invoked in the order
specified by the filter instance method. To avoid
circularities all filters which are currently active —
that means that the current call is invoked directly

— -1 Class Object

T

- Class A

T

Class B

pre-part

_ Filter Chain of
" Class B

bl set x 10

post-part

Figure 3: Filter Inheritance

or indirectly from a filter instproc — are temporarily
left out of the filter chain. Filter chains can also be
combined through (multiple) inheritance using next.
Since filters are normal instprocs they may them-
selves be specialized through inheritance. When the
end of the filter chain of the object’s class is reached,
the filter chains of the super-classes are invoked us-
ing the same precedence order as for inheritance.

This is demonstrated by the example displayed in
Figure 3. B is a subclass of A with two instances b1
and b2. Both instances are filtered with the chains
registered on B, A and Object. The invocation b1 set
x 10 results in the next-path shown in Figure 3.

Class B -superclass A
B instproc Filter-B args {
puts "entering method: [self proc]l"
next
}
B bl; B b2
B filter Filter-B
bl set x 10
Filters have rich introspection mechanisms. Each
class may be queried (using the introspection
method info filters) what filters are currently in-
stalled. A filter method can obtain information
about itself and its environment, and also about
the calling and the called method. Examples are
the name of the calling and the called method, the
class where the filter is registered, etc. (see for de-
tails [24]). By using these introspection mechanisms
filters can exploit various criteria in order to decide

how to handle a message.

Often it is useful to add filters to an existing chain
of filters. This can be achieved conveniently by the
instproc filterappend defined for the top-level class
Object. Therefore this method is inherited by all
classes.

Object instproc filterappend f {

[self] filter [concat [[self] info filters] $f]
}
A filterappend {Filter-2 Filter-3}

3 Language Support for Design Pat-
terns using Filters

Now we present a systematic approach how filters
can be used to implement design patterns. In gen-
eral, filters are very flexible and well-suited for im-
plementing patterns in various creative approaches.

3.1 Applying Filters on Meta-Patterns

In [28] Pree has identified meta-patterns as struc-
tures underlying several design pattern. They sub-
divide the pattern into a general, generic pattern-
class (called template) and a class which serves as
an anchor for the application specific details (called
hook).

Hook Class Template Class

href

Operation

X

Specialized Hook Class

T-Operation

Operation

Figure 4: The 1:1 Meta-Pattern [28] with a Special-
ized Hook

Figure 4 shows a simple meta-pattern, that is
based on a 1:1 association. It separates the spe-
cializations of a hook class from a template class.
This is just an example pattern to give an idea of
hook and template. It is obvious that many object-
oriented structures, like several design patterns in
[10, 6], are based upon this meta-structure.

The methods of the template implement the
generic part of the structure and invoke the hook
methods. The abstract hook forms a common in-
terface for its specializations. The structure can be
reused with different special hooks without changes
to the template.

Filters are well-suited to implement meta-
patterns. By using a filter all activities of a pat-
tern can be treated in one entity (the filter instance
method). Since all messages are directed to the fil-
ter the abstract tasks of the pattern can be sepa-
rated from actual tasks of the application. But this
alone would not be a reusable solution, since for ev-
ery template class of every task, where the pattern
could be used, a new filter method would have to be
implemented. In order to achieve reusability we use
a meta-class that provides the desired functionality.
This meta-class may be stored in a library and can
be reused every time a similar problem occurs.

The steps, to obtain a reusable and instantiable
pattern based on filters from a pattern class diagram
(e.g. Figure 4), are:

1. Find the hook and template classes.

2. Create a meta-class under the general name of
the pattern.

3. Add a filter method to the meta-class, which
performs all recurring tasks desired from the
design pattern (especially the tasks of the tem-
plate).

4. Add a constructor to the meta-class, which reg-
isters the filter on classes derived from the meta-
class (and performs pattern specific initializa-
tion tasks).

5. Add additional methods to the meta-class (e.g.
like registration of special hooks) to avoid hard-
coding of pattern semantics in the filter method.

With slight adaptations this scheme is applicable
on all patterns that rely on Pree’s meta-patterns
(e.g. most of the patterns in [10]). But neverthe-
less most other patterns, since they normally involve
messages exchanges, are supportable by filters. A
meta-class can be defined as a general solution for
a large number of related problems. In order to use
it, the application must derive a class from it (e.g.
with the name of the template class) and concretize
the application specific actions (that means the hook
classes).

Now we show on a template for the 1:1 meta-
pattern, how to apply the scheme in XOTcrL. The
first step is to define a meta-class. In XOTcL a meta-
class is defined by referencing the meta-class Class
as superclass of a newly defined class:

Class 1-1-Meta-Pattern -superclass Class

Secondly, a filter instproc must be defined:

1-1-Meta-Pattern instproc 1-1-Filter args {
filters actions
e.g. forwarding messages to the special hook

}

As the next step the constructor init registers
the filter on the newly created class and performs
other initialization tasks, like variable initialization,
method declaration, etc.:

1-1-Meta-Pattern instproc init args {
initialization tasks
[self] filterappend 1-1-Filter

}

For real applications the meta-class has to be ex-
tended with additional methods. In order to com-
plete the implementation of the 1:1 meta-pattern a
method, which stores a reference to the special hook
on the object, has to be defined. Finally, the meta-
pattern is instantiated to create a filtered template
class.

1-1-Meta-Pattern FilteredTemplate

In order to provide the hook for the filter a special
hook class and perhaps concretizations have to be
created.

The presented scheme may be extended for more
specialized patterns, e.g. a recursive pattern may re-
quire recursive registering of the filter. Sometimes it
is useful (but not necessary) to apply a second filter
(e.g. in patterns with a second referencing relation-
ship, like mediator or observer in [10]).

3.2 Design Pattern Examples

The idea underlying meta-patterns splits patterns
into two parts: the template and the hook. We have
shown a scheme how to apply a filter if this division
is possible. This section applies the scheme in order
to implement three example patterns from [10].

3.2.1 The Adapter Pattern

The adapter pattern [10] converts the interface of
a class into another interface that a client expects.
Therefore, an adapter is a means to let classes coop-
erate despite of incompatible interfaces. As shown
in Figure 5 the conventional solution is to forward
the messages from Adapter to Adaptee by explicit
calls. This approach entails that for every adapted
method a new additional method must be defined
in the adapter. This leads to an implementation
overhead. Moreover, the solution’s program code is
neither reusable nor traceable.

| Client |—> Target Adaptee
Request SpecificRequest
adapter
Adapter i
Request Of---- -E adapter->SpecificRequest() '

Figure 5: The Adapter Pattern [10]

The solution for the adapter problem presented
below is based on filters and avoids these problems.

It is reusable and does not require the implementa-
tion overhead resulting from methods which are de-
fined solely for the purpose of message forwarding.
The forwarding is handled automatically by the next
primitive in the filter method, no additional helper
methods are needed.

By following the systematic steps presented above,
we identify the template (here Adapter) and the hook
(here Adaptee). The adapter pattern resembles the
1:1 meta-pattern of Section 3.1, but it has no spe-
cial hooks. The desired actions of the template are
to forward requests to specific requests. This will be
handled by the filter. Firstly, we define a meta-class
which replaces the pattern from the conventional de-
sign in Figure 5.

Class Adapter -superclass Class

A meta-class can be used to derive new classes that
can access the instance methods of the meta-class.
The derived classes are constructed with constructor
of the meta-class. Next, we define the filter instance
method:

Adapter instproc adapterFilter args {

set r [[self] info calledproc]

[self] instvar specificRequest adaptee \
[list specificRequest($r) sr]

if {[info exists sr]} {
return [eval $adaptee $sr $args]

}

next

}

The info calledproc command returns the origi-
nally called method. This is the general request
which is to be mapped to a specific request. The two
variables specificRequest and adaptee are instance
variables which are linked to the current scope by
the primitive method instvar. The specificRequest
for the called method is mapped to the variable sr.
adaptee is the object which handles the specific re-
quests. If there exists a mapping of the current re-
quest, the filter forwards the message to the asso-
ciated method. Otherwise the message is not redi-
rected, but passed further on by the filter along the
next-path.

As the next step we have to define the constructor
which adds the filter to the class. In order to be able
to set the specificRequest and adaptee variables it
is convenient to define instprocs for this purpose,
which are defined for the derived classes. These in-
stprocs are created dynamically by the constructor
(the init instproc) of the meta-class:

Adapter instproc init args {
[self] filterappend [self class]::adapterFilter
next
[self] instproc setRequest {r sr} {
[self] set specificRequest($r) $sr
}

OtherCall adapterFilter

Client

Adapter
[Othercall

request

Adaptee

specificRequest ¥

Figure 6: The Adapter Pattern Using Filters

[self] instproc setAdaptee {a} {
[self] set adaptee $a
}
}

Now the abstract pattern is converted into a meta-
class, which can be used to derive classes with the
behavior of the pattern: method invocations, which
correspond to registered requests, are redirected to
the adaptee object; all other invocations are passed
unmodified to the object through the next-path (see
Figure 6).

The solution in [10] suffers from the self-problem,
since the originally called object of the adapter class
is not the object which performs the desired task.
This problem is not addressed by the filter solu-
tion presented above. A more sophisticated solu-
tion, which does not suffer from the self-problem,
is to define the filter on the adaptee instead of the
adapter. For the sake of simplicity we presented here
the slightly simpler version.

A sample application of this pattern is a class
which handles network connections. Derived classes,
like FTP, HTTP, etc. allow one to handle specialized
connections. All of them must implement a method
connect. A method discard of the Connection class is
able to close connections of all different kinds. Sup-
pose a FTP connection routine from a library class
with a different interface should be used. A filter
adapter on basis of the defined meta-class can solve
this problem elegantly. Firstly the interfaces of the
related classes:

interface of the library class

Class FTPLIB
FTPLIB instproc FTPLIB_connect args {...}

the connection class

Class Connection

an abstract connection method
Connection instproc connect args {...}

the method to close a network conmnection
Connection instproc discard args {...}

. other class definitions, like HTTP

Now we derive a class FTP from the Adapter. The
meta-class’s constructor defines the two convenience

methods and registers the filter on the new class
FTP automatically. Strictly speaking the conve-
nience methods are not necessary, but they provide
a simpler interface. The class FTP has a construc-
tor that automatically creates an associated adaptee
and provides the needed information for the filter
though the convenience methods.

Adapter FTP -superclass Connection

FTP instproc init args {
FTPLIB ftpAdaptee
[self] setRequest connect FTPLIB_connect
[self] setAdaptee ftpAdaptee

}

Finally, the FTP class can be used and is adapted
automatically. Since only the method connect was
a registered request, all discard-calls reach the
Connection class.

FTP ftpl
ftpl connect

ftpl discard

This simple example can be extended with only a
few more lines of code to provide more sophisticated
adaptations (e.g. altering parameters, adapting to
other objects, etc) without architectural redesign.

3.2.2 The Composite Pattern

A recursive pattern from [10] is the composite pat-
tern, shown in Figure 7. The composite pattern
helps to arrange objects in hierarchies with a unique
interface type, called component. The objects are
arranged in trees with two kinds of components:
leafs and composites. Every composite can hold
other components.

l Client }—> Component
Operation
Add
Remove
GetChild
children
Leaf Composite
Operation i)gsration O 1 foral gin children ;
' '
Remove L,?f%@?#@?@t,,J
GetChild

Figure 7: The Composite Pattern [10]

There are several disadvantages in the implemen-
tation of the pattern in [10]. The composite pattern
structure contains dynamic object aggregation, what
is not provided in C++. Therefore, the implementa-
tion lacks flexible mechanisms to handle and intro-
spect the aggregation. An implementation overhead
results from the necessity to define methods for man-
agement of the dynamic aggregation. Furthermore,

the scattering of the pattern across several classes,
leads to a mixing of application and pattern struc-
tures that reduces reusability.

The pattern (as presented in [10]) is not an ab-
stract entity; therefore, it is hard to specialize and
to reuse it. Also, it is not easy to find it in source
code, if it is not well commented, and both descrip-
tion in the pattern classes and the runtime object
structure are hard to introspect and not traceable.

In order to implement the pattern as a filter, we
firstly identify its elements. The composite class
forms the template, the component class the hook.
The desired action of the template is to forward all
messages to the aggregated objects recursively. The
application specific actions are the concretizations
that determine what these classes do with the mes-
sages. We create a meta-class:

Class Composite -superclass Class
Composite instproc addOperations args {...}
Composite instproc removeOperations args {...}

As a useful enhancement to the solution in [10], new
operations are added and removed by addOperations
and removeOperations (not to be confused with the
methods for aggregation handling in Figure 7). Only
registered operations will be forwarded to the ob-
jects in the composite patterns runtime structure.

All generic pattern tasks will be performed by a
filter. It handles the forwarding to the components
of a composite:

Composite instproc compositeFilter args {
[[self] info class] instvar operations
set r [[self] info calledproc]
if {[info exists operations($r)1} {

foreach object [[self] info children] {
eval [self]::$object $r $args
}
}
return [next]

3

In the composite filter firstly the request is com-
pared to the operations in the operations-list. If
the request is a registered operation, the message
is forwarded to the child. Though children may be
composites, this mechanism functions recursively on
the entire structure, until the leaves are reached.

In order to register the filter on a new composite
class automatically, we append it in the constructor
of the meta-class:

Composite instproc init {args} {

next

[self] filterappend Composite::compositeFilter
}

Now we will show on an illustrative example that
this single method handles all semantics of the pat-

tern. As a sample application we will build up a
simple graphic:

Class Graphic
Graphic instproc draw {} {...}

Different graphics objects can be defined on basis of
the component type. For example we can define a
Composite (Picture) with two leaves (Line and Rect-
angle):

Composite Picture -superclass Graphic

Class Line -superclass Graphic
Class Rectangle -superclass Graphic

4 N\

aPicture
alLine ' aRect '

4 bPicture

~
alLine ’ aRect '

cPicture

cLine

A J

dPicture

Figure 8: The Composite Object Structure

The graphic structure shown in Figure 8 can be con-
structed by:

Picture aPicture

Picture aPicture::bPicture

Line aPicture::alLine

Rectangle aPicture::aRect

Line aPicture::bPicture::aline

Rectangle aPicture::bPicture::aRect

Picture aPicture::bPicture::cPicture

Picture aPicture::bPicture::dPicture
Line aPicture::bPicture::cPicture::cLine

An invocation of the draw method on a complex ob-
ject, like:

Picture addOperations draw

registers the draw message for all the component ob-
jects in the structure. A call of draw draws the whole
hierarchy:

aPicture draw

Note how simple and short it was to instantiate
the sample application. Beneath the elimination of
the problems mentioned above, compared to a so-
lution of the picture application following [10], the
filter solution is much shorter and easier to under-
stand. It avoids complex structures that are con-
nected in many ways, and removes the need for repli-
cated code, since it takes the pattern semantics com-
pletely out of the application. Furthermore, the re-
sult is that the pattern is reusable as a program frag-
ment (and may be put into a library of patterns) and
not only as a design entity, which has to be recoded
for every usage.

To map the recursive structure of the pattern
a more general solution, in which each composite
class gets recursively its own filter instproc, is easily
achievable. This would allow one to specialize the
filters behavior for certain branches of the structure
(e.g. in order to fade out parts of the picture) or
to store different composites, components or other
classes in the pattern structure (what is possible to
certain degree in the solution presented).

3.2.3 The Observer Pattern

The observer pattern presented in this section fulfills
the task of informing a set of depending objects (“ob-
servers”) of state changes in one or more observed
objects (“subjects”). This problem is well known
and often addressed, e.g. by the publisher subscriber
pattern [6] or Model-View-Controller [14]. Figure 9
shows the observer design pattern as presented in
[10].

observers

Subject Observer

Attach Update
Detach

Notify O----- Lo "ottt !
! for all 0 in observes { '
! o->Update() '

'
! i ConcreteObserver

subject | Update O------4 -
ConreteSubject ! s '
observerState '

GetState O- - - - - -
SetState

R R LD ! | observerState = i
i subject->GetState !
'

subjectState

Figure 9: The Observer Pattern [10]

Bosch [3] identifies the problem that the trace-
ability of the pattern suffers from the fact that the
methods attach, detach and notify do not build up
a conceptual entity and that the calls of notify must
be inserted at every point where a state change oc-
curs. The reusability of the concrete subjects also
suffers from these problems. A filter, which directs
all state changes of the subject to the observers does
not have these problems and provides a reusable so-
lution.

In order to implement an observer pattern based
on filters we create meta-classes for the observer and
the subjects. The subjects are structured as nested
class to preserve the unity of the pattern:

Class Observer -superclass Class
Class Observer::Subject -superclass Class

In this example we only handle the relationship be-
tween subject (as template) and observer (as hook)
by a filter. In a more sophisticated solution the

second referencing relationship between concrete ob-
server and concrete subject may also be replaced by
a filter. Now we can define a filter which handles the
notification:
Observer::Subject instproc notifyFilter args {
set r [[self] info calledproc]
[self] instvar preObservers postObservers \
[list preObservers($r) preObs] \
[list postObservers($r) postObs]
if {[info exists preObsl} {
foreach o $preObs {$o update [self] $args}
}

set result [next]
if {[info exists postObs]} {
foreach o $postObs {$o update [self] $args}
}
return $result

}

Observers are registered with the attach and detach
methods. As a special feature we allow both pre-
and post-observers to be registered. When the filter
method is invoked, firstly all registered pre-observers
are informed, then the actual method is invoked and
then all post-observers are informed. Finally, the
filter returns the result of the called method.

The trivial methods to register or unregister ob-
servers (here: attachPre, attachPost, detachPre and
detachPost) are created by the constructor init on
all instantiated classes, so that their objects can
reach them as instproc’s (not presented here).

Observers

Subjects

Diagram: d1

=y

Diagram: d2

YAV,

TextOutput: t1

Figure 10: Observer Example

We demonstrate the usage of the abstract observer
pattern by an example of a network monitor which
observes a set of connections and maintains several
views on these (e.g. a diagram and a textual out-
put). In the implementation the class Pinger encap-
sulates the view and collector classes, the collectors
are treated as subjects of the observer:

Class Pinger

Observer: :Subject Pinger::Collector

Observer Pinger::Diagram
Observer Pinger::TextOutput

The Collector starts the observation of the network
connection in its constructor, e.g.:

Pinger::Collector instproc init args {
set hostName 132.252.180.67
set f [open "| /bin/ping $hostName" r]
fconfigure $f -blocking false
fileevent $f readable "[self] ping \[gets $f\1"
}

The operation ping is the network event, which must
be handled by the collector. Since the collector is
a concrete subject it needs a method (getResponse)
which is invoked by the observers to get its current
state:

Pinger::Collector instproc ping {string} {...}
Pinger::Collector instproc getResponse {} {...}

The two observers must concretize their update
methods. Both must catch the actual state of the
subject using getResponse and then they will up-
date their presentation. The text output presenta-
tion may look like:

Pinger::TextOutput instproc update {subject args} {
set response [$subject getResponsel
puts "PINGER: $subject --- $response"

}

For concrete applications the classes must be instan-
tiated. Here are two collectors, some observers and
some attachments:

Pinger::Collector cl
Pinger::Collector c2
Pinger: :Diagram di
Pinger::Diagram d2
Pinger: :TextOutput t1

cl attachPre ping di d2
cl attachPost ping d2 t1
c2 attachPost ping t1 d2

This attaches the diagrams and the text output to
the collectors c1 and c2 as pre- and as post-observers,
as shown in Figure 10.

4 Related work

There are many other concepts with names con-
taining the word “filter” (e.g. in the area of mo-
bile/distributed computing [27, 16]). The composi-
tion filter model [1] introduces the idea of a higher-
level object interaction model through abstract com-
munication types (ACTs). Besides such basic ideas
of a means to change, redirect, or otherwise affect
messages, we have not found an approach with com-
parable properties like filters (as user-defined meth-
ods, mixin of filter chains, inheritance, etc.). Never-
theless, in Section 4.3, we describe other approaches
providing language support for design patterns.

4.1 Meta-Object-Protocol

One of the most flexible environments for object-
oriented engineering is the CLOS environment with
its meta-object-protocol [13]. We are convinced that
filters can be implemented in this environment which
provides many hooks to influence the behavior and
semantics of objects. Our filter approach differs sig-
nificantly, since filters provide a high level construct,
which is tailored to monitor and to modify object in-
teractions.

One example in [13] enhances CLOS with encap-
sulated methods capable of restricting the access of
private variables to methods of their class. The sys-
tem’s method, used to apply methods, is enhanced
with a sub-protocol which can add a set of function
bindings to the method body’s lexical environment.
The filter would have been a shorter and higher level
solution for this problem, because it does not require
modifications or additions to the underlying systems
behavior. Therefore it does not require knowledge
about the systems structure, like how the system ap-
plies methods or how lexical definitions are bound to
methods. Moreover, the filter solution can easier be
scaled, since filters may be dynamically registered
and unregistered.

4.2 Meta-Programming

From the abstraction point of view filters are
closely related to the area of meta-programming,
which was studied in the area of lisp-like languages
(e.g. [2]) or in the area of logic languages, as sketched
in this section.

The filter approach is a very general mechanism
which can be used, besides language support for de-
sign patterns, in various other application areas. We
see object-orientation and filters as an analogy to the
interpretation layer introduced by meta-programs
which are used to interpret existing programs in a
new context with additional functionality [20, 21].
In [22] the abstraction introduced by layered inter-
preters is called interpretational abstraction. The
basic idea of interpretational abstraction is to treat
program instructions of one program (source pro-
gram) as data of another program (a meta-program,
a compiler or interpreter) that reasons about the in-
structions of the source program. During this rea-
soning process new functionality can be introduced
into the source program by interpreting the goals of
the source program in a new context. Instead of al-
tering the application program (the knowledge rep-
resentation), an additional interpretation layer can

be introduced to change the behavior in certain sit-
uations. This way interpreters can be used as a pro-
gramming device. The inefficiency of the reasoning
process can be eliminated by techniques like par-
tial evaluation [8] or interpreter directed compilation
[21].

The filter approach is an introduction of meta-pro-
gramming ideas into object-orientation. Even if the
filter never accesses the real program (which a filter
in XOTcL could do through the provided introspec-
tion mechanisms), it has full and unlimited access
to the most important thing in object-oriented run-
time structures: the messages. A filter handles mes-
sages of objects as data which can be processed in
arbitrary ways (modified, redirected, handled). The
filters are able to reinterpret messages freely, the fil-
ter methods are “interpreters” for messages and can
influence all object communication.

In general the application domain of filters is very
wide. For example assertions and meta-data as pre-
sented in [24] could have been implemented using
filters. The only argument against this was, that
the implementation in C is much faster than imple-
mentation using filters, since in the current imple-
mentation they reduce execution speed. However,
it would be interesting to investigate, to what de-
gree compilation methods like these described above
could eliminate the overhead.

4.3 Other Approaches for Supporting
Design Patterns

As stated above, Soukup [30] has identified prob-
lems in the implementation of popular design pat-
terns [10] and has shown that some patterns could
be implemented as classes.

The LayOM-approach [3] is the most similar to
the filter approach. It offers an explicit represen-
tation of design patterns using an extended object-
oriented language. The approach is centered on mes-
sage exchanges as well and puts layers around the
objects which handle the incoming messages. Every
layer offers an interface for the programmer to de-
termine the behavior of the layer through a set of
operators which are (statically) given by the layer
definition. LayOM is a compiled language with a
static class concept and can be translated into C++.
The model is statically extensible with new layers.

The filter approach differs from LayOM since
it can represent design patterns as normal classes
and needs no new constructs, only regular meth-
ods. Therefore, the filter approach is closer to the

object-oriented paradigm. Furthermore, the filters
can be dynamically reconfigured (added, removed,
etc.) and are able to exploit introspection provided
by the underlying language.

The FLO-language [7] introduces a new compo-
nent “connector” that is placed between interacting
objects. The connectors are controlled through a set
of interaction rules that are realized by operators
(not normal methods). This connector-approach
also concentrates on the messages of the objects but
introduces the connectors as new entities. FLO is
open for change (using a meta-object-protocol) and
because the connectors are represented as objects it
is close to the object-oriented paradigm.

The introduced operators are not object-oriented
by nature and, therefore, less intuitive in an object-
oriented system than method invocation. The ap-
proach of FLO involves a more complicated design,
because in addition to the design patterns, connec-
tor objects have to be defined. The filter approach
can avoid this problem by the automatic registration
of filters on the involved classes.

Both mentioned approaches do not seem to offer
the same ease as the filter in specializing an abstract
pattern (like in [10]) to a concrete, more domain
specific pattern (in the sense of [30]). Where the
filters can simply use inheritance both approaches
need the definition of a new domain specific layer or
connector.

Hedin [12] presents an approach based on an at-
tribute grammar in a special comment marking the
pattern in the source code. This addresses the prob-
lem of traceability. The comments assign roles to the
classes, which constrain them by rules like “A DEC-
ORATOR must be a subclass of COMPONENT?”.
The system can test automatically (in the source
code) if the realized pattern satisfies the given and
derived constraint rules.

This approach is not based on message exchanges
(and is, therefore, rather simplistic), but it may be
applied in any object-oriented language. It is only
descriptive and not constructive (and, therefore, not
reusable); each pattern must be commented again
if it is applied to new application. The ability to
assign constraints to patterns is interesting, espe-
cially because XOTcL provides similar abilities as
well. The assertions can constrain classes (and ob-
jects) formally and informally. Both the consistency
of the pattern class and its instances can be checked
at run-time.

5 Conclusion

The intention of this paper is to show that object-
oriented scripting languages and the management
of complexity are not contradictory and that it is
possible to handle complexity with a different set of
advantages and tradeoffs than in “systems program-
ming languages”. Scripting is based upon several
principles of programming, like using dynamic typ-
ing, flexible glueing of preexisting components, using
component frameworks etc., that can lead towards
a higher productivity and software reuse. We have
introduced a new language construct, the filter, that
offers a powerful means for the management of com-
plex systems in a dynamic and introspective fashion.
It would have been substantially more difficult to im-
plement dynamic and introspective filters in a sys-
tems programming language. We believe that both
scripting and object-orientation offer extremely use-
ful concepts for a certain set of applications and that
our approach is a useful and natural way to combine
them properly.

XOTcL is available for evaluation
http://nestroy.wi-inf.uni-essen.de/xotcl/

from:

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A.
Yonezawa: Abstracting Object Interactions Us-
ing Composition Filters, ECOOP ’93, 1993.

[2] H. Abelson, G.J. Sussman, J. Sussman: Struc-
ture and Interpretation of Computer Programs,
MIT Press 1996.

[3] J. Bosch: Design Patterns as Language Con-
structs, http://bilbo.ide.hk-r.se:8080/~bosch/,
1996.

[4] J. Bosch: Design Patterns and Frameworks: On
the Issue of Language Support, Workshop on
Language Support for Design Pattern Frame-
works at ECOOP’97, Jyviaskyla 1997.

[5] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel,
S.E. Keene, G. Kiczales, D.A. Moon: Common
Lisp Object System. In: Common Lisp the Lan-
guage, 2nd Edition, http://info.cs.pub.ro/onl/
lisp/clm/node260.html, 1989.

[6] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal: Pattern-oriented Software
Architecture — A System of Patterns, J. Wiley
and Sons Ltd. 1996.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Ducasse: Message Passing Abstractions as
Elementary Bricks for Design Pattern Imple-
mentation, Workshop on Language Support
for Design Pattern Frameworks at ECOOP’97,
Jyvaskyla 1997.

A_P. Ershov: On the Essence of Compilation, in:
E. Neuhold (ed.), IFIP Working Conference on
Formal Descriptions of Programming Concepts,
North-Holland, New York 1978.

J.L. Fontain: Simple Tecl Only Object Ori-
ented Programming, http://www.mygale.org/
04/jfontain/, 1998.

E. Gamma, R. Helm, R. Johnson, J. Vlissides:
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley 1994.

L. Hatton: Does OO Sync with How We Think?,
in: IEEE Software, Vol. 15 (3), 1998.

G. Hedin: Language Support for Design Pat-
terns using Attribute FExtension, Workshop on
Language Support for Design Pattern Frame-
works at ECOOP’97, Jyvéskyld 1997.

G. Kiczales, J. des Rivieres, D.G. Bobrow: The
Art of the Metaobject Protocol, MIT Press 1991.

G.E. Krasner, S.T. Pope: A Cookbook for Us-
ing the Model-View-Controller User Interface
Paradigm in Smalltalk-80, Journal of Object
Oriented Programming, Vol. 1 (3), pp. 26-49,
1988.

M.J. McLennan: The New [incr Tcl]: Objects,
Mega- Widgets, Namespaces and More, Proceed-
ings of the Tcl/ Tk Workshop ’95, Toronto 1995.

IONA Technologies Ltd.: The Orbiz Architec-
ture, August 1993.

H. Lieberman: Using Prototypical Objects to
Implement Shared Behavior in Object Oriented
Systems, Proceedings OOPSLA ’86, 1986.

B. Meyer: Object-Oriented Software Construc-
tion - Second Edition, Prentice Hall 1997.

B. Meyer: Building bug-free O-O software:
An introduction to Design by Contract,
http:/ /eiffel.com/doc/manuals/technology/
contract /index.html, 1998.

G. Neumann: Meta-Programmierung und Pro-
log, Addison-Wesley 1988.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

G. Neumann: A simple Transformation from
Prolog-written Metalevel Interpreters into Com-
pilers and its Implementation, Lecture Notes
in Artificial Intelligence 592, Springer, Berlin
1992.

G. Neumann: Interpretational Abstraction, in:
Computers and Mathematics with Applica-
tions, Pergamon Press, Vol. 21, No. 8, 1991.

G. Neumann, S. Nusser: Wafe - An X
Toolkit Based Frontend for Application Pro-
grams in Various Programming Languages,
USENIX Winter 1993 Technical Conference,
San Diego, California, January 1993.

G. Neumann, U.Zdun: XOTcr, an Object-
Oriented Scripting Language, submitted, 1998.

J. Ousterhout: Tcl: An embeddable Command
Language, Proceedings of the 1990 Winter
USENIX Conference, 1990.

J. Ousterhout: Scripting: Higher Level Pro-
gramming for the 21st Century, in: IEEE Com-
puter, Vol. 31, No. 3, March 1998.

I. Piumarta: SSP Chains — from mobile objects
to mobile computing (Position Paper), ECOOP
Workshop on Mobility, , Aarhus 1995.

W. Pree: Design Patterns for Object-Oriented
Software Development, Addison-Wesley 1995.

J. Smith, D. Smith: Database Abstractions: Ag-
gregation and Generalization, ACM Transac-
tions on Database Systems, 2:2, June 1977.

J. Soukup: Implementing Patterns, in: J.O.
Coplien, D.C. Schmidt (Eds.), Pattern Lan-
guages of Program Design, Addison-Wesley
1995, pp 395-412, 1995.

P. Wegner: Learning the Language, in: Byte,
Vol. 14, No. 3, pp. 245-253, March 1989.

D. Wetherall, C.J. Lindblad: Extending Tcl for
Dynamic Object-Oriented Programming, Pro-
ceedings of the Tcl/Tk Workshop 95, Toronto,
July 1995.

U. Zdun: Entwicklung und Implementierung
von Ansdtzen, wie FEntwurfsmustern, Na-
menrdumen und Zusicherungen, zur Entwick-
lung von komplexen Systemen in einer ob-
jektorientierten Skriptsprache, Diplomarbeit
(diploma thesis), Universitat GH Essen, August
1998.

