Design and Implemen tation of a Flexible RBAC-Service in
an Object-Oriented Scripting Language

Gustaf Neumann
gustaf.neumann@wu-wien.ac.at

Mark Strembeck
mark.strembeck@wu-wien.ac.at

Department of Information Systems, New Media
Vienna University of Economics and BA
Austria

ABSTRACT

In this paper we present the design and implementation of
the XoRBAC component that provides a flexible RBAC ser-
vice. The xoRBAC implementation conforms to level 4a
of the unified NIST model for RBAC and can be reused
for arbitrary applications on Unix or Windows with a C or
Tcl linkage. xORBAC runtime elements can be serialized
and recreated from RDF data models conforming to a well-
defined RDF schema. Furthermore we present our experi-
ences with xoRBAC for the deployment within the HTTP
environment for a web-based mobile code system.

Keywords

Role-Based Access Control, Web-Applications, Mobile
Code, Object-Orientation, Scripting Language, XO'T'cl

1. INTRODUCTION

Distributed and/or web-based applications often require
the enforcement of complex access control policies. We
developed the xORBAC component especially for web-
applications, where a reusable access control component
with flexible and customizable access control policies is
needed. We tested xoRBAC even for applications that make
use of mobile code.

Discretionary access control (DAC) is sometimes criticized
as conceding too many liberties to the rights manager while
mandatory access control (MAC) commonly is regarded as
being too restrictive for most applications [27]. Role-Based
Access Control (RBAC) [9, 29, 30] offers a promising alter-
native and has become very popular in both research and
industry. The ACM workshop series on RBAC and its suc-
cessor the Symposium on Access Control Models and Tech-
nologies as well as recent journal publications (e.g. [3, 8,
13]) show the constant interest in this topic. One of the
advantages of RBAC is being “policy-neutral”. This means
that a sophisticated RBAC-service may be configured to en-

Permissionto make digital or hard copiesof all or part of this work for
personalor classoom useis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citation onthefirst page.To copy otherwiseo
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

CCS 01, November5-8,2001,PhiladelphiaPennsylania,USA.
Copyright 2001ACM 1-58113385-5/01/0011..$5.00.

force many different access control policies including DAC-
or MAC-based policies (see [21]).

x0RBAC provides an RBAC service that conforms to level
4a of the NIST model for RBAC and can be reused on Unix
and Windows systems within applications providing C or
T'cl linkage. XoRBAC is well suited to be used within a com-
ponent framework. Component frameworks [23, 31] consist
of reusable components that can be glued together with ap-
plication specific semantics to form arbitrary applications.

The xoRBAC component is implemented with XOTel [19]
which offers a dynamic programming environment for rapid
application development. XOTecl itself is a Tcl [22] com-
pliant component written in C. Supplementary XOTcl and
C components exist that support the development of dis-
tributed (esp. web-based) applications [20]. In this paper we
present the design and implementation of the XoRBAC com-
ponent and our experiences with the deployment of xoRBAC
within a web-based mobile code system.

1.1 The Notion of Roles

In the domain of computer science researchers of different
areas, like object-oriented software construction, database
systems or security, often refer to a conceptual entity called
“role” to express or model certain phenomenons. Unfor-
tunately no common agreement between these areas exists
concerning an exact definition of the semantics of roles that
covers all of its usages.

For example, in entity relationship models each end of
a relationship corresponds to a “role”. In object-oriented
development “roles” are used in the modeling and in im-
plementation. In OO-modeling the “roles” are either used
explicitly [12, 14] or they are expressed through classes. In
the implementation objects can play certain “roles”, e.g. in
patterns like Observer or Facade [10]. In RBAC “roles” are
means for carrying permissions to ease the administration
of access rights.

In general roles are a well-known and accepted concept for
the modeling of dynamically changing responsibilities and
capabilities of objects that represent real-world entities or
system-internal entities. A role can enrich the behavioral
capabilities and/or the knowledge of the entity it is assigned
to. Thus the modeling of roles received much attention in
both research and industry (e.g. [14, 25, 26]).

In this paper we are concerned with roles in the context
of Role-Based Access Control (RBAC) and object-oriented
development. We present an approach to implement RBAC-
roles based on dynamic object-oriented language constructs.

1.2 Role-BasedAccessControl

In the context of RBAC, roles are used to model different
job-positions and scopes of duty within a particular organi-
zation and/or within an information system. These roles are
equipped with the permissions that are needed to perform
their respective tasks. Users and/or other “active” entities
are assigned to roles according to their field of activity.

Within an organization the descriptions of roles tend to
change significantly slower than the assignment of individu-
als to these roles. Establishing roles as an abstraction mech-
anism for users facilitates the administration of access rights
and thus the administration of the access control policy [29].
The actual access control policy is determined by the con-
figuration of the different elements of the RBAC-service.

In [29] a family of RBAC models is introduced. The cen-
tral concepts are users, roles and permissions. The models
of this family range from RBAC, (Base Model) to RBACj3
(Consolidated Model), where RBACj3 combines the charac-
teristics of the other models. Recently Sandhu et al. [30]
proposed the NIST model for RBAC. It is intended to serve
as a foundation for the development of a “unified” RBAC
standard. Among other things the NIST model bypasses the
distinction between roles and groups (as discussed in [28] for
instance) by recognizing a sophisticated group-based access
control mechanism as the first level of RBAC. For the time
being the NIST model distinguishes four levels of RBAC:

e Flat RBAC: comprises the base concepts of RBAC,
namely roles, users and permissions. User-role assign-
ment and permission-role assignment are defined as
many-to-many relations. Furthermore it requires that
users are allowed to activate multiple roles simultane-
ously and that functions for user-role review exist.

e Hierarchical RBAC: embodies all features of flat
RBAC and additionally demands the ability to define
partially ordered role hierarchies.

e Constrained RBAC: must provide the functionality to
enforce separation of duties (SOD) policies. However,
it does not prescribe the exact form of SOD that has
to be provided, i.e. both static and/or dynamic SOD
are allowed.

o Symmetric RBAC: demands the ability to perform
permission-role reviews, even (or especially) in dis-
tributed systems.

Hierarchical RBAC, constrained RBAC and symmetric
RBAC are subdivided in two parts “a” and “b” for the sup-
port of arbitrary or limited role-hierarchies respectively. In
[30] two alternative interpretations of the NIST model are
introduced that differ with respect to the ordering of the
different RBAC levels. The first alternative imposes a strict
sequential order of the four levels, while the second treats
flat and hierarchical RBAC as an ordered sequence and con-
siders constrained and symmetric RBAC as independent and
unordered. In appendix A of [30] the second alternative is
regarded as the more flexible and preferred approach.

1.3 Approachand Paper Structure

In this paper we present the design and implementation of
an RBAC-service called xoRBAC. In order to simplify the
implementation of xoRBAC we used a few language sup-
ported constructs of XOTcl that were originally designed

for the support of design patterns [10]. These constructs are
per-object mixins (POMs) and dynamic object aggregation:

e Per-object mixins [17] can extend certain objects dy-
namically with additional behavior or functionality.

e Dynamic object aggregation [18] enables the dynamic
aggregation and disaggregation of objects at runtime.

Certainly the language constructs can be emulated in
other languages as well (e.g. traits in SELF [2] are quite
similar to POMs) and the design presented in this paper
can be used for implementations in other languages too.

Figure 1 depicts the conceptual structure of the xoRBAC
component. Permissions, roles and users (or subjects in gen-
eral) are the basic elements of xoRBAC. The user manage-
ment provides a means to manage the subjects, i.e. the enti-
ties that may actively initiate an operation. The constraint
management of XoRBAC is based on the permissions and
roles components and enables the definition of static sepa-
ration of duties constraints. The role hierarchy management
uses the constraint management to prevent the creation of
role hierarchies that are disallowed by the constraint defi-
nitions. The rights management includes the decision com-
ponent and components for permission/role and user/role
assignment. xoRBAC is associated with a metadata service
that captures logging and audit information and enables the
serialization (and recreation) of xoRBAC runtime instances.

Rights Management

Decision Component Perm./Role Assignment User/Role Assignment

ovayox

Constraint Management

Permissions | Roles | Users / Subjects

Metadata Service Authentication Service

Figure 1: xoRBAC component: conceptual structure

To reach an authorization decision for a particular access
request, the decision component of xoRBAC expects the fol-
lowing information as parameters: the ID of an authenti-
cated subject, i.e. the user or user-agent who requests an
access, the operation to be performed and the name of the
object that is the target of the operation. This results in an
“subject, operation, object” triple.

A prerequisite for an efficient access control service is the
existence of an efficient authentication service. The selec-
tion of an authentication mechanism highly depends on the
existing infrastructure. Therefore the xoRBAC component
presented in this paper does not demand on a particular au-
thentication mechanism. It simply requires that some means
exists to authenticate the users and/or user-agents within
the system, i.e. XORBAC can be connected with arbitrary
authentication services. It is feasible to use a weak mech-
anism like HTTP-Basic-Authentication (see RFC 2617) as
well as a sophisticated authentication mechanism based on
X.509 certificates.

With respect to the categories defined in [30] the current
implementation of xoRBAC provides symmetric RBAC with
static separation of duties (Level 4a). In particular xoRBAC
currently provides the following main features:

e many-to-many user-role and permission-role assign-
ment (and revocation).

e user-role review and permission-role review.

e definition of arbitrary role-hierarchies (permission-
inheritance interpretation / inheritance hierarchies)

e definition of static SOD (SSD) constraints for both
roles and permissions.

e defintion of maximum and minimum cardinalities for
both roles and permissions.

xORBAC offers the functionality for user/role assignment,
and permission/role assignment. Furthermore xoRBAC ad-
ditionally offers the ability to assign permissions directly to
certain users/subjects. We feel that this is a sensible feature
which allows even more flexibility when defining an access
control policy. It can express situations where a certain indi-
vidual should be granted temporary access rights in addition
to the role(s) he occupies (without defining an extra role).

XORBAC enables the simultaneous activation of multi-
ple roles for every user known to a particular instance of
XxORBAC. Every xoRBAC instance does, however, allow ex-
actly one active role-set for each user at a time.

The following sections are structured as follows. In Sec-
tion 2 we give a brief introduction for the XOTcl language
to ease the understanding of the design and the implemen-
tation of the XoRBAC component presented in Section 3 and
Section 4. Afterwards we present the RDF-based serializa-
tion of RBAC definitions and discuss our experiences with
the deployment of xoRBAC for web-based applications. Sec-
tion 7 gives an overview of related work before we conclude
the paper and give an outlook on future activities.

2. THE XOTCL LANGUAGE

XOTcl (eXtended Object Tcl) [19], is a general purpose
object oriented scripting language that can be dynamically
loaded into every Tcl compatible environment such as tclsh
or wish and is embedable in C programs. As a Tcl exten-
sion, all Tcl commands [22] are directly accessible in XOTcl.
XOTecl is based on the object system of OTecl [34] and sup-
ports meta-classes [19, 34]. XO7Tcl preserves the flexibility
of Tcl and adds new language constructs to provide a highly
flexible OO programming environment. The new language
constructs are: filters, per-object-mixins, per-class mixins,
nested classes, dynamic object aggregation and assertions.

In XOTecl all language constructs can be applied in a dy-
namic fashion. This means that every aspect of a program
can be adapted at runtime. It is possible for instance to
define new classes at runtime and to insert them into an
existing class hierarchy, or to define arbitrary new meth-
ods on existing classes. Furthermore XOTcl offers a rich
introspection mechanism which allows to inquire nearly all
characteristics of XOT'cl objects and classes at runtime [19].

XOTecl supports simple and multiple inheritance.
Through the superclass-relation classes are arranged in a di-
rected acyclic graph. XOTcl defines a linearized precedence
order for class and mixin hierarchies along an unambigu-
ous “next-path” (modeled after CLOS [6]) to avoid poten-
tial conflicts during the name resolution. XOTcl is publicly
available from [35].

As already mentioned we used POMs and the dynamic ob-
ject aggregation mechanism to simplify the implementation
of XoRBAC.

In XOTecl every object represents its own namespace
which may contain other objects. Objects can be aggregated
dynamically by an other object at runtime. An aggregation
constitutes a part-of-relationship between the corresponding
objects. All operations on aggregations are deep operations
which affect the corresponding object and all its aggregates.
For a more detailed description of the dynamic object ag-
gregation mechanism of XO7Tcl see [18].

A Per-Object Mixin (POM) is a class which is inserted at
the beginning of the precedence order of a particular object.
In other words, POMs are inserted in front of the precedence
order induced by the class-hierarchy from which the object
was instantiated (see Figure 2). Thus POMs are a means
to extend every single object with additional behavior or
capabilities dynamically at runtime.

The same class could be mixed into the precedence order
of multiple objects at the same time. Likewise every object
could be associated with any number of POMs simultane-
ously. If the functionality of a POM is no longer needed, the
respective POM can be deleted from the precedence order
of this particular object. However, the mixin class is not
destroyed, it can still be defined as POM for other objects
or serve as abstract type for the instantiation of objects.

Object

next

next.

next. ‘

Mix1 Mix2 A
ml ml ml
v A m2

~ /

!
S - per-object-mixin J/
per-object-rpnxm ! instance-of

N p
Ny ,
AN / method
next) !
invocation
(of m1)

Figure 2: Next-Path with per-object mixins

Figure 2 depicts the classes Mix1 and Mix2 which are reg-
istered as POMs for the object a which is an instance of
the class A. Through the next-path each method call to a
is at first directed to the classes Mix1 and Mix2 prior to in-
voking the method in the original class (A). This feature is
called method combination or method chaining [19]. Method
chaining is performed along the next-path and without ex-
plicit naming the class containing the method. Method
chaining is a requirement for dynamic class structures.

Now we give a short example to illustrate the definition
and usage of POMs.

First we define the class A with two methods m1 and m2
which simply print the actual class identifier by using the
puts command and then pass the call to the successor in
the precedence order (next) - inheritable methods are de-
fined with instproc in XOTcl. Afterwards the classes Mix1
and Mix2 are defined. For each of them an instproc ml is
defined. Finally an instance a of class A is created and the
classes Mix1 and Mix2 are registered as mixin classes for
the object a. Note that POMs are always registered for
individual objects (instances).

Class A
A instproc ml {} {puts "::A"; next}
A instproc m2 {} {puts "::A"; next}

Class Mix1
Mix1l instproc ml {} {puts "::Mix1"; next}

Class Mix2
Mix2 instproc ml {} {next; puts "::Mix2"}

A a -mixin {Mix1 Mix2}

The method m1 defined in Mix2 first passes the call to the
next successor in the precedence order. This means that
after the corresponding methods of all successors have been
executed the call returns to m1 of Mix2 and prints its class
identifier. Therefore the call ”a m1” results in the following
output:

::Mix1

1A

1 :Mix2

Whereas the call 7a m2” simply results in the output of
”::A” since none of the mixin classes defines a method with
the name m2.

Here we demonstrated the mixin of independent classes
only. Though XOTcl enables to register whole class-
hierarchies as POMs. The procedure to achieve this is
quite simple. One can register a class which is part of a
class-hierarchy (i.e. has several superclasses) as mixin for
an object. The object is thereby extended with the abil-
ities offered by any class included in the class hierarchy.
Note that one may also register classes from different class-
hierarchies simultaneously as POMs for the same object. In
other words: it is possible to mixin multiple class hierar-
chies. For a more detailed description of POMs see [16, 17].

3. XORBAC: DESIGN DECISIONS

The xoRBAC component consists of five classes:
RoleManager, Role, Permission, User and Audit. The es-
sential design level relations between these classes are de-
picted in Figure 3.

Since roles should be independent from the user-objects
to which they could be assigned, we suggest to define asso-
ciation relationships between actual Role objects and User
objects rather than inheritance relationships. Moreover we
think that it should be possible to manipulate each runtime
object of an RBAC service (roles, permissions, etc.) indi-
vidually to achieve an extensive flexibility. Therefore Role
objects in xoRBAC do not inherit attributes and/or behav-
ior from a common “User” superclass. In xoRBAC instances
of Role are allowed to have many-to-many association-
relations to instances of the Permission and User classes.
As already mentioned, User and Permission objects may
be also directly associated with each other.

In xoRBAC permissions are always positive, i.e. a permis-
sion always grants a certain access right and does not deny
it. The abstraction level on which permissions are defined
highly depends on the actual application context and on the
access control policy that should be realized. xoRBAC does
not constrain the granularity of permissions, i.e. the permis-
sions may be coarse- as well as fine-grained. Thereby the
respective engineer is free to define permissions for primi-
tive operations like “read” or “write” as well as for abstract
operations like “transfer-money” for instance.

The essence of access control is to decide if a certain sub-
ject (active component, initiator) is allowed to perform a
certain operation on a certain object (passive component,
target). Simplified: in XoRBAC permissions are “operation
object” pairs and subjects are represented by User objects.
The access control function grantAccess decides whether
a particular access could be authorized by inspecting the
roles (and permissions) of the User object under consider-
ation. XoRBAC does not impose a restriction that subjects
need to be real-life persons (of course). Instead xoRBAC al-
lows to register different kinds of subjects as “users” (User
objects), e.g. long-running programs, like mobile-agents.

The revocation semantic of xoORBAC designates that all
revocation operations immediately come into effect. This
means, for example, that a role may be revoked from a User
object even if the corresponding real-life person has cur-
rently activated this particular role. The same is true for the
revocation of permissions from roles and/or users. Moreover
the revocation of a senior-role r; also includes the revocation
of all junior-roles of r;. We chose this semantic since changes
of the access control policy should, in our opinion, be dis-
tributed without delay to avoid inconsistencies and possibly
resulting security violations.

Decorator

7 77 RoleManager Facage l
XxoRBAC Component

| T]Observer |
| Audit |
I

| Permission User :
| T Decorator Role Decorator T ? |
{ |

Figure 3: The xoRBAC component: class relations

Every instance of XoRBAC contains exactly one
RoleManager object. This object aggregates all instances
of User, Role and Permission, and manages their relations
and interactions. The RoleManager object therefore hides
the internal structure of the xoRBAC component. In order
to use the xoRBAC-service other components and subsys-
tems thus need to access the API offered by the RoleManager
class. Therefore Figure 3 depicts the RoleManager class as
the external interface of xoRBAC. The RoleManager object
serves as facade (see [10]) for the other xoORBAC objects.

At runtime the RoleManager controls its aggregated ob-
jects and enforces the integrity rules and constrains, e.g.
cardinality- and SSD-constraints on roles and/or permis-
sions. Within the same RoleManager instance the names
of Role, Permission and User objects must be unique.

Every Role and Permission object “knows” the roles or
permissions it is mutually exclusive to, and its maximum
and minimum cardinality (if defined). When assigning a role
to a user the RoleManager checks whether the new role is
mutual exclusive to one of the Role objects that are already
associated with the corresponding User object. A similar
check is performed when a permission is assigned to a role.
XORBAC supports the definition of maximum cardinalities
> 0 and minimum cardinalities > 1. A maximum cardinality
of 0 is sensible for the definition of private roles [29]. The
RoleManager prevents violations of cardinality constraints

and issues predefined error messages if the performance of a
(otherwise regular) method-call would do so.

Situations may occur where the maximum and the min-
imum cardinality for a particular role (or permission) are
equal. Thence xoRBAC offers so called safeReplace meth-
ods for both roles and permissions that enable to replace a
role (or permission) owner without violating the cardinality
constraints.

The RoleManager class realizes the role-hierarchy man-
agement and the user management functionality depicted in
Figure 1. While the rights management and the constraint
management are distributed among the RoleManager, Role,
Permission and User classes.

Every instance of RoleManager is associated with ex-
actly one Audit object. The corresponding Audit object
acts as observer (see [10]) for this particular instance of
RoleManager. The Audit object records all API calls that
cause changes of the RoleManager object itself or one of its
aggregated objects. The information recorded by the Audit
object ease the analysis of irregularities like policy violations
for example.

4. XORBAC: IMPLEMENT ATION ISSUES

Figure 4 depicts a RoleManager object at runtime, it
shows the dynamic object aggregation of the User, Role
and Permission instances and their encapsulation within a
corresponding namespace. To assign a certain permission
to a particular role (or user) the respective Permission in-
stance is registered as POM for the corresponding Role (or
User) instance. Analogously a role is assigned to a user by
registering the Role object as POM for a User object (Fig-
ure 4). Therefore the Permission objects act as decorators
(see [10]) for the Role and User objects. Equally, the Role
instances act as decorators for User objects. For the sake of
distinctness Figure 4 exemplary shows the assignment rela-
tions only for one role and two permissions.

users roles permissions

(Ea
Bob A POST_Document
- [secretary | [AssistantProfessor_|
‘ ‘ ‘ ‘ DELETE_Document
1
), perobicton
m | ey 7 . ‘ PUT_Document

Figure 4: A RoleManager object at runtime

The usage of POMs for user-role and permission-role as-
signment provides a clear separation between users, roles
and permissions. Besides, it eases the tasks of assign-
ment and revocation on the programming level since one
only needs to register or deregister the respective Role or
Permission instance as POM.

In xoRBAC the classes Role and Permission (see Figure
3) are defined as meta-classes. In essence, there were three
main reasons that led to this design:

1. Instances of meta-classes are “ordinary” classes which
are allowed to be part of a class-hierarchy (an inheri-
tance relation). Since Role is a meta-class its instances
may thus be arranged within a class-hierarchy. We
utilize this feature to define role-hierarchies in a nat-
ural way as XOTcl class-hierarchies. In other words:
role-hierarchies in xoRBAC are class-hierarchies (di-
rected acyclic graphs) which may, in principle, consist
of an arbitrary number of Role instances. Defining
role-hierarchies in this manner has the consequence
that junior-roles (in general) are represented by su-
perclasses while senior-roles, i.e. more powerful roles,
are represented by subclasses. Within such a hierarchy
each class represents one particular role which transi-
tively occupies the permissions of its superclasses.

2. Only classes may be registered as POMs. POMs are
a suitable means to realize the decorator pattern in a
straightforward manner [17]. As mentioned above we
register Permission instances as decorators for Role
(and User) instances, and Role instances as decorators
for User objects. Therefore the Role and Permission
classes are defined as meta-classes so that their in-
stances (actual roles or permissions) can be registered
as POMs.

3. Through the usage of POMs it can be guaranteed that
two User objects which should be assigned to the same
role are virtually assigned to the same Role instance
and not only to roles having the same name. This
holds equivalently for the role-permission assignment.

In contrast to OO-languages where classes are purely
types (such as C++ or Java) XOTcl-classes are runtime ob-
jects and are therefore able to interact with other runtime
objects (without being explicitly instantiated). For a de-
tailed discussion of classes and meta-classes within XOTecl
we refer the interested reader to [17, 19, 34].

We like to recall that in XOTcl all language constructs
can be applied in a dynamic fashion (see Section 2). This
means that we can define arbitrary new classes, e.g. Roles,
at runtime and insert them into an existing class hierarchy
(used as role-hierarchies in xoRBAC).

4.1 The DecisionComponent

As already mentioned, the decision component of xoRBAC
is distributed among the RoleManager, Role, Permission
and User classes. In this subsection we illustrate the re-
alization of the access control function of xoRBAC which
represents the core element of the decision component. This
access control function is represented by the grantAccess
method, which is the most frequently invoked method of
XORBAC after the setup/configuration phase is completed.
Figure 5 depicts a simple example of a next-path resulting
from a call of grantAccess on the User object userl. The
object userl is assigned to the role rolel which in turn
owns the permissions permissionl and permission2.

At first, the call of grantAccess follows the next-path de-
picted in light grey. This means that user1 passes the call to
its POM rolel. From here the call is passed to permissioni
and permission2 which are registered as POMs for rolel.
Then the call is forwarded along the next-path depicted in
dark grey, i.e. back to rolel and the User class. In real-
ity there is of course one unambiguous next-path, we used
different shades of grey to ease the description of Figure 5.

L, L,
/m/s/lanceioi \n;mnce\—i:! next ,l/n/stance‘jﬂ ety
} permission2 } } permissionl } } rolel } } User } Classes
¥ %

\ next

|

|
\ instance-of
|

N e / per-object-mixin
S @ method Objects
- invocation
(of grantAccess)

Figure 5: Next-path for the call of grantAccess

To reduce complexity the small example above shows only
one role with two permissions registered as POM for the
userl object. Nevertheless one can also register classes that
are part of a class-hierarchy (i.e. have several superclasses)
and/or multiple POMs simultaneously (see Section 2). Since
in XORBAC class-hierarchies serve as role-hierarchies, a User
instance thereby transitively occupies the permissions of all
junior-roles (superclasses) also. The unique next-path al-
ways includes all roles and permissions which are registered
as POM (directly or transitively).

Regarding the grantAccess method, the different in-
stances of Role and Permission form a chain of respon-
sibility (see [10]). A grantAccess call is passed along the
next-path until a Permission object declares itself respon-
sible and handles the request by returning true, i.e. the
permission authorizes the respective access-request. Figure
6 depicts a message sequence chart (MSC) for an example
where the requested access is denied, i.e. could not be au-
thorized by one of the permissions assigned to rolel.

roleManager userl rolel permissionl permission2

grantAccess

next

grantAccess
I}

next
]

grantAccess

grantAccess
—

false
next | (¢
false
T T

Figure 6: grantAccess MSC for the return of false

For a call of grantAccess, the respective User object is
always the last object within the next-path and therefore the
last object within the chain of responsibility. This means:
if no Permission object previously authorizes the requested
access (returns true), the call is finally passed back to the
User object. The User object then returns false since
none of its permissions allows the requested access. In other
words: if no Permission object within the chain of respon-
sibility returns true beforehand, every User object delivers
false as default result of a grantAccess call (see Figure 6).

A grantAccess call that returns true - which means that

userl is allowed to perform the requested operation - has a
quite similar flow of events to the one depicted in Figure 6.
However, the message passing along the next-path is stopped
as soon as a specific permission (e.g. permissionl) grants
the access by returning true. A further search through the
remaining permissions (and roles) is not necessary.

4.2 UserRole and Permission-RoleReview

To realize user-role review and permission-role review
functionalities we especially made use of the introspection
capabilities offered by XOTcl. In essence, XoORBAC provides
the following review interfaces:

e getAllRoles {user}: returns all roles which are di-
rectly or transitively assigned to the User object user.

e getAllRoleMembers {role}: returns all User objects
which directly or transitively possess the role repre-
sented by the object role.

e getAllPermissions {role}: returns all permissions
which are directly or transitively assigned to role.

e getAllPermissionOwners {perm}: returns all roles to
which the permission perm is directly or transitively
assigned.

In the current implementation the methods
getAllRoleMembers and getAllPermissionOwners meth-
ods are relatively expensive with respect to performance
(in the range of milliseconds). However, these methods are
by far not invoked as often as the grantAccess method.
Nevertheless, the performance can be easily improved
through redundant information.

4.3 Definition of SSD-Constraints

Two mutual exclusive permissions are not allowed to be
assigned to the same role, while two mutual exclusive roles
are not allowed to be assigned to the same user. xoRBAC
provides interfaces for defining static separation of duties
constraints (SSD-constraints) on both permissions and roles:

e setSSDRoleConstraint {role mutlexcl}: defines a
list of roles (mutlexcl) as mutual exclusive to role.

e setSSDPermConstraint {perm mutlexcl}: defines a
list of permissions (mutlexcl) as mutual exclusive to
perm.

Since the mutlexcl parameter above is defined as Tcl-
list one can define an arbitrary number of roles (or permis-
sions) as mutual exclusive to role (or permission) with
a single method call. For both set-methods mentioned
above a corresponding unset-method exists to delete the
SSD-constraints. Moreover xoRBAC provides methods to
query/review which roles (or permissions) are currently de-
fined as mutual exclusive to a given role (or permission).

In xoRBAC SSD-constraints are inherited within a role-
hierarchy. To avoid inconsistencies or unreasonable configu-
rations XORBAC performs a number of tests prior to setting
a SSD-constraint. It is not sensible for example to define a
role as mutual exclusive to one of its junior- or senior-roles.
Moreover xoRBAC prevents that two Role (or Permission)
instances that are already assigned to the same User (or
Role) instance are defined as mutual exclusive.

Professor

Path

AssistantProfessor

Ipersonal/records

Istudents/grades

<?xnmi version="1.0"?>

<rdf : RDF
xml ns: rdf s="http://ww. w3. org/ 2000/ 01/ r df - schema#
xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns="http://nm wi-wi en. ac. at/ r df - schema/ xoRBAC#" >

<Rol e | D="Prof essor>
<rdfs: | abel >Prof essor </ rdfs: | abel >

<Permi ssi on rdf: parseType="Resource">
<HTTP- Met hod>CGET</ HTTP- Met hod>
<Pat h>/ per sonal / recor ds</ Pat h>

</ Per i ssi on>

<Permi ssi on rdf: parseType="Resource">
<HTTP- Met hod>PUT</ HTTP- Met hod>
<Pat h>/ st udent s/ gr ades</ Pat h

</ Per ni ssi on>

<j uni or Rol e rdf:resource="#Assi stant Prof essor">
<j uni orRol e rdf:resource="#Secretary">

<maxUser Car di nal i t y>3</ maxUser Cardi nal i ty>
</ Rol e>

<Rol e | D="Assi stant Prof essor">
</ Rol e>
<Rol e | D="Secretary">
</ Rol &>
</ rdf : RDF>

Figure 7: Example for the representation of xoRBAC roles in RDF and XML

5. XORBAC: SERIALIZA TION

Object serialization is a process where the complete state
information of an object is written to an output stream.
This enables to send the object-state over a network and/or
to save it permanently. Afterwards copies of the serialized
object can be recreated at arbitrary times by reading the
serialized state information from an input stream.

XORBAC provides methods that enable the serialization
of all xoRBAC runtime elements as RDF metadata. The
Resource Description Framework (RDF) is a W3C recom-
mendation for the definition, description and processing
of structured metadata, esp. in a web-context [15]. The
main purpose of RDF is to provide a generic mechanism
for the description of resources from arbitrary application
domains. Every person or organization may define own
RDF-vocabularies that perfectly fit their respective needs by
specifying a so called RDF-schema [7]. RDF itself is syntax-
neutral, thus RDF data models can be represented in every
suitable interchange syntax. In [15] two syntaxes are defined
for the XML-based description of RDF data models.

For the serialization of xoRBAC elements we defined
a RDF-schema for RBAC definitions. xoRBAC provides
methods to serialize a single User, Role or Permission ob-
ject or to serialize a RoleManager object with all aggregated
instances as a whole. The exported RDF documents are en-
coded in XML serialization syntax [15] and conform to the
schema or parts of the RDF-schema we defined. Further-
more XORBAC can import XoRBAC elements from an RDF
document in XML serialization syntax that conform to this
schema. Figure 7 shows an example for the representation
of xoRBAC entities in RDF. It depicts an RDF graph and
the corresponding XML serialization for a role “Professor”.

The definition of an access control policy and the correct
configuration of the corresponding access control service is a
major effort. The serialized xoRBAC elements can be used,
for instance, to permanently save a configuration which rep-
resents a particular access control policy. Moreover a new
XORBAC instance can be smoothly initialized by importing
the corresponding RDF data model(s).

We chose RDF and XML as interchange and storage for-
mat for xoORBAC runtime elements since these are open in-
ternet standards which facilitate data interchange with other
components that rely on open standards as many web-based
applications and environments do. Furthermore RDF and
XML are platform independent and allow to define, query,
and reuse RBAC definitions in the semantic web context.

6. EXPERIENCES WITH XORBAC

In this section we give a summary of our experiences with
the deployment of XoRBAC in real application contexts. We
applied xoRBAC together with the ActiWeb environment
for the development of web applications. ActiWeb [20] is
a mobile code system that enables the development of dis-
tributed web applications with active web objects. The web
objects of ActiWeb reside on and are accessed through so-
called places. A place provides the runtime environment for
active web objects. Every ActiWeb place is a HT'TP server,
and web objects (the methods they provide) can be accessed
through an URL. Thus ActiWeb places and the correspond-
ing web objects can be accessed from every web-browser or
other clients. ActiWeb is publicly available from [35].

Figure 8 shows how we integrated xoRBAC in the Acti-
Web environment. xoRBAC uses the metadata service of
ActiWeb for the serialization of xoRBAC entities in RDF
and XML. Moreover xoRBAC can be bound to the mobile
object system (MOS) of ActiWeb. ActiWeb places are a
part of the MOS, and every web-object (mobile as well as
stationary) is accessed via a place. With the ActiWeb bind-
ing of xoRBAC one could decide individually: if a certain
place should use a local instance of xoRBAC, if it should
be connected to a remote instance of xoRBAC located on
another place, or if it should not use xoRBAC at all.

When using xoRBAC all access requests on ActiWeb web-
objects are captured and passed to the respective XoRBAC
instance which decides if this access could be granted. In
particular the grantAccess function of the xoRBAC deci-
sion component receives a “subject, operation, object” triple
and decides - according to the active role-set of the respec-

ActiWeb
Communication Service

ActiWeb ActiWeb
Persistence Service Metadata Service

XOTcl

Figure 8: Connection of xoRBAC to ActiWeb

tive subject - if the subject is allowed to perform the re-
quested operation on the specified object. ActiWeb web-
objects could be both the subject or the object of an access.
A certain active web object may access methods offered by
other active web objects and in turn may itself be accessed
by human-users or other active web objects.

We utilized xoRBAC in the ActiWeb environment for two
main tasks:

e Access control for web resources that are provided by
a web-server and (primary) accessed by human users,
as HI'ML documents, pictures or sound-files.

e Access control for services provided by the ActiWeb
runtime environment and for web objects that are ac-
cessed by human users and/or long-living computer
programs esp. by (other) active web objects.

We defined permissions for the corresponding services and
web objects and assigned them to roles which were in turn
assigned to human users and active web objects.

For authentication purposes we applied HI'TP basic and
digest authentication in both experiments. The subject (in
terms of access control) must authenticate itself for the re-
spective realm by transmitting its ID and password. This
weak authentication mechanism is usually sufficient within
a trusted intranet or for non-critical applications. Primar-
ily we applied HTTP authentication because it is easy to
use and directly available in ActiWeb. As mentioned ear-
lier, XoRBAC does not demand on a specific authentication
mechanism, it only assumes that some authentication ser-
vice is in place. Therefore XoRBAC can also be used with
a sophisticated authentication environment based on X.509
certificates (and SSL) for instance.

In xoRBAC each User, Role and Permission object has
an explicit name. This name is unique within the corre-
sponding xoRBAC instance (at least). Thus the actual user
IDs provided by the authentication service, can be directly
mapped on the names of the User objects within XxoRBAC.
This means that a User object may have a globally unique
X.500 distinguished name for instance. The same is true for
the names of Role and Permission objects.

Figure 9 depicts the three principle ActiWeb configura-
tions that we tested xoRBAC with. Subsequently we de-
scribe each of these configurations in more detail:

e Figure 9 a) shows a configuration where every sin-
gle ActiWeb place is connected to a local instance of
XORBAC. This means that the places are autonomous
in respect of access control. This configuration is use-
ful in an environment where the different places are
hosted by independent parties for example and require
independent access control policies.

e In Figure 9 b) we have the situation that several Acti-
Web places exist which form a so-called “area”, i.e. a
part of a network consisting of different places which
share the same xoRBAC instance and therefore the
same access control policy. One place provides its local
XORBAC service as remote service to the other places.
This configuration eases access control administration
in an intranet for example and is sensible if several
distributed places are hosted by the same authority.

e Figure 9 ¢) shows a configuration where two (or more)
places provide their local xoORBAC service to other
places. Furthermore at least one place exists that is
connected to a local instance of xoRBAC and has an
additional remote connection to another xoRBAC in-
stance. This configuration could be useful to avoid re-
dundancies, when two (or more) independent xoRBAC
instances should share a number of roles and/or per-
missions but are different enough to exist on their own.
Because of its realization on the programming level
we call this configuration “cascading xoRBAC”. If the
first instance of XoORBAC cannot grant an access, the
request is passed to the next instance. This cascade is
not limited to two instances but can be applied in prin-
ciple for an arbitrary number of xoRBAC instances.
A shortcoming of this is the reduced performance for
grantAccess if the cascaded xoRBAC instances reside
on different physical nodes.

In principle XoRBAC may be applied in two ways within
ActiWeb: transparent or non-transparent for human users
and other subjects. If used transparently the subjects au-
thenticate themselves when entering a place (or area) and
the roles they posses in this realm are automatically acti-
vated. In this case the subjects do not know that an RBAC
service is in place and thus cannot control the (de)activation
of their roles. This may be a sensible option within a mo-
bile code environment. Alternatively one could allow some
(or all) subjects to manage their active role-set in their own
right, e.g. all human users may be allowed to manage their
active role-set while mobile objects or other non-human sub-
jects are not. Note that in our approach for web-based
RBAC no information is stored on the client side, e.g. by us-
ing cookies or extended URLs. Since all relevant information
is held by the server each subject needs to re-authenticate
itself when leaving and re-entering a place or area.

Our experiences show that the performance of the
XORBAC prototype is sufficient for a number of web-based
applications. We defined a few simple test cases where about
one hundred roles, five hundred permissions and one hun-
dred users were involved. A grantAcess run for directly
assigned roles ranges between 0.5 and 0.6 ms. While a
grantAccess run with inherited roles and permissions costs
about 0.8 ms. These measurements where performed on a
400 MHZ Pentium II machine with Red Hat Linux 6.2.

7. RELATED WORK

In [4] Barkley introduced an approach for an implementa-
tion of RBAC in an object oriented programming language.
Each role is represented by a different role class. At run-
time, role objects (instances of role classes) serve as proxies
for the applications that want to access certain methods.
The approach in [4] does not consider role-hierarchies and
constraints.

— I — N | . =N
| | |
| | XoRBAC II | | XoRBAC || I I | | XoORBAC ||
== 1 = 1 ActiWeb-Place ActiWeb-Place L =——_C 1 ActiWeb-Place
ActiWeb-Place ActiWeb-Place I I ActiWeb-Place
i N o -~ l N ; l NN
I I I I
i xoreAc]! i oreAC]! | 1| xoreAc]! | i oreAc]!
= 1 = 1 [y 1 ActiWeb-Place = 1 ActiWeb-Place
Actiweb-Place ActiWeb-Place I ActiWeb-Place I ActiWeb-Place

a)

b)

)

Figure 9: Usage of xoRBAC in ActiWeb

The hyperDRIVE system [5] uses the LDAP standard to
implement authentication and authorization services. The
system makes use of the Java Applet technology. The hy-
perDRIVE Java Applet is loaded into a Java-enabled web-
browser and provides an interface to access protected web
resources. An LDAP Server serves as central repository for
all authentication and access control information. The def-
inition of role hierarchies and mutually exclusive roles is
supported by special purpose LDAP attributes.

The I-RBAC system [32] suggests an approach for the
realization of RBAC within intranets. A characteristic of
I-RBAC is the parallel use of local and global role hierar-
chies. Local roles own permissions for the local resources of
one particular server. Global roles possess permissions for
so-called global resources which have an unique identifier
within an intranet and can be “globally” accessed. I-RBAC
does not enable the definition of mutual exclusive roles.

In [11] Giuri suggests an RBAC mechanism based on Java
servlets. He proposes the so called JRBAC-WEB archi-
tecture which relies on the execution of HT'TP requests
(GET, PUT, etc.) through a secure Java servlet. The
implementation supports the definition of role hierarchies
and separation of duties constraints. JRBAC-WEB uses
HTTP authentication. Optionally the approach allows to
keep RBAC-specific session data using cookies or an URL-
rewriting technique for Java servlets.

RBAC/Web [8] is a comprehensive implementation of an
RBAC service for web-servers. RBAC/Web does not pre-
scribe a specific authentication mechanism and supports
role-hierarchies, cardinality constraints and dynamic and
static separation of duties. A web-server may use an ex-
tension module to directly access the RBAC/Web API or
forward the calls to designated RBAC/Web CGI scripts.

Park and Sandhu describe an approach to provide RBAC
with role hierarchies through extended X.509 certificates
[24]. A role server authenticates the user and issues so called
smart certificates that include the roles for this particular
user. When accessing a secured web server the user chooses
one of his smart certificates and sends it to the server. The
web server uses the role information enclosed in this certifi-
cate to perform RBAC until the certificate expires.

In [13] Gutzmann introduces a security services archi-
tecture for HTTP-based environments. He uses LDAP to
realize an RBAC service. Gutzmann suggests two LDAP
schema extensions to implement RBACy as proposed in [29].
This implementation thus neither supports role hierarchies
nor (SOD-)constraints. Nevertheless Gutzmann notes that
the object class hierarchy of LDAP may be used to augment
the approach with role hierarchies (RBAC})).

8. CONCLUSION AND FUTURE WORK

The xoRBAC component presented in this paper provides
a flexible RBAC service that conforms to level 4a of the
NIST RBAC model introduced in [30]. It can be reused for
arbitrary applications providing C or Tcl linkage. XoRBAC
provides a generic serialization feature. Its runtime elements
can be serialized as and recreated from RDF data models
(in XML syntax) conforming to a well defined RDF-schema.
In conjunction with the ActiWeb environment xoRBAC can
be used for mobile code and supports the definition of dis-
tributed access control policies through the usage of multiple
cascading XoORBAC instances. In addition to roles xoRBAC
enables the definition of subject specific rights. The compo-
nent offers a well defined API to other components and does
not prescribe the authentication mechanism it is used with.
The current implementation of xoRBAC is about 2500 lines
of code (without comments and blank lines).

For the implementation of XoRBAC we used the OO
scripting language XOTcl. XOTcl offers per-object mixins
and dynamic object aggregation as native language features
which are suitable for the implementation of an RBAC ser-
vice as described in this paper. Moreover the highly dy-
namic object system of XOTcl eases the implementation of
very flexible programs. At runtime roles, permissions and
users (or other subjects) are represented by corresponding
programming objects which can be dynamically associated
with each other. The xoRBAC component performs certain
tests to ensure consistency and integrity of the different ob-
jects and their relations and the keeping of constraints.

Since XOTcl is an interpreted language it has a relatively
low performance compared with pure C implementations
but offers from our experiences equal or higher performance
than Java. We suggest the usage of the current version of
XO0RBAC especially for small and mid-size environments with
hundreds or a few thousands of parallel active subjects as
well as hundred or less roles and a few hundred permissions.

Currently, we are developing a graphical administration
tool for xoRBAC. This tool should be applied to monitor and
modify runtime instances of XoRBAC as well as to specify
RDF data models conforming to the RDF schema for RBAC
definitions that we defined. Together with the adoption of
the administration tool we plan to incorporate administra-
tive RBAC into xoRBAC.

With regard to our experiences we will further investi-
gate the inclusion of history information [1] and the context-
dependent (de)activation of access rights [33] for distributed
applications in general and mobile code systems in specific.
We especially go into the matter how xoRBAC (and RBAC

in general) can be efficiently applied in the context of digi-
tal rights management, particularly for the passing and/or
transfer of access rights for mobile digital goods (e.g. music
or video files, pictures or digital periodicals).

XORBAC is publicly available from [35]

9. REFERENCES

[1] A. Acharya, V. Chaudhary, and G. Edjlali.
History-based access control for mobile code. In Proc.
of the Fifth ACM Conference on Computer and
Communications Security, November 1998.

[2] O. Agesen, L. Bak, C. Chambers, B. Chang,

U. Hoelzle, J. Maloney, R. Smith, D. Ungar, and
M. Wolczko. The SELF 4.0 Programmer’s Reference
Manual. Sun Microsystems, 1995.

[3] G. Ahn and R. Sandhu. Role-based authorization
constraints specification. ACM Transactions on
Information and Systems Security, 3(4), November
2000.

[4] J. Barkley. Implementing role based access control
using object technology. In Proc. of ACM Workshop
on Role Based Access Control, November 1995.

[5] L. Bartz. hyperDRIVE: Leveraging LDAP to
implement RBAC on the web. In Proc. of the ACM
workshop on Role-Based Access Control, 1997.

[6] D. Bobrow, R. DeMichiel, S. Keene, G. Kiczales, and
D. Moon. Common lisp object system specification.
Sigplan Notices, 23(9), 1988.

[7] D. Brickley and R. Guha. Resource description
framework (RDF) schema specification 1.0.
http://www.w3.org/ TR /rdf-schema/, March 2000.
W3 Consortium Candidate Recommendation.

[8] D. Ferraiolo, J. Barkley, and D. Kuhn. A role-based
access control model and reference implementation
within a corporate intranet. ACM Transactions on
Information and System Security, 2, February 1999.

[9] D. Ferraiolo and R. Kuhn. Role-based access controls.
In Proc. of the 15th NIST-NCSC National Computer
Security Conference, October 1992.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[11] L. Giuri. Role-based access control on the web using
java. In Proc. of the ACM Workshop on Role-Based
Access Control, 1999.

[12] G. Gottlob, M. Schrefl, and B. Rck. Extending
object-oriented systems with roles. ACM Transactions
on Information Systems, 14(3), July 1996.

[13] K. Gutzmann. Access control and session management
in the HTTP environment. IEEFE Internet Computing,
January/February 2001.

[14] B. Kristensen and K. @Osterbye. Roles: Conceptual
abstraction theory & practical language issues. Theory
and Practice of Object Systems, 2(3), 1996.

[15] O. Lassila and R. R. Swick. Resource description
framework (RDF) model and syntax specification.
http://www.w3.org/TR/REC-rdf-syntax/, February
1999. W3 Consortium Recommendation.

[16] G. Neumann and U. Zdun. Enhancing object-based
system composition through per-object mixins. In
Proc. of Asia-Pacific Software Engineering Conference
(APSEC), December 1999.

[17]

[18]

[19]

[20]

[24]

[25]

[26]

[27]

[28]

[29]

[35]

G. Neumann and U. Zdun. Implementing
object-specific design patterns using per-object
mixins. In Proc. of Second Nordic Workshop on
Software Architecture (NOSA), August 1999.

G. Neumann and U. Zdun. Towards the usage of
dynamic object aggregations as a form of composition.
In Proc. of Symposium of Applied Computing
(SAC’00), March 2000.

G. Neumann and U. Zdun. XOTcl, an object-oriented
scripting language. In Proc. of Tcl2k: Tth USENIX
Tel/Tk Conference, February 2000.

G. Neumann and U. Zdun. Distributed web
application development with active web objects. In
Proc. of the 2nd International Conference on Internet
Computing, June 2001.

S. Osborn, R. Sandhu, and Q. Munawer. Configuring
role-based access control to enforce mandatory and
discretionary access control policies. ACM
Transactions on Information and Systems Security,
3(2), February 2000.

J. Ousterhout. T'cl and the Tk Toolkit.
Addison-Wesley, 1994.

J. Ousterhout. Scripting: Higher level programming
for the 21st century. IEEE Computer, 31(3), March
1998.

J. Park and R. Sandhu. RBAC on the web by smart
certificates. In Proc. of the ACM Workshop on
Role-Based Access Control, 1999.

T. Reenskaug, P. Wold, and O. Lehne. Working with
objects. Manning Publications, 1996.

D. Riehle and T. Gross. Role model based framework
design and integration. In Proc. of the Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), 1998.

P. Samarati and R. Sandhu. Access control: Principles
and practice. IEEE Communications, 32(9),
September 1994.

R. Sandhu. Roles versus groups. In Part I of Proc.
ACM Workshop on Role-Based Access Control, 1995.
R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2), February 1996.

R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST
model for role-based access control: Towards a unified
standard. In Proc. of ACM Workshop on Role-Based
Access Control, 2000.

C. Szyperski. Component Software — Beyond
Object-Oriented Programming. Addison-Wesley, 1998.
Z. Tari and S. Chan. A role-based access control for
intranet security. IEEFE Internet Computing,
September/October 1997.

R. Thomas and R. Sandhu. Task-based authorization
controls (TBAC): A family of models for active and
enterprise-oriented authorization management. In
Proc. of the IFIP W(G11.3 Workshop on Database
Security, August 1997.

D. Wetherall and C. Lindblad. Extending Tcl for
dynamic object-oriented programming. In Proc. of the
Tcl/Tk Workshop 95, July 1995.

XOTecl homepage. http://www.xotcl.org.

