
Detecting and Resolving Conflicts of

Mutual-Exclusion and Binding Constraints

in a Business Process Context

Sigrid Schefer1, Mark Strembeck1, Jan Mendling2, and Anne Baumgrass1

1 Institute for Information Systems, New Media Lab
Vienna University of Economics and Business (WU Vienna), Austria

{firstname.lastname}@wu.ac.at
2 Institute for Information Business

Vienna University of Economics and Business (WU Vienna), Austria
jan.mendling@.wu.ac.at

Abstract. Mutual exclusion and binding constraints are important means
to define which combinations of subjects and roles can be assigned to
the tasks that are included in a business process. Due to the combinato-
rial complexity of potential role-to-subject and task-to-role assignments,
there is a strong need to systematically check the consistency of a given
set of constraints. In this paper, we discuss the detection of consistency
conflicts and provide resolution strategies for the corresponding conflicts.

Keywords: business processes, information systems, mutual exclusion,
separation of duty, binding of duty

1 Introduction

In recent years, business processes are increasingly designed with security and
compliance considerations in mind (see, e.g., [3, 16, 19]). For example, the defi-
nition of process-related security properties is important if a conflict of interest
could arise from the simultaneous assignment of decision and control tasks to the
same subject. In this context, process-related access control mechanisms are typ-
ically used to specify authorization constraints, such as separation of duty (SOD)
and binding of duty (BOD), to regulate which subject is allowed (or obliged) to
execute a particular task (see, e.g., [4, 5, 14–17,19]).

In a workflow environment, SOD constraints enforce conflict of interest poli-
cies by defining that two or more tasks must be performed by different indi-
viduals. Conflict of interest arises as a result of the simultaneous assignment of
two mutual exclusive entities (e.g. permissions or tasks) to the same subject.
Tasks can be defined as statically mutual exclusive (on the process type level)
or dynamically mutual exclusive (on the process instance level). Thus, a static
mutual exclusion (SME) constraint is global with respect to all process instances
in an information system. Therefore, two SME tasks can never be assigned to
the same subject or role. On the other hand, two dynamically mutual exclusive

2 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

(DME) tasks can be assigned to the same subject but must not be executed by
the same subject in the same process instance.

In contrast, BOD constraints specify that bound tasks must always be per-
formed by the same subject or role (see, e.g., [14–17]). BOD can be subdivided
into subject-based and role-based constraints (see, e.g., [14, 15]). A subject-based
BOD constraint defines that the same individual who performed the first task
must also perform the bound task(s). On the other hand, a role-based BOD con-
straint defines that bound tasks must be performed by members of the same role,
but not necessarily by the same individual. Throughout the paper, we will use
the terms subject-binding (SB) and role-binding (RB) as synonyms for subject-
based BOD constraints and role-based BOD constraints, respectively.

In recent years, role-based access control (RBAC) [7, 11] has developed into
a de facto standard for access control. A specific problem in the area of process-
related RBAC is the immanent complexity of interrelated mutual-exclusion and
binding constraints. Thus, when defining process-related mutual-exclusion or
binding constraints, design-time and runtime checks need to ensure the consis-
tency of the corresponding RBAC model. In particular, at design-time conflicts
may result from inconsistent constraints or assignment relations. At runtime
conflicts may result from invalid task-to-subject allocations (see also [14]).

In this paper, we take the conflicts identified in [14] as a starting point.
We adapt the algorithms from [14] to detect and name corresponding conflicts,
and discuss resolution strategies for these conflicts. In particular, we consider
conflicts at the level of design-time constraint definition, design-time assignment
relations, and runtime task allocation.

The remainder of this paper is structured as follows. Section 2 gives an
overview of process-related RBAC models and the requirements for design-time
and runtime consistency of these models. Sections 3, 4, and 5 present algo-
rithms to detect potential conflicts of mutual-exclusion and binding constraints.
Furthermore, we provide resolution strategies that exemplary show how these
conflicts can be resolved to ensure the consistency of a process-related RBAC
model. Subsequently, Section 6 discusses related work and Section 7 concludes
the paper.

2 Process-Related RBAC Models

The algorithms and resolution strategies presented in Section 3, 4, and 5 are
based on the formal definitions for process-related RBAC models from [14, 15].
However, due to the page restrictions we cannot repeat the complete list of
definitions in this paper. Therefore, we now give an overview of the definitions
we use below – for further details please consult [14, 15].

Definition 1 (Process-related RBAC Model). A Process-related RBAC
Model P RM = (E, Q, D) where E = S ∪ R ∪ PT ∪ PI ∪ TT ∪ TI refers to
pairwise disjoint sets of the model, Q = rh ∪ rsa ∪ tra ∪ es ∪ er ∪ ar ∪ pi ∪ ti to
mappings that establish relationships, and D = sb ∪ rb ∪ sme ∪ dme to binding
and mutual-exclusion constraints.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 3

An element of S is called Subject. An element of R is called Role. An element
of PT is called Process Type. An element of PI is called Process Instance. An
element of TT is called Task Type. An element of TI is called Task Instance.

We allow the definition of subject-binding (sb), role-binding (rb), static mu-
tual exclusion (sme), and dynamic mutual exclusion (dme) constraints on task
types. Roles can be arranged in a role-hierarchy (rh), where more powerful
senior-roles inherit the permissions from their junior-roles. The task-to-role as-
signment relation (tra) defines which tasks can be performed by the members of a
certain role. Thereby, tra specifies the permissions of a role. The task-ownership
mapping (town) allows to determine which tasks are assigned to a particular role
– including the tasks inherited from junior-roles. The inverse mapping (town−1)
returns the set of roles a task is assigned to. The role-to-subject assignment rela-
tion (rsa) defines which roles are assigned to particular users. The role-ownership
mapping (rown) returns all roles assigned to a certain subject (including roles
that are inherited via a role-hierarchy). The inverse mapping (rown−1) allows
to determine all subjects assigned to a particular role. Each subject can acti-
vate the roles that are assigned to this subject, and the active-role mapping (ar)
returns the role that is currently activated. For each task instance we have an
executing-subject (es) and an executing-role (er).
Definition 2 provides rules for the static correctness of process-related RBAC
models to ensure the design-time consistency of the included elements and rela-
tionships.

Definition 2. Let P RM = (E, Q, D) be a Process-related RBAC Model. P RM
is said to be statically correct if the following requirements hold:

1. Tasks cannot be mutual exclusive to themselves:
∀t2 ∈ sme(t1) : t1 6= t2 and ∀t2 ∈ dme(t1) : t1 6= t2

2. Mutuality of mutual exclusion constraints:
∀t2 ∈ sme(t1) : t1 ∈ sme(t2) and ∀t2 ∈ dme(t1) : t1 ∈ dme(t2)

3. Tasks cannot be bound to themselves:
∀t2 ∈ sb(t1) : t1 6= t2 and ∀t2 ∈ rb(t1) : t1 6= t2

4. Mutuality of binding constraints:
∀t2 ∈ sb(t1) : t1 ∈ sb(t2) and ∀t2 ∈ rb(t1) : t1 ∈ rb(t2)

5. Tasks are either statically or dynamically mutual exclusive:
∀t2 ∈ sme(t1) : t2 6∈ dme(t1)

6. Either SME constraint or binding constraint:
∀t2 ∈ sme(t1) : t2 6∈ sb(t1) ∧ t2 6∈ rb(t1)

7. Either DME constraint or subject-binding constraint:
∀t2 ∈ dme(t1) : t2 6∈ sb(t1)

8. Consistency of task-ownership and SME:
∀t2 ∈ sme(t1) : town−1(t2) ∩ town−1(t1) = ∅

9. Consistency of role-ownership and SME: ∀t2 ∈ sme(t1), r2 ∈ town−1(t2), r1 ∈
town−1(t1) : rown−1(r2) ∩ rown−1(r1) = ∅

Definition 3 provides the rules for dynamic correctness of a process-related
RBAC model, i.e. the rules that can only be checked in the context of runtime
process instances.

4 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Definition 3. Let P RM = (E, Q, D) be a Process-related RBAC Model and
PI its set of process instances. P RM is said to be dynamically correct if the
following requirements hold:

1. In the same process instance, the executing subjects of SME tasks must be
different:
∀t2 ∈ sme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅

2. In the same process instance, the executing subjects of DME tasks must be
different:
∀t2 ∈ dme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅

3. In the same process instance, role-bound tasks must have the same executing-
role: ∀t2 ∈ rb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : er(tx) = er(ty)

4. In the same process instance, subject-bound tasks must have the same executing-
subject: ∀t2 ∈ sb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) = es(ty)

3 Constraint Definition Conflicts

When defining SME, DME, RB, or SB constraints at design-time, a number
of conflicts may occur that would lead to inconsistencies in the corresponding
process-related RBAC model. Below we first present algorithms to detect these
constraint definition conflicts. If a conflict is detected, the algorithms return
the name of the respective conflict. In the following subsections, we provide
descriptions for each conflict type and present different resolution strategies.

3.1 Algorithms for Detecting Constraint Definition Conflicts

Algorithm 1 Check if the definition of a new SME constraint is allowed.

Name: isSMEConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

2: if task1 ∈ dme(task2) then return directDMEConflict

3: if task1 ∈ allRoleBindings(task2) then return RBConflict

4: if task1 ∈ allSubjectBindings(task2) then return SBConflict

5: if ∃ r ∈ R | r ∈ town−1(task1) ∧ r ∈ town−1(task2)
6: then return taskOwnershipConflict

7: if ∃ s ∈ S | r1 ∈ rown(s) ∧ r2 ∈ rown(s) ∧
8: r1 ∈ town−1(task1) ∧ r2 ∈ town−1(task2)
9: then return roleOwnershipConflict

10: return true

Algorithm 2 Check if the definition of a new DME constraint is allowed.

Name: isDMEConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 5

2: if task1 ∈ sme(task2) then return directSMEConflict

3: if task1 ∈ allSubjectBindings(task2) then return SBConflict

4: return true

Algorithm 3 Check if the definition of a new RB constraint is allowed.

Name: isRBConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

2: if task1 ∈ sme(task2) then return directSMEConflict

3: if ∃taskx ∈ sme(task1) | taskx ∈ allRoleBindings(task2)
4: then return transitiveSMEConflict

5: if ∃taskx ∈ sme(task2) | taskx ∈ allRoleBindings(task1)
6: then return transitiveSMEConflict

7: return true

Algorithm 4 Check if the definition of a new SB constraint is allowed.

Name: isSBConstraintAllowed
Input: task1, task2 ∈ TT

1: if task1 == task2 then return selfConstraintConflict

2: if task1 ∈ dme(task2) then return directDMEConflict

3: if task1 ∈ sme(task2) then return directSMEConflict

4: if ∃taskx ∈ sme(task1) | taskx ∈ allSubjectBindings(task2)
5: then return transitiveSMEConflict

6: if ∃taskx ∈ dme(task1) | taskx ∈ allSubjectBindings(task2)
7: then return transitiveDMEConflict

8: if ∃taskx ∈ sme(task2) | taskx ∈ allSubjectBindings(task1)
9: then return transitiveSMEConflict

10: if ∃taskx ∈ dme(task2) | taskx ∈ allSubjectBindings(task1)
11: then return transitiveDMEConflict

12: return true

3.2 Resolving Constraint Definition Conflicts

Self-constraint conflict: A self-constraint conflict occurs if we try to define
tasks as mutual exclusive or bound to themselves (see Figure 1a and Algo-
rithms 1-4). However, because mutual exclusion as well as binding constraints
must be defined on two different task types, such a “self-exclusion” or “self-
binding” would violate the consistency requirements defined in Def. 2.1 and
Def 2.3.

Resolution to self-constraint conflicts: In order to prevent inconsisten-
cies resulting from a self-constraint conflict, mutual exclusion and binding con-
straints need always be defined on two different task types (see Resolution 1 and
Figure 1a).

Direct SME conflict: A direct SME conflict occurs if one tries to define a
new DME, RB, or SB constraint on two task types which are already defined as

6 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Resolution 1

t1 tx

Before After

SME / RB /

DME / SB

Self-constraint conflict

a)

Before

Direct SME conflict Resolution 2

t1 t2

After

DME / RB / SB

b)

t2t1
SME

DME / RB / SB

Resolution 3

After

t2t1
DME

RB

Before

Direct DME conflict Resolution 4

t1 t2

After

SME / SB

c)

t2t1
DME

SME / SB

t1

SME /

DME

RB / SB /

Fig. 1: Resolving self-constraint (a), SME (b), or DME (c) conflicts

being statically mutual exclusive (see Figure 1b). However, as defined in Def. 2.5,
two tasks can either be statically or dynamically mutual exclusive (see also [14,
15]). Furthermore, if two tasks are defined as statically mutual exclusive, it is
not possible to define a binding constraint between the same tasks (see Def. 2.6).

Resolutions to direct SME conflicts: Figure 1b shows two resolutions to
prevent direct SME conflicts. In particular, this type of conflict can be avoided by
removing the conflicting SME constraint before defining the new DME or binding
constraint (see Resolution 2). If a direct SME conflict occurs when defining a RB
constraint, it can also be resolved by changing the SME into a DME constraint
(see Resolution 3), because DME constraints do not conflict with RB constraints
(see [14, 15]).

Direct DME conflict: A direct DME conflict occurs if one tries to define a
new SME or SB constraint on two task types which are already defined as being
dynamically mutual exclusive (see Figure 1c). However, as defined in Def. 2.5,
two tasks can either be statically or dynamically mutual exclusive. Moreover,
DME and SB constraints conflict (see Def. 2.7, Def. 3.2, and Def. 3.4).

Resolution to direct DME conflicts: A direct DME conflict can be pre-
vented by removing the conflicting DME constraint before defining the new SME
or SB constraint (see Resolution 4 and Figure 1c).

RB conflict: A RB conflict arises if one tries to define a new SME constraint
on two role-bound task types (see Figure 2a). However, because one cannot define
a SME constraint and a RB constraint on the same task types (see Def. 2.6),
such a configuration would result in a RB conflict.

Resolution to RB conflicts: A RB conflict can be prevented by remov-
ing the conflicting RB constraint before defining the new SME constraint (see
Resolution 5 and Figure 2a).

SB conflict: A SB conflict arises if one tries to define a SME or a DME
constraint between two subject-bound tasks (see Figure 2b). However, because
we cannot define a mutual exclusion constraint and a SB constraint on the same
task types (see Def. 2.6 and Def. 2.7), such a configuration would result in a SB
conflict.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 7

Before

RB conflict Resolution 5

t1 t2

After

SME

a)

t2t1
RB

SME

Before

SB conflict Resolution 6

t1 t2

After

SME / DME

b)

t2t1
SB

SME / DME

Resolution 7

After

t2t1
RB

DME

Fig. 2: Resolving RB conflicts (a) or SB conflicts (b)

Resolutions to SB conflicts: A SB conflict can be prevented by removing
the conflicting SB constraint before defining the new mutual exclusion constraint
(see Resolution 6 and Figure 2b). If a SB conflict occurs when defining a DME
constraint, it can also be avoided by changing the conflicting SB constraint into
a RB constraint (see Resolution 7), because DME and RB do not conflict (see
[14, 15]).

Resolution Strategies for Constraint Definition Conflicts

The following resolution strategies define the conflict resolutions described
above with respect to the formal definitions of process-related RBAC models
(see Section 2 and [14, 15]).

Resolution 1 Select two different tasks

Input: taski ∈ TT

1: select taskx ∈ T | taski 6= taskx ∧ taskx /∈ sme(taski) ∧ taskx /∈ dme(taski)∧
2: taskx /∈ allRoleBindings(taski) ∧ taskx /∈ allSubjectBindings(taski)

Resolution 2 Remove SME constraint

Input: task1, task2 ∈ TT

1: remove task1 from sme(task2) so that task1 /∈ sme(task2)

Resolution 3 Change SME constraint into DME constraint

Input: task1, task2 ∈ TT

1: remove task1 from sme(task2) so that task1 /∈ sme(task2)
2: and add task1 to dme(task2) so that task1 ∈ dme(task2)

Resolution 4 Remove DME constraint

Input: task1, task2 ∈ TT

1: remove task1 from dme(task2) so that task1 /∈ dme(task2)

Resolution 5 Remove RB constraint

Input: task1, task2 ∈ TT

1: remove task1 from rb(task2) so that task1 /∈ rb(task2)

8 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Resolution 6 Remove SB constraint

Input: task1, task2 ∈ TT

1: remove task1 from sb(task2) so that task1 /∈ sb(task2)

Resolution 7 Change SB constraint into RB constraint

Input:task1, task2 ∈ TT

1: remove task1 from sb(task2) so that task1 /∈ sb(task2)
2: and add task1 to rb(task2) so that task1 ∈ rb(task2)

3.3 Resolving Ownership Conflicts

Task-ownership conflict: A task-ownership conflict occurs if one tries to define
a SME constraint between two task types that are already assigned to the same
role (see Figure 3a). Because two SME tasks must never be assigned to the same
role (neither directly nor transitively) such a configuration would result in a
task-ownership conflict (see Def. 2.8).

Resolutions to task-ownership conflicts: Figure 3a shows two reso-
lutions to prevent task-ownership conflicts. A task-ownership conflict can be
avoided by revoking one of the tasks from the corresponding role before defining
the new SME constraint (see Resolution 8), or by deleting the conflicting role
before defining the new SME constraint (see Resolution 9). Note that Resolu-
tion 9 will rarely be applicable in real-world scenarios and is thus only presented
for the sake of completeness.

t2

t1

Before

r
t2

t1

After

r
t2

t1

Resolution 8

SME

Resolution 9

After

SME
a)

t2

t1r1

r2
s

Resolution 10

Before After

t2

t1r1

r2

SME

After

Resolution 11

b)

SME

SME

t2

t1r1

r2
s

SME

Task-ownership conflict

Role-ownership conflict

Fig. 3: Resolving task-ownership (a) and role-ownership (b) conflicts

Role-ownership conflict: A role-ownership conflict occurs if one tries to
define a SME constraint on two task types which are (via the subject’s roles)
already assigned to the same subject (see Figure 3b). Because two SME tasks
must never be assigned to the same subject (see Def. 2.9) such a configuration
would result in a role-ownership conflict.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 9

Resolutions to role-ownership conflicts: A role-ownership conflict as
shown in Figure 3b can be prevented by revoking one of the conflicting task-
to-role assignments before defining the new SME constraint (see Resolution 8),
or by revoking one of the corresponding roles from the subject before defining
the new SME constraint (see Resolution 10). Alternatively, it can be avoided
by removing role r1 or r2 (see Resolution 9) or by removing the subject which
owns the conflicting roles (see Resolution 11). Again, Resolutions 9 and 11 will
rarely be applicable in real-world scenarios and are only presented for the sake
of completeness.

Resolution Strategies for Ownership Conflicts

The following resolution strategies define the conflict resolutions described
above with respect to the formal definitions of process-related RBAC models
(see Section 2 and [14, 15]).

Resolution 8 Remove task-to-role assignment

Input: role ∈ R, task ∈ TT

1: remove role from town−1(task) so that role /∈ town−1(task)

Resolution 9 Remove role

Input: role ∈ R
1: remove role from R so that role /∈ R

Resolution 10 Remove role-to-subject assignment

Input: subject ∈ S, role ∈ R
1: remove role from rown(subject) so that role /∈ rown(subject)

Resolution 11 Remove subject

Input: subject ∈ S
1: remove subject from S so that subject /∈ S

Resolution 12 Remove task

Input: task ∈ TT

1: remove task from TT so that task /∈ TT

3.4 Resolving Transitive Constraint Conflicts

Transitive SME or DME conflicts arise because of the transitivity of binding
constraints (see Def. 3.3, Def. 3.4, and [14, 15]). Therefore, a conflict may arise
when defining a RB or SB constraint on two tasks t1 and t2 because of pre-
existing mutual exclusion constraints between on one of the tasks t1 or t2 and
some third task t3.

10 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Transitive SME conflict: Figure 4a shows a transitive SME conflict that
occurs if one tries to define a new role- or subject-binding constraint between two
tasks (t1 and t2 in Figure 4a) that would result in a transitive binding of a third
task (tx in Figure 4a) which is already defined as statically mutual exclusive
to one of the other tasks (see SME constraint between t1 and tx in Figure 4a).
However, because binding constraints define that two task instances must be
executed by the same subject/role (see Def. 3.3 and Def. 3.4), while SME tasks
must not be executed by the same subject (see Def. 3.1) such a configuration
would result in a transitive SME conflict between t1 and tx (see also Def. 2.6).

Resolutions to transitive SME conflicts: Figure 4a shows conflict reso-
lutions for transitive SME conflicts. Such a conflict can be avoided by removing
the SME constraint before defining the new binding constraint (see Resolution
2). If the conflict arises when defining a RB constraint, it can also be prevented
by changing the SME into a DME constraint before defining the new RB con-
straint (see Resolution 3). Moreover, the conflict can be resolved by removing
the pre-existing binding constraint between t2 and tx before defining the new
binding constraint on t1 and t2 (see Resolution 5 for removing RB constraints
and Resolution 6 for removing SB constraints). Alternatively, a transitive SME
conflict can be avoided by removing the task that causes the transitive SME
conflict (see Resolution 12). However, Resolution 12 will rarely be applicable in
practice.

t2t1

Before After

Resolution 2 Resolution 3

After

tx

SME RB/SB

t2t1 tx

RB / SB

t2t1 tx

SME

Resolution 5/6

t2t1 tx

DME

After

Resolution 12

t2t1

After

RB / SB

Transitive SME conflict

RB / SBRB

RB/SB
RB/SB

RB / SB

t2t1

Before After

Resolution 4 Resolution 6

After

tx

DME SB

t2t1 tx

SB

SB

t2t1 tx

DME

SB

Resolution 7

t2t1 tx

DME

SB

After

RB

Resolution 12

t2t1

SB

After

Transitive DME conflict

SB

a)

b)

Fig. 4: Resolving transitive SME (a) and DME (b) conflicts

Transitive DME conflict: A transitive DME conflict arises because of the
transitivity of SB constraints. Figure 4b shows a transitive DME conflict that
occurs if one tries to define a new subject-binding between two tasks (t1 and t2

in Figure 4b) that would result in a transitive subject-binding of a third task (tx

in Figure 4b) which is already defined as dynamically mutual exclusive to one of
the other tasks (see DME constraint between t1 and tx in Figure 4b). However,
SB constraints define that two task instances must be executed by the same
subject (see Def. 3.4), while DME constraints define that the corresponding task

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 11

instance must not be executed by the same subject (see Def. 3.2). Therefore,
such a configuration would result in a transitive DME conflict between t1 and
tx (see also Def. 2.7).

Resolutions to transitive DME conflicts: Figure 4b shows resolutions
for transitive DME conflicts. Such a conflict can be prevented by removing the
DME constraint before defining the new SB constraint (see Resolution 4), or by
removing the pre-existing SB constraint between t2 and tx before defining the
new SB constraint (see Resolution 6). It can also be avoided by changing the
existing SB constraint into a RB constraint before defining the new SB constraint
(see Resolution 7), or by removing the conflicting task tx (see Resolution 12).

4 Detecting and Resolving Assignment Conflicts

Assignment conflicts arise at design-time when defining new assignment rela-
tions between roles, subjects, and tasks. The algorithms defined below check
the design-time consistency of a process-related RBAC model when defining a
task-to-role, role-to-role, or role-to-subject assignment relation. If an assignment
conflict is detected, the algorithms return the name of the respective conflict
(see also [14]).

4.1 Algorithms for Detecting Assignment Conflicts

Algorithm 5 Check if it is allowed to assign a particular task type to a partic-
ular role (task-to-role assignment).

Name: isT2RAssignmentAllowed
Input: taskx ∈ TT , roley ∈ R
1: if ∃ tasky ∈ town(roley) | tasky ∈ sme(taskx) then return taskAssignmentConflict

2: if ∃ rolez ∈ allSeniorRoles(roley) | taskz ∈ town(rolez) ∧
3: taskz ∈ sme(taskx) then return taskAssignmentConflict

4: if ∃ s ∈ S | roley ∈ rown(s) ∧ rolez ∈ rown(s) ∧
5: taskz ∈ town(rolez) ∧ taskz ∈ sme(taskx) then return roleAssignmentConflict

6: return true

Algorithm 6 Check if it is allowed to define a (new) junior-role relation be-
tween two roles (role-to-role assignment).

Name: isR2RAssignmentAllowed
Input: junior, senior ∈ R
1: if junior == senior then return selfInheritanceConflict

2: if senior ∈ rh∗(junior) then return cyclicInheritanceConflict

3: if ∃ taskj ∈ town(junior) ∧ tasks ∈ town(senior) |
4: taskj ∈ sme(tasks) then return taskAssignmentConflict

5: if ∃ rolex ∈ allSeniorRoles(senior) | taskx ∈ town(rolex) ∧
6: taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)
7: then return taskAssignmentConflict

12 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

8: if ∃ s ∈ S | senior ∈ rown(s) ∧ rolex ∈ rown(s) ∧
9: taskx ∈ town(rolex) ∧ taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)
10: then return roleAssignmentConflict

11: return true

Algorithm 7 Check if it is allowed to assign a particular role to a particular
subject.

Name: isR2SAssignmentAllowed
Input: rolex ∈ R, subject ∈ S
1: if ∃ roley ∈ rown(subject) | tasky ∈ town(roley) ∧
2: taskx ∈ town(rolex) ∧ tasky ∈ sme(taskx) then return roleAssignmentConflict

3: return true

4.2 Resolving Assignment Conflicts

Self inheritance conflict: A self inheritance conflict may arise when defining
a new inheritance relation between roles. In particular, a role cannot be its own
junior-role (see Figure 5a and [14, 15]).

Resolution to self inheritance conflicts: This conflict can be resolved
by changing one of the selected roles so that the inheritance relation is defined
between two different roles (see Figure 5a and Resolution 13).

Cyclic inheritance conflict: A cyclic inheritance conflict results from the
definition of a new inheritance relation in a role-hierarchy (also called role-to-role
assignment). In particular, a role-hierarchy must not include a cycle because all
roles within such a cyclic inheritance relation would own the same permissions
which would again render the respective part of the role-hierarchy redundant
(see Figure 5b and [14, 15]).

Resolutions to cyclic inheritance conflicts: This conflict can be resolved
by defining a new inheritance relation between roles which are not already part
of the same role-hierarchy (see Resolution 13). In Figure 5b, Resolution 13 is
applied by defining a new inheritance relation between rx and ry while keeping
the existing inheritance relation between ry and rz. Moreover, the existing in-
heritance relation between ry and rz can be removed before defining the inverse
inheritance relation with rz as junior role of ry (see Resolution 14).

Task-assignment conflict: A task-assignment conflict may occur if the
definition of a new tra or junior-role relation would result in the assignment of
two SME tasks to the same role (see Def. 2.8). Figure 6a depicts an example
where a role ry owns a task ty which is defined as SME to another task tx. Thus,
assigning tx to ry would result in a task-assignment conflict.

Resolutions to task-assignment conflicts: To avoid the task-assignment
conflict in Figure 6a, the conflicting SME constraint between the two task types
can be removed or changed into a DME constraint (see Resolutions 2 and 3).
Alternatively, task ty can be revoked from ry, or the conflicting task ty can be
deleted (see Resolutions 8 and 12).

Role-assignment conflict: A role-assignment conflict arises if a new assign-
ment relation would authorize a subject to perform two SME tasks. Figure 6b

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 13

Cyclic inheritance conflict

rz

ry

senior

junior

senior

junior

Resolution 13

rz

ry

senior

junior

rx
senior

junior

Resolution 14

rz

ry

junior

senior

Before After After

ry

Self inheritance conflict

junior

senior

Resolution 13

rz

ry

senior

junior

Before After

a)

b)

Fig. 5: Resolving self-inheritance (a) and cyclic inheritance (b) conflicts

Before

ty

tx

ry
SME

After

ty

tx

ry

Resolution 2

After

Resolution 3

After

ty

txry

Resolution 8

ty

tx

ry
DME

After

Resolution 12

txry

Task-assignment conflict

SME

ty

tzrz

ry

s1

SME

tx

Before

ty

tzrz

ry SME

tx

Resolution 10

ty

tzrz

ry SME

tx

After

Resolution 11

After

Role-assignment conflict

s1

a)

b)

Fig. 6: Resolving task- (a) and role-assignment (b) conflicts

shows an example, where an assignment of role ry to subject s1 would result
in a role-assignment conflict because subject s1 would then be authorized to
perform the two SME tasks tz and tx. Thus, such an assignment would violate
the consistency requirement specified in Def. 2.9. Similarly, when defining a new
junior-role or tra relation, we need to check for role-assignment conflicts.

Resolutions to role-assignment conflicts: To avoid a role-assignment
conflict, the same resolutions as for task-assignment conflicts can be applied
(see Resolutions 2, 3, 8, and 12). In addition, Resolution 10 can be applied by
removing the conflicting assignment between rz and s1 (see Figure 6b). Moreover,
the conflict can (theoretically) be resolved by removing the conflicting subject
s1 which is assigned to the two SME tasks (see Resolution 11).

14 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Resolution Strategies for Assignment Conflicts

The following resolution strategies define the conflict resolutions described
above with respect to the formal definitions of process-related RBAC models
(see Section 2 and [14, 15]).

Resolution 13 Select two different roles

Input: rolei ∈ R
1: select rolex ∈ R | rolei 6= rolex ∧ rolex /∈ rh∗(rolei) ∧ rolei /∈ rh∗(rolex)

Resolution 14 Remove junior-role relation

Input: roley, rolez ∈ R
1: remove roley from rh∗(rolez) so that roley /∈ rh∗(rolez)

5 Detecting and Resolving Runtime Conflicts

Conflicts may also occur when executing process instances. Thus, runtime con-
flicts arise when actually enforcing constraints. In particular, mutual-exclusion
and binding constraints directly impact the allocation of tasks to subjects. Below
we discuss five potential conflicts when allocating a particular task instance to
a certain subject. These conflicts are illustrated in Figures 7a-e, where conflicts
arise when we try to allocate subject s1 to an instance of the a task type tx (in
Figure 7 instances of tx are labeled as txi).

ty

tzrz

ry

s1 tx

executable task conflict

txirx

executing-subject conflict

s1

s2

executing-role conflict

tyi

txirx

ry

s1

Runtime SB conflict

ty

tzrz

ry

s1

SB

tx

s2

tzrz

rx

s1

DME
tx

Runtime DME conflict

a) b) c)

d) e)

Fig. 7: Runtime conflicts

Algorithm 8 checks the runtime consistency of a process-related RBAC model
when allocating a task instance to a particular subject. If one of the runtime
conflicts shown in Figures 7a-e is detected, the algorithm returns the name of
the respective conflict.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 15

Algorithm 8 Check if a particular task instance executed during a specific pro-
cess instance can be allocated to a particular subject.

Name: isAllocationAllowed
Input: subject ∈ S, tasktype ∈ TT , processtype ∈ PT ,

processinstance ∈ pi(processtype), taskinstance ∈ ti(tasktype, processinstance)
1: if tasktype /∈ executableT asks(subject) then return executableTaskConflict

2: if es(taskinstance) 6= ∅ then return executingSubjectConflict

3: if er(taskinstance) 6= ∅ ∧ er(taskinstance) 6= ar(subject)
4: then return executingRoleConflict

5: if ∃ typex ∈ allSubjectBindings(tasktype) |
6: typex /∈ executableT asks(subject) then return runtimeSBConflict

7: if ∃ instancey ∈ ti(typey, processinstance) |
8: typey ∈ dme(tasktype) ∧ es(instancey) == subject
9: then return runtimeDMEConflict

10: return true

Executable task conflict: An executable task conflict arises if the selected
subject is not allowed to execute the task type the corresponding task instance
was instantiated from. If subject s1 is not allowed to execute instances of task
tx (see Figure 7a), the respective task instance must not be allocated to s1.

Resolutions to executable task conflicts: An executable task conflict can
be resolved by allocating an executing subject that actually owns the permission
to perform the respective task (see Resolution 15). Alternatively, one may change
the rsa or the tra relations so that s1 is allowed to execute tx.

Executing-subject conflict: An executing-subject conflict arises if the al-
location is not possible, because the respective task instance already has been
allocated to another subject. For example, in Figure 7b the task instance txi

already has an executing subject s2 and thus cannot be allocated to s1.
Resolution to executing-subject conflicts: An executing-subject conflict

can only be resolved by first deallocating the executing-subject before the re-
spective task instance can be reallocated to another subject that is allowed to
perform the respective task (see Resolution 16 and Algorithm 8).

Executing-role conflict: An executing role conflict visualized in Figure 7c
occurs if a task instance already has an executing role, but this executing role is
not the active role of the designated executing-subject.

Resolution to executing-role conflicts: An executing-role conflict can be
resolved by changing the active role of the subject to the executing-role of the
respective task instance (see Resolution 17).

Runtime SB conflict: Figure 7d shows an example of a runtime SB conflict
that occurs when we try to allocate s1 to an instance of tx. In particular, we
need to check if some task type tz exists that has a SB relation to tx but can-
not be executed by s1. Such an allocation violates the consistency requirement
specified in Def. 3.4, because subject-bound tasks must have the same executing
subject. Thus, a subject can only be allocated if it owns the right to perform the
corresponding task type as well as all subject-bound tasks.

16 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Resolutions to runtime SB conflicts: This conflict can be resolved by
removing the SB constraint (see Resolution 6). Moreover, the tra relation for the
subject-bound task or the rsa relation for one of the roles owning this task can
be changed so that the designated executing-subject is allowed to perform the
tasks that are connected via a (transitive) SB constraint. Furthermore, one of
the subject-bound tasks can be removed in order to resolve the SB conflict (see
Resolution 12), or the executing-subject can be changed (see Resolution 15).

Runtime DME conflict: In the example from Figure 7e, a runtime DME
conflict would occur if we try to allocate s1 to an instance of tz and to an
instance of tx in the same process instance. This is because a DME constraint
defines that in the same process instance the instances of two DME task types
must not be performed by the same subject (see Def. 3.2).

Resolutions to runtime DME conflicts: A runtine DME conflict is pre-
vented by either removing the DME constraint, by removing one of the DME
tasks, or by changing the executing-subject (see Resolutions 4, 12, 16 and 15).

Resolution Strategies for Runtime Conflicts

The following resolution strategies define the conflict resolutions presented
above with respect to the formal definitions of process-related RBAC models.

Resolution 15 Select a subject that is allowed to perform the respective task

Input: task ∈ TT , role ∈ R
1: select subject ∈ S | role ∈ rown(subject) ∧ task ∈ town(role)

Resolution 16 Deallocate a task instance

Input: taski ∈ TI

1: set es(taski) = ∅ and er(taski) = ∅

Resolution 17 Change the executing-subject’s active role to the executing-role
of the respective task

Input: taski ∈ TI , subject ∈ S | es(taski) == subject
1: if er(taski) 6= ar(subject)then set ar(subject) = er(taski)

6 Related Work

Sloman and Moffett [9, 10, 13] were among the first to analyze and categorize
conflicts between different types of policies. They also presented informal strate-
gies for resolving these conflicts. In [1], Ahn and Sandhu presented the RCL 2000
language for the specification of role-based authorization constraints. They also
show how SOD constraints can be expressed in RCL 2000 and discuss differ-
ent types of conflicts that may result from constraints specified via RCL 2000.
Bertino et al. [3] present a language to express SOD constraints as clauses in logic

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 17

programs. Moreover, they present corresponding algorithms that check the con-
sistency of such constraints. Thereby they ensure that all tasks within a workflow
are performed by predefined users/roles only. In [4], Botha and Eloff present an
approach called conflicting entities administration paradigm. In particular, they
discuss possible conflicts of static and dynamic SOD constraints in a workflow
environment and share a number of lessons learned from the implementation
of a prototype system. Schaad [12] discusses the detection of conflicts between
SOD constraints in a role-based delegation model. Schaad follows a rule-based,
declarative approach by using the Prolog language as an executable specification
language.

Wang et al. [18] define algorithms for the detection of conflicts between access
control policies. Similarly, in [2], an approach for the formalization of policy rules
is proposed and algorithms for policy conflict resolutions are derived. Yet, both
approaches do not consider conflicts resulting from SOD or BOD constraints.
Tan et al. [16] define a model for constrained workflow systems, including SOD
and BOD constraints. They discuss different issues concerning the consistency
of such constraints and provide a set of formal consistency rules that guarantee
the definition of a sound constrained workflow specification. In [6] Ferraiolo et
al. present RBAC/Web, a model and implementation for RBAC in Web servers.
They also discuss the inheritance and resulting consistency issues of SOD con-
straints in role-hierarchies. Jaeger et al. [8] present a formal model for constraint
conflicts and define properties for resolving these conflicts. They applied metrics
for resolving Biba integrity violations in an SELinux example policy.

7 Conclusion

In this paper, we discussed resolution strategies for conflicts of process-related
mutual-exclusion and binding constraints. Because of the countless configura-
tions that could cause conflicts, we chose to discuss frequently occurring conflict
types which group similar conflicts. In the same way, we described correspond-
ing types of resolution strategies. If a certain resolution strategy is actually
applicable to a specific real-world conflict can, however, only be decided by the
corresponding process modeler or security engineer.

Note that in our approach, conflicts are detected and resolved before caus-
ing an inconsistent RBAC configuration. In other words, the formal consistency
requirements for static and dynamic correctness of our process-related RBAC
models must hold at any time and therefore prevent the definition of inconsis-
tent RBAC models. The application of the algorithms and resolution strategies
described in this paper can help process modelers and security engineers to iden-
tify resolution options for design-time and runtime conflicts in process-related
RBAC models.

References

1. G. Ahn and R. Sandhu. Role-based Authorization Constraints Specification. ACM
Transactions on Information and System Security (TISSEC), 3(4), November 2000.

18 Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

2. J. Baliosian and J. Serrat. Finite State Transducers for Policy Evaluation and
Conflict Resolution. In Proceedings of the Fifth IEEE International Workshop on
Policies for Distributed Systems and Networks, June 2004.

3. E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of au-
thorization constraints in workflow management systems. ACM Transactions on
Information and System Security (TISSEC), 2(1), 1999.

4. R. A. Botha and J. H. Eloff. Separation of duties for access control enforcement
in workflow environments. IBM Systems Journal, 40(3), 2001.

5. F. Casati, S. Castano, and M. Fugini. Managing Workflow Authorization Con-
straints through Active Database Technology. Information Systems Frontiers, 3(3),
2001.

6. D. Ferraiolo, J. Barkley, and D. Kuhn. A Role-Based Access Control Model and
Reference Implementation within a Corporate Intranet. ACM Transactions on
Information and System Security (TISSEC), 2(1), February 1999.

7. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Control,
Second Edition. Artech House, 2007.

8. T. Jaeger, R. Sailer, and X. Zhang. Resolving constraint conflicts. In Proc. of the
Ninth ACM Symposium on Access Control Models and Technologies (SACMAT),
2004.

9. J. D. Moffett and M. S. Sloman. Policy Hierarchies for Distributed Systems Man-
agement. IEEE Journal on Selected Areas in Communications, 11(9), 1993.

10. J. D. Moffett and M. S. Sloman. Policy Conflict Analysis in Distributed System
Management. Journal of Organizational Computing, 4(1), 1994.

11. H. F. Ravi Sandhu, Edward Coyne and C. Youman. Role-based access control
models. IEEE Computer, 29(2), 1996.

12. A. Schaad. Detecting Conflicts in a Role-Based Delegation Model. In Proceedings of
the 17th Annual Computer Security Applications Conference (ACSAC), December
2001.

13. M. S. Sloman. Policy Driven Management for Distributed Systems. Journal of
Network and Systems Management, 2(4), 1994.

14. M. Strembeck and J. Mendling. Generic Algorithms for Consistency Checking
of Mutual-Exclusion and Binding Constraints in a Business Process Context. In
Proc. of the 18th International Conference on Cooperative Information Systems
(CoopIS), volume 6426 of Lecture Notes in Computer Science (LNCS). Springer
Verlag, October 2010.

15. M. Strembeck and J. Mendling. Modeling Process-related RBAC Models with
Extended UML Activity Models. Information and Software Technology, 53(5),
2011.

16. K. Tan, J. Crampton, and C. A. Gunter. The Consistency of Task-Based Au-
thorization Constraints in Workflow Systems. In Proceedings of the 17th IEEE
workshop on Computer Security Foundations, June 2004.

17. J. Wainer, P. Barthelmess, P. Barthelmess, and A. Kumar. W-RBAC - A workflow
security model incorporating controlled overriding of constraints. International
Journal of Cooperative Information Systems (IJCIS), 12(4), 2003.

18. H. Wang, L. Sun, and V. Varadharajan. Purpose-based access control policies and
conflicting analysis. In Security and Privacy - Silver Linings in the Cloud, volume
330 of IFIP Advances in Information and Communication Technology. 2010.

19. J. Warner and V. Atluri. Inter-instance authorization constraints for secure work-
flow management. In Proc. of the Eleventh ACM Symposium on Access Control
Models and Technologies (SACMAT), June 2006.

