
XOTcl @ Work

Gustaf Neumann Uwe Zdun
Department of Information Systems Specification of Software Systems

Vienna University of Economics University of Essen
Vienna, Austria Essen, Germany

gustaf.neumann@wu-wien.ac.at uwe.zdun@uni-essen.de

Second European Tcl/Tk User Meeting, June, 2001.

XOTcl @ Work June, 2001

What is XOTcl

◆ XOTcl = Extended Object Tcl

◆ “High-level” object-oriented programming

◆ Advanced Component Glueing

◆ XOTcl is freely available from: http://www.xotcl.org

◆ Outline:

– Scripting and object-orientation
– Programming the “basic” XOTcl Language
– Component Glueing
– XOTcl high-level language constructs
– Some provided packages

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 1

XOTcl @ Work June, 2001

Tcl-Strengths

Important Ideas in Tcl:

◆ Fast & high-quality development through component-based approach

◆ 2 levels: “System Language” and “Glue Language”

◆ Flexibility through . . .

– Dynamic extensibility,
– Read/write introspection,
– Automatic type conversion.

◆ Component-Interface through Tcl-Commands

◆ Scripting language for glueing

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 2

XOTcl @ Work June, 2001

Motivation for XOTcl

◆ Extend the Tcl-Ideas to the OO-level.

◆ Just “glueing” is not enough! Goals are . . .

– Architectural support
– Support for design patterns (e.g. adaptations, observers, facades, . . .)
– Support for composition (and decomposition)

◆ Provide flexibility rather than protection:

– Introspection for all OO concepts
– All object-class and class-class relationships are dynamically changeable
– Structural (de)-composition through Dynamic Aggregation
– Language support for high-level constructs through powerful interceptors

(Filters and Per-Object Mixins)

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 3

XOTcl @ Work June, 2001

XOTcl Overview

Tcl

Extended OTcl

dynamic aggregations
nested classes
assertions
per-object mixins
per-class mixins
filters
scripted components

Adopted from OTcl:

object and class system
multiple inheritance
method chaining
meta-classes
read/write introspection
dynamic typing

New Functionalities:

...

Other
Extensions

Tcl

Tcl

namespaces
introspection
extensibility
embeddability

dynamic type system with automatic conversion
language dynamics

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 4

XOTcl @ Work June, 2001

XOTcl is similar Tcl

◆ XOTcl is dynamic:

– Definitions of objects and classes can be extended and modified at runtime
– Classes and objects can be dynamically destroyed
– All relationships between object and classes are fully dynamic

◆ XOTcl is fully introspectible with info methods

◆ Syntax similar to Tcl

◆ Objects and classes are Tcl commands

◆ Objects and classes “live” in a Tcl namespace

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 5

XOTcl @ Work June, 2001

Example: Soccer Team

Schalkename

Gelsenkirchenlocation

Operations:
new player
transfer player

Emile Mpenzaname

Forwardrole

◆ Soccer team abstraction:

– Has members (players)
– Has properties (name, location, type)
– Players can be added and transfered
– Each player has properties (name, player role)

◆ Similar abstractions in many “real-world” applications

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 6

XOTcl @ Work June, 2001

Soccer Team In Ordinary Tcl

set teams($teamid-name) "Schalke"
set teams($teamid-location) "Gelsenkirchen"
set teams($teamid-playerids) {}

set $id-players($playerid-name) "Emile Mpenza"
...

proc newPlayer {teamid name} {
global teams $teamid-players
...
return $playerid

}

;# Associative array for teams

;# Player array for each team

;# Procedure
;# Import global structure
;# Work on global structure

Problems: Missing data encapsulation, global data, name collision, no bundled
behavior/data, no specialization/generalization, central modification is hard to achieve,
. . .

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 7

XOTcl @ Work June, 2001

Object-Oriented Solution

◆ Initial Design: Soccer team aggregates players.

◆ Used Concepts:

– Classes abstract over soccer team and player
– Instance variables
– Instance methods
– 1-to-many relationship
– (Dynamic) object aggregation

SoccerTeam Player

newPlayer
transferPlayer
...

location
name
...

name
playerRole
...

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 8

XOTcl @ Work June, 2001

Objects in XOTcl

◆ Each created object has Object as class or superclass. Methods on Object
are usable for all objects

◆ Each object can have object-specific variable slots and methods (procs)

◆ Variables and methods are stored in the object’s namespace

◆ Each object has a class

player1

instance-of

Object

init
destroy
set
instvar . . .

print()

name

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 9

XOTcl @ Work June, 2001

Creation and Definition of Objects

Object player1

player1 set name "Emile Mpenza"

player1 proc print {} {
[self] instvar name
puts "Name: $name"

}

player1 print

player1 destroy

;# Object definition

;# Set instance variable

;# Print procedure for name
;# Get var into proc scope
;# Print name to stdout

;# Call ‘‘print’’

;# And delete player object

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 10

XOTcl @ Work June, 2001

Objects versus Classes

◆ Instances (objects) can be derived from a class

◆ A class describes the intrinsic type of an object:

– Common data slots
– Instance methods (instprocs)
– . . .

◆ Classes in XOTcl “know” about their instances and vice versa (introspection)

◆ Classes in XOTcl have all object abilities plus class abilities:

– Deriving objects
– Instance method definition
– Inheritance
– . . .

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 11

XOTcl @ Work June, 2001

Class Instances

Object

Player

name
playerRole

print()

Team

player1

instance-of

player2

player3

player4

team1

team2

instance-of

Classes

is-instance-of
relationship

Objects

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 12

XOTcl @ Work June, 2001

Class Definition and Instance Methods on Classes

Class Player -parameter {
name
{playerRole NONE}

}
Player instproc print {} {
[self] instvar name playerRole
puts "Name: $name"
puts "Player Role: $playerRole"

}

Player emile -name "Emile Mpenza" \
-playerRole Forward

emile print

;# Class definition

;# Print instance method

;# Definition of a player object

;# Calling print operation

Stepwise refinement of class definition, syntax & conventions similar to Tcl

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 13

XOTcl @ Work June, 2001

Object Construction/Destruction

◆ Constructor – Special instance method init:

Player instproc init args {
perform initializations

}
Player p -name "My Name"

create default values initalloc "-" init methods

◆ Destructor – Special instance method destroy:

Player instproc destroy args {
perform destruction

}
p destroy

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 14

XOTcl @ Work June, 2001

Introspection

◆ In XOTcl every language is introspective and dynamic ⇒ Similar to Tcl.

◆ Using the info instance method.

◆ Example – Reading instproc definition:
Player info instbody print

◆ Example – List of instances:
Player info instances

◆ Object- vs. class-specific introspection options. Example – Obtaining an
object’s class:
player1 info class

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 15

XOTcl @ Work June, 2001

Callstack Information

◆ Retrieve information that is dynamically created on the callstack:

self current object name
self class current class name
self proc current proc/instproc name
self callingobject calling class name
self callingclass calling object name
self callingproc calling proc/instproc name
.

◆ Example – Discriminating on calling object type:

Player instproc reactOnPlayer {} {
set co [self callingobject]
if {[$co istype Player]} {...}
...

}

example instproc
get calling object
type => player-specific behavior
else: default behavior

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 16

XOTcl @ Work June, 2001

Inheritance

◆ Defining a class hierarchy with “is-a” relationships

◆ Generalization/specialization ⇒ Reusing class definitions

ClubMember

name

Player

playerRole

TrainerPresident

Class ClubMember -parameter {name}
Class Player -superclass ClubMember -parameter {{playerRole NONE}}
Class Trainer -superclass ClubMember
Class President -superclass ClubMember

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 17

XOTcl @ Work June, 2001

Multiple Inheritance

◆ Multiple Inheritance =
one class has more than
one superclass

◆ Directed Acyclic Graph

→ Linearization with
Method Chaining

ClubMember

name

Player

playerRole

TrainerPresident

PlayerTrainer

Class PlayerTrainer -superclass {Player Trainer}

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 18

XOTcl @ Work June, 2001

Method Overloading and Next Path

◆ Each method call is performed on an object

◆ If the method is not defined on the object, then the class and its superclasses
are searched

◆ If the method is found it may contain a next call.

◆ Then the “next” method on the class graph is searched and mixed into the
current method

◆ “next” determines if, at which position, and with which arguments the next
method is called

◆ Per default, “next” calls with the same arguments

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 19

XOTcl @ Work June, 2001

Method Chaining: Extending Print Operation

Class ClubMember -parameter {name}
ClubMember instproc print {} {
[self] instvar name
puts "Name: $name"
next

}
Class Player -superclass ClubMember \
-parameter {{playerRole NONE}}

Player instproc print {} {
[self] instvar playerRole
puts "Player Role: $playerRole"
next

}

;# Class definition
;# Default print operation

;# Print ‘‘name’’

;# Subclass definition

;# Extended print operation

;# Print player role
;# Call superclass implementation

Composability: next functions without naming the targeted superclass.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 20

XOTcl @ Work June, 2001

Method Chaining: Next Path for Player Trainer

Player

playerRole

TrainerPresident

PlayerTrainer

Object

next

next next

next

ClubMember

name

Class-Path Linearization: Each class is visited once. Unambigous precedence order.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 21

XOTcl @ Work June, 2001

XOTcl Class and Object System

Object

instance-of

instance-of

Class

Common Root Class

instance-of

Meta-Classes

Classes

Objects

...

...

instance-of

...

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 22

XOTcl @ Work June, 2001

Dynamic Re-Classing

◆ Dynamic classes and superclasses ⇒ Modeling life-cycle of objects.

◆ Example – Player becomes president:

Player p -name "Franz Beckenbauer" \
-playerRole PLAYER

...
$fb class President

;# Create player

;# Life-cycle induces change
;# Reclassing to President

◆ Redefining class behavior may imply modifications → specializing class:

Player instproc class args {
[self] unset playerRole
next

}

;# Specializing class operation
;# Delete player role property
;# Call Object->class

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 23

XOTcl @ Work June, 2001

Dynamic Object Aggregation

◆ Dynamic object aggregation: An object system supports dynamic
aggregation iff arbitrary objects may be aggregated or disaggregated at
arbitrary times during execution.

Class Stadium
Class SoccerTeam
SoccerTeam instproc init args {
Stadium [self]::homeStadium
next

}
SoccerTeam bayern
President bayern::president \
-name "Franz Beckenbauer"

bayern::president destroy

;# Class for stadium
;# Soccer team class
;# Constructor
;# Automatically aggregate stadium

;# New team instantiation
;# Aggregate president

;# President leaves club -> disaggregate

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 24

XOTcl @ Work June, 2001

Object Aggregation – Examples

Aggregate with autoname:

SoccerTeam instproc newPlayer args {
eval Player [self]::[[self] autoname player%02d] $args

}

Iterate over children:

SoccerTeam instproc printMembers {} {
puts "Members of [[self] name]:"
foreach m [[self] info children] {puts " [$m name]"}

}

Retrieving club name from parent:

ClubMember instproc getClubName {} {
return [[[self] info parent] name]

}

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 25

XOTcl @ Work June, 2001

Object Aggregation – Life-Cycle Issues

◆ Object creation: Every object is created with an identifier that is unique
in the scope where it was created

◆ Object hierarchy restructuring: A copy/move/delete operation works on
the subtree of the object hierarchy starting with the named object

SoccerTeam instproc transferPlayer {playername destinationTeam} {
foreach player [[self] info children] {
if {[$player istype Player] && [$player name] == $playername} {
$player move [set destinationTeam]::[$destinationTeam autoname player%02d]

}
}

}

◆ Object aggregation implies that the whole has responsibility of the life-time
of the parts

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 26

XOTcl @ Work June, 2001

Dynamic Component Loading in XOTcl

◆ Component in XOTcl:

– Any assembly of several structures, like objects, classes, procedures, functions,
etc.

– Granularity: self-contained entity, i.e. subsystem or substantial part of a
subsystem

◆ Component has to declare its name and optional version information with:
package provide componentName ?version?

◆ Component can be loaded with:
package require componentName ?version?

◆ Automatic component indexing, tracking, and tracing

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 27

XOTcl @ Work June, 2001

Component Wrapping

XOTcl

Component Wrappers

C++
Component

Relational
DBMS

...

...

C
Component

DBMS
Wrapper

Implementation
Objects

XOTcl
Component

Export Interface

... ...Component

... Component

Component Wrapper : White-box placeholder for (multi-paradigm) components →
Place for central adaptations, decorations, etc.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 28

XOTcl @ Work June, 2001

Wrapping a C Component with Explicit Export/Import

Component
Wrapper

C Library

cFunction1

cFunction2

cFunction3
...

tclCommand1

tclCommand2
...

C Part

xotclMethod1

xotclMethod2
...

C-Tcl Wrapper

Basic Component
Functionality

Export Import Component Client
(Usage)

Implementation
Objects

xotclMethodX

xotclMethodY
...

XOTcl Part
A

d
ap

tatio
n

In
terface D

efin
itio

n

E
xp

o
rt/Im

p
o

rt C
o

n
fig

u
ratio

n

◆ Many different component wrapping schemes: Wrapper Facade, Proxy, . . .

◆ Different configurations: Tcl C Wrapper, XOTcl C Wrapper, . . .

◆ Three-Level Component Configuration: Make export and import explicit,
first-class objects

→ Dynamic, runtime replaceability

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 29

XOTcl @ Work June, 2001

Problems of a Pure Class-Based Implementation

◆ Transparency – The client should not rely on concrete implementation details.

◆ Decoration/Adaptation:

– Concerns that cross-cut the component wrapper hierarchy,
– Object-specific component wrapper extensions or adaptations.

◆ Coupling of Component and Wrapper

– Should appear as one runtime entity,
– But: Should be decomposed in the implementation.

◆ Component Loading – Dynamical and Traceable

⇒ Interception Techniques for Flexible Component Wrapping

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 30

XOTcl @ Work June, 2001

Per-Object Mixins for Object-Specific Extensions

A per-object mixin is a class which is mixed into the precedence order of
an object in front of the precedence order implied by the class hierarchy.

◆ Model behavioral extension for individual
objects (Decorator).

◆ Model Adapter for individual objects.

◆ Handle orthogonal aspects not only
through multiple inheritance.

◆ Intrinsic vs. extrinsic behavior,
similar to roles.

method
invocation

next

instance-of

next

. . .

per-object
mixin

ClubMember

PresidentPlayerSinger

player

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 31

XOTcl @ Work June, 2001

Example Code for Per-Object Mixins

Player bayern::franz \
-name "Franz Beckenbauer"

Class Singer
Singer instproc sing text {

puts "[[self] name] sings: $text, lala."
}

bayern::franz mixin Singer

bayern::franz sing "lali"

bayern::franz mixin {}

;# Player object

;# Define the singer class
;# Singing method

;# Register class as per-object mixin

;# Perform singing

;# Better stop it

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 32

XOTcl @ Work June, 2001

Per-Class Mixins

A per-class mixin is a class which is mixed into the precedence order of the instances
of a class and all its subclasses.

Example – Observing the player transfer operation:

Class TransferObserver
TransferObserver instproc transferPlayer \
{pname team} {
puts "Player ’$pname’ is transfered."
puts "Destination Team ’[$team name]’"
[self] set transfers($pname) $team
next

}

SoccerTeam instmixin TransferObserver

bayernMunich transferPlayer \
"Giovanne Elber" chelsea

;# Class definition
;# Transfer observer method

;# Per-class mixin registration

;# Example transfer

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 33

XOTcl @ Work June, 2001

Architectural Constraints

◆ Restrict dynamic classes of sub-hierarchy to be static.

◆ Requests are split objects with C++ objects ⇒ Dynamic classing is
impossible.

Class RestrictToSubClassOfRequest
RestrictToSubClassOfRequest instproc class args {
set cl [[self] info class]
next
if {![[self] istype Request]} {
[self] class $cl

}
}
Request instmixin RestrictToSubClassOfRequest

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 34

XOTcl @ Work June, 2001

Filters for Cross-Cutting Concerns

A filter is a special instance method registered for a class C. Every time an object of
class C receives a message, the filter is invoked automatically.

→ Aspects that cross-cut several classes in a hierarchy.

ClubMember

Player President

Traced
meta-
class

compositeFilter ()

traceFilter

Traced Component

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 35

XOTcl @ Work June, 2001

Example: Trace Filter Definition

package provide xotcl::Traced 0.8
...
Class Traced -superclass Class
Traced instproc traceFilter args {
set r [self calledproc]
if {[[self regclass] exists operations($r)]} {
puts stderr "CALL [self]->$r"

}
return [next]

}
Traced instproc init args {
[self] array set operations {}
next
[self] filterappend Traced::compositeFilter

}

;# Define component

;# Meta-class definition
;# Trace filter method
;# Get callstack info
;# Check for registered operation
;# Print to stderr

;# Perform target operation

;# Meta-class constructor

;# Register filter

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 36

XOTcl @ Work June, 2001

Example: Traced Filter Usage

package require xotcl::Traced
...
Traced ClubMember \
-addOperations {name ...}

Class Player -superclass ClubMember
Class President -superclass ClubMember

;# Load component dynamically

;# Define traced class
;# Add traced operations

;# Define different subclasses
;# => They are also traced now

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 37

XOTcl @ Work June, 2001

Self-Documentation

◆ XOTcl contains self-documentation/metadata facility with @

◆ Components:

– Static metadata analysis,
– Dynamic metadata analysis,
– HTML generation.

◆ Syntax similar to definition of described constructs.

◆ Flexibly extensible with new tokens and properties.

◆ Per-default: not interpreted ⇒ no memory/performance wasted, if runtime
metadata is not required.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 38

XOTcl @ Work June, 2001

Self-Documentation Examples

◆ Example – Describing a class:

@ Class SoccerTeam {
description {A soccer team class.}

}

◆ Example – Describing a method:

@ SoccerTeam instproc transferPlayer {
player "name of the player to transfer"
team "destination team"

} {
Description {
Move player object into destination team.

}
return "empty string"

}

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 39

XOTcl @ Work June, 2001

XOTcl Component Library & Application

◆ XOTcl contains rich component library:

– Object persistence
– XML parser and interpreter framework
– RDF parser and interpreter framework
– HTTP Server
– Client-side of various web protocols (HTTP, FTP, LDAP, ...)
– ActiWeb: Active Web Objects and Mobile Code
– Reusable pattern implementations
– . . .

◆ Example Applications

◆ Regression Test Suite

◆ Documentation (Tutorial, Language Reference, Papers, Articles, etc.)

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 40

XOTcl @ Work June, 2001

How to get involved

◆ Download XOTcl from http://www.xotcl.org

– Source Distribution
– Linux Binaries & RPMs (Red Hat, Debian)
– Windows Binaries

◆ Mailing List with Archives at:
http://wi.wu-wien.ac.at/mailman/listinfo/xotcl

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 41

