
Information and Software Technology 53 (2011) 456–483
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Modeling process-related RBAC models with extended UML activity models

Mark Strembeck a,⇑, Jan Mendling b,1

a Institute of Information Systems, New Media Lab, Vienna University of Economics and Business (WU Vienna), Austria
b Institute of Information Systems, Humboldt-Universität zu Berlin, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 July 2010
Received in revised form 30 November 2010
Accepted 30 November 2010
Available online 13 December 2010

Keywords:
Process modeling
Role-based access control
Role engineering
Systems modeling
UML
0950-5849/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.infsof.2010.11.015

⇑ Corresponding author. Address: Augasse 2-6, A-1
1 31336 4983.

E-mail addresses: mark.strembeck@wu.ac.at (M.
wiwi.hu-berlin.de (J. Mendling).

1 Address: Spandauer Strasse 1, D-10178 Berlin, Germ
Context: Business processes are an important source for the engineering of customized software systems
and are constantly gaining attention in the area of software engineering as well as in the area of informa-
tion and system security. While the need to integrate processes and role-based access control (RBAC)
models has been repeatedly identified in research and practice, standard process modeling languages
do not provide corresponding language elements.
Objective: In this paper, we are concerned with the definition of an integrated approach for modeling pro-
cesses and process-related RBAC models – including roles, role hierarchies, statically and dynamically
mutual exclusive tasks, as well as binding of duty constraints on tasks.
Method: We specify a formal metamodel for process-related RBAC models. Based on this formal model,
we define a domain-specific extension for a standard modeling language.
Results: Our formal metamodel is generic and can be used to extend arbitrary process modeling lan-
guages. To demonstrate our approach, we present a corresponding extension for UML2 activity models.
The name of our extension is Business Activities. Moreover, we implemented a library and runtime engine
that can manage Business Activity runtime models and enforce the different policies and constraints in a
software system.
Conclusion: The definition of process-related RBAC models at the modeling-level is an important prere-
quisite for the thorough implementation and enforcement of corresponding policies and constraints in
a software system. We identified the need for modeling support of process-related RBAC models from
our experience in real-world role engineering projects and case studies. The Business Activities approach
presented in this paper is successfully applied in role engineering projects.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Each business process includes a number of tasks that need to
be executed sequentially or in parallel in order to successfully
complete the process [8,62,82]. In this context, access permissions
grant the right to perform a certain task. Therefore, the human
users participating in a workflow must own the permissions that
are needed to execute the corresponding tasks.

Access control deals with the elicitation, specification, mainte-
nance, and enforcement of authorization policies in software-
based systems [40,71]. In recent years, role-based access control
(RBAC) [23,24,70] has developed into a de facto standard for access
control in both research and industry. In the context of RBAC, roles
are used to model different job positions and scopes of duty within
ll rights reserved.

090 Vienna, Austria. Tel.: +43

Strembeck), jan.mendling@

any. Tel.: +49 30 2093 5805.
a particular organization or within an information system. These
roles are equipped with the permissions that are needed to per-
form their respective tasks. Human users and other active entities
(subjects) are assigned to roles according to their work profile
[84,86]. Therefore, RBAC directly supports the principle of least
privilege because each user can be assigned to the exact roles,
and thus owns the exact number of permissions, that are needed
to fulfill his duties. Thoroughly engineered roles also tend to
change significantly slower than the assignment of individuals to
these roles. Thus, establishing roles as an abstraction mechanism
for subjects significantly facilitates the administration of permis-
sions. In addition, the advantages of RBAC on the modeling and
technical levels directly translate into lower maintenance costs
[26].

In order to model process-related RBAC models, we therefore
need an approach that integrates the different concepts in a
consolidated modeling language. To actually enforce the process
definitions and access control policies in an information system,
the corresponding models need to be mapped to the respective
software platform. However, while a number of sophisticated

http://dx.doi.org/10.1016/j.infsof.2010.11.015
mailto:mark.strembeck@wu.ac.at
mailto:jan.mendling@wiwi.hu-berlin.de
mailto:jan.mendling@wiwi.hu-berlin.de
http://dx.doi.org/10.1016/j.infsof.2010.11.015
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 457
approaches exist that allow for the formal specification and analy-
sis of process-related access control policies and constraints (see,
e.g., [10,43,90]), corresponding modeling support for software sys-
tems is largely missing. In this paper, we present an integrated ap-
proach to model processes and process-related RBAC models. In
addition, we implemented a library and runtime engine to
straightforwardly map these processes and RBAC models to a soft-
ware platform.

1.1. Motivation

Role engineering is the process of defining roles, permissions,
constraints, and role hierarchies. In scenario-driven role engineer-
ing [84,86,88], we use scenario and process models as a primary
communication and engineering vehicle. Since its first publication
in 2002, scenario-driven role engineering was successfully applied
in many projects and is used by a number of consulting firms and
international projects (see, e.g., [16]). From our experience in role
engineering projects and case studies [39,54,84,86,88] we can say
that RBAC as well as mutual exclusion and binding of duty con-
straints are some of the theoretical concepts that are actually
and frequently used in the ‘‘real-world’’. Nevertheless, due to miss-
ing modeling support for process-related RBAC models, real-world
projects most often try to specify these concepts with ad hoc
extensions to modeling languages or via informal textual com-
ments. However, such types of work-arounds result in significant
problems for the comprehensibility and maintainability of these
ad hoc models, and they make it difficult to translate the respective
modeling-level concepts to actual software systems. In addition to
our own experience, the demand for an integrated modeling sup-
port of business processes, roles, and corresponding constraints,
such as separation of duty and binding of duty, has been repeatedly
identified in the literature [44,68,69,98]. This experience and real-
world problems led us to the approach we present in this paper.

In general, different types of problems arise in the context of
processes and process-related RBAC models. First, process model-
ing languages such as BPMN [59], EPCs [46,72], Petri nets [63,64],
or UML activity models [61] do not provide native language
constructs to model access control policies. Second, while some ap-
proaches exist to integrate process models with access control pol-
icies or constraints on different abstraction levels (see, e.g.,
[9,48,49,100]), there is a problem that the language used for pro-
cess modeling is most often different from (or not integrated with)
the system modeling language that is used to specify the corre-
sponding software system. This may again result in problems be-
cause different modeling languages provide different language
abstractions that cannot easily be mapped to each other. In partic-
ular, such semantic gaps may involve significant efforts when con-
ceptual models from different languages need to be integrated and
mapped to a software platform [6,36,101].

However, a complete and correct mapping of process defini-
tions and related access control policies to the corresponding soft-
ware system is essential in order to assure consistency between
the modeling-level specifications on the one hand, and the soft-
proc
pol

provide means
to define

Process Flow
Specifications

Business Ac

Fig. 1. Business Activities model processe
ware system that actually manages corresponding process in-
stances and enforces the respective policies on the other. The
demand to ensure that runtime process instances comply with
modeling-level processes and policies becomes even more pressing
with recent laws and regulations such as the Sarbanes-Oxley Act
(SOX), the Health Insurance Portability and Accountability Act (HI-
PAA), or the Basel II Accord. For example, adequate support for the
definition and enforcement of process-related access control poli-
cies, including separation of duty constraints, is one important part
of SOX compliance [13,18,52]. Moreover, corresponding compli-
ance requirements also arise from security recommendations and
standards such as the NIST security handbook [55], the NIST rec-
ommended security controls [56], the ISO 27000 standard family
[29–31] (formerly ISO 17799), legally binding agreements such
as business contracts, or company-specific (internal) rules/
regulations.

1.2. Approach synopsis

In model-driven software development (MDSD) [73,74,81] a
common approach is to develop a domain-specific language
(DSL) that provides relevant domain abstractions as first-class
language elements [51,80,89,103]. To ensure compliance between
models and software platforms, the models defined in a DSL are
mapped to source code artifacts of the software platform via auto-
mated model transformations [50,75,102]. In general, a DSL can be
a standalone language or it can be embedded in a host language
and extend the host language with domain-specific language
abstractions.

In this paper, we present Business Activities as an integrated ap-
proach to enable the specification of process flows as well as pro-
cess-related RBAC models and constraints. Fig. 1 shows an informal
overview of the main conceptual elements included in the Business
Activity approach. In particular, we first define a formal generic
metamodel for Business Activities (see Section 3). This generic
metamodel is based on the consensual core elements of process
models and can be used to extend arbitrary process modeling lan-
guages. However, in scenario-driven role engineering we use UML2
activity and interaction models as standard means for scenario and
process modeling [86]. Moreover, UML2 [61] is the de facto stan-
dard for software systems modeling. Therefore, we chose to define
an extension to the UML2 standard to demonstrate our approach.
In particular, we use our generic metamodel to define a corre-
sponding extension to UML2 activity models (see Section 4).

UML2 activity models provide a process modeling language that
allows one to model the control and object flows between different
actions. The main element of an activity diagram is an activity. Its
behaviour is defined by a decomposition into different actions. An
UML2 activity thus models a process while the actions that are in-
cluded in the activity can be used to model tasks (for details on
UML2 activity models see [61]). Fig. 2 shows an example of a credit
application process modeled via a standard UML2 activity diagram.

Our UML extension for Business Activities provides domain-
specific language abstractions that support the definition of
ess and task-related
icies and constraints

RBAC
Models & Constraints

provide means
to define

tivities

s and process-related RBAC models.

manages

provides runtime support for

Business Activities

mapped to

based on

Runtime ModelsSoftware Platform

Fig. 3. Platform-independent Business Activities are mapped to platform-specific runtime models.

Credit
application [else]

Credit application process

Credit
application

Check
application form

[Check passed]

[else]

Reject
application

Contract

Contract

[approved]

[Form Ok]

[else]

Check credit
worthiness

Negotiate
contract Approve contract

Fig. 2. A simple credit application process modeled as standard UML activity diagram.

458 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
process-related RBAC models. In addition, the extension directly
supports the definition of mutual exclusion and binding of duty
constraints (for details see Sections 3 and 4). We use the object
constraint language (OCL, [58]) to specify invariants for our
UML2 extension. Corresponding software tools can enforce these
invariants on the modeling-level as well as in runtime models.
Thereby, we can ensure the consistency of our Business Activity
models with the respective constraints. Moreover, our UML exten-
sion can be applied to supplement other UML-based approaches
and can be integrated in UML-based software tools. However, note
that our general approach does not depend on UML and may also
be applied to extend other process modeling languages.

In addition to our modeling extension, we also implemented a
corresponding software platform to ensure compliance of the pro-
cesses and RBAC policies modeled via Business Activities on the
one hand, and the respective runtime models on the other. Our
software platform for Business Activities allows for a direct map-
ping of the different modeling level artifacts to corresponding
source code structures (see Fig. 3).

The remainder of this paper is structured as follows. Section 2
gives an overview of access control in a business process context
with a special emphasis on separation of duty and binding of duty.
Next, Section 3 presents a formal and generic model for Business
Activities. Subsequently, Section 4 presents our UML extension
for Business Activities to demonstrate how the generic metamodel
can be used to extend a standard modeling language, and Section 5
gives examples for Business Activity models. In Section 6, we dis-
cuss insights from real-world projects, and describe how our Busi-
ness Activities help resolve different issues we identified in these
projects. Section 7 gives an overview of our software platform for
Business Activities (which includes a corresponding library and
runtime engine), as well as the mapping of Business Activity mod-
els to runtime models. Next, Section 8 discusses related work, and
Section 9 concludes the paper.

2. Access control in a business process context

When performing an IT-supported workflow, human users and
proactive/autonomous software agents have to fulfill certain tasks
to execute the workflow. Each action in a workflow (like changing
a document or sending a message) is typically associated with a
certain access operation (e.g. to a document or a messaging service,
respectively). Thus, an active entity participating in a workflow (be
it a human user or a software agent) must be authorized to per-
form the actions that are needed to complete its tasks in the work-
flow [10,27,57,91,92,95]. The business processes of an organization
are therefore an ideal source to identify and define a tailored set of
access control policies for this organization, as well as their infor-
mation system [54,85,86,88].

In the context of business process modeling, separation of duty
constraints and binding of duty constraints are important means to
assist the specification of business processes and to control corre-
sponding workflows [10,11,90,95].

2.1. Separation of duty

Separation of duty (SOD) constraints enforce conflict of interest
policies [3,14,22,42,83]. Conflict of interest arises as a result of
the simultaneous assignment of two mutual exclusive entities
(e.g. permissions or tasks) to the same subject. Thus, the definition
of mutual exclusive entities is a well-known mechanism to enforce
separation of duty. Mutual exclusive tasks result from the division
of powerful rights or responsibilities to prevent fraud and abuse.
An example is the common practice to separate the tasks of the
‘‘controller’’ role and the ‘‘chief buyer’’ role in medium-sized and
large companies.

SOD constraints can be subdivided in static separation of duty
constraints and dynamic separation of duty constraints. In essence,
static separation of duty constraints specify that two mutual exclu-
sive entities must never be assigned to the same subject simulta-
neously. Dynamic separation of duty constraints define that two
mutual exclusive entities must never be activated by the same sub-
ject simultaneously. This means that two dynamically mutual
exclusive entities may be assigned to the same subject. The corre-
sponding subject, however, is only allowed to activate at most one
of its dynamically mutual exclusive entities at the same time.

In this context, a task-based separation of duty constraint is a SOD
constraint that considers task order and task history in a particular
process instance to decide if a certain subject or role is allowed to
perform a certain task [11,28,90,92,97]. Again, task-based SOD

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 459
constraints can be static or dynamic. A static task-based SOD con-
straint can be enforced by defining that two statically mutual
exclusive (SME) tasks must never be assigned to the same role
and must never be performed by the same subject. This constraint
is global with respect to all process instances in the corresponding
information system. For example, a company may choose to define
two SME tasks ‘‘Order supplies’’ and ‘‘Approve payment’’ to prevent
fraud and abuse.

In contrast, a dynamic task-based SOD constraint refers to indi-
vidual process instances and can be enforced by defining that
two dynamically mutual exclusive (DME) tasks must never be per-
formed by the same subject in the same process instance. In other
words: two DME tasks can be assigned to the same role. However,
to complete a process instance which includes two DME tasks, one
needs at least two different subjects. This means, although a sub-
ject might possess a role which includes all permissions to perform
two DME tasks, a DME constraint enforces that the same subject
does not perform both tasks in the same process instance.

For example, in the credit application process from Fig. 2 a bank
may assign the tasks ‘‘Negotiate contract’’ and ‘‘Approve contract’’
to the ‘‘Bank clerk’’ role and define these tasks as dynamically mu-
tual exclusive. Each subject owning the ‘‘Bank clerk’’ role may then
perform both tasks. Nevertheless, because of the DME constraint
on these tasks, we always need at least two bank clerks to com-
plete an instance of the credit application process.
2.2. Binding of duty

Binding of Duty (BOD) constraints define a connection between
two (or more) tasks so that a subject (or role) who performed
one of these tasks must also perform the corresponding related
task(s). In other words, in a given process instance two ‘‘bound
tasks’’ must always be performed by the same subject (or role),
e.g. because of specific knowledge the subject acquires while per-
forming the first of two bound tasks, for reasons of corporate or
organization-internal processing standards, or to simplify interac-
tion with other process stakeholders [90,95].

Moreover, binding of duty can be subdivided in subject-based
and role-based constraints. A subject-based BOD constraint then de-
fines that the same individual who performed the first task must
also perform the bound task(s). In contrast to that, a role-based
BOD constraint defines that bound tasks must be performed by
members of the same role, but not necessarily by the same individ-
ual. Throughout the paper, we will use the terms subject-binding
and role-binding as synonyms for subject-based BOD constraints
and role-based BOD constraints respectively.

Consider an example where a role-binding is defined on the
tasks ‘‘Check credit worthiness’’ and ‘‘Negotiate contract’’ shown
in Fig. 2. If an instance of the ‘‘Check credit worthiness’’ task is per-
formed by a subject owning the ‘‘Bank clerk’’ role, the correspond-
ing ‘‘Negotiate contract’’ task must also be performed by a member
of the ‘‘Bank clerk’’ role. This means that the second task can be
performed by any subject owning the ‘‘Bank clerk’’ role, and this
subject may be the same individual who performed the ‘‘Check
credit worthiness’’ task.

In contrast to that, if we would define a subject-binding on the
‘‘Check credit worthiness’’ and ‘‘Negotiate contract’’ tasks, the sec-
ond task must always be performed by the same individual who
performed the first task.
3. A formal and generic metamodel for Business Activities

In this section, we present a formal generic metamodel for
processes and process-related RBAC models. The metamodel is
based on the consensual set of basic modeling elements for pro-
cess models [46]. In principle, it can be integrated with any pro-
cess modeling language that defines control flows between tasks.
Furthermore, such a formalization is of central importance to dis-
cuss correctness properties because process-related RBAC models
can easily become complex. As a first step, we formalize access
control concepts for Business Activities via a so-called Business
Activity RBAC Model in Section 3.1. This formalization helps us
define formal correctness criteria for process-related RBAC mod-
els. We provide a set of static correctness criteria which ensure
the integrity of the model when defining mutual exclusion and
binding constraints for a set of Business Activities. In addition,
we define dynamic correctness criteria that take the runtime
allocation of tasks to subjects into account. Section 3.2 integrates
the Business Activity RBAC Model with common routing ele-
ments of process modeling languages via a so-called Business
Activity Flow Model. We formalize its behavioural semantics as
a labeled transition system [15,53], which provides the founda-
tion for checking satisfiability. Because access control constraints
relate to both process instance and process type information, we
have to include both in our metamodel. This approach is similar
to the metamodel formalization of a workflow system in general
as introduced by [41] (which does not cover access control in
detail, however). In this way, our formal metamodel also pro-
vides an approach for the modeling, implementation, and
enforcement of SOD and BOD constraints in a business process
context (as identified by the workflow resource patterns [68]
for instance).

3.1. Generic metamodel for Business Activity RBAC models

We first define the essential concepts of a Business Activity
RBAC model including subjects, roles, tasks, and processes. Tasks
and processes have to be defined both on an instance and a type
level. This is because mutual exclusion and binding constraints
are specified at the level of task types, while a number of respective
correctness criteria have to be discussed in relation to particular
executions of a process, i.e. in the context of task and process
instances.

Fig. 4 shows essential relations of subjects (users), roles, tasks,
and processes via a class diagram [61]. Note that Fig. 4 includes
‘‘exclusion’’ and ‘‘binding’’ associations for tasks only. While mu-
tual exclusion constraints can also be defined on the level of roles
[22,70], the definition of mutual exclusive roles may result in a
number of computational problems [42]. Moreover, the context
in a workflow system is given through process instances and corre-
sponding task instances. In this paper, we therefore focus on mu-
tual exclusion and binding constraints defined on the task level
(i.e. on the permission level). In Fig. 4, the exclusion relations be-
tween tasks are represented via the staticExclusion and
dynamicExclusion associations defined on TaskType. Likewise,
the binding relations between tasks are represented through the
subjectBinding and roleBinding associations on TaskType.

A role that is associated with two mutual exclusive tasks then
inherits the corresponding SME or DME constraint from these tasks
(see below). However, while a graphical metamodel is a good
means to visualize the connection of different artifacts, it cannot
express all formal relations and invariants of these artifacts. There-
fore, Definition 1 first specifies the essential elements of the meta-
model and their basic interrelations.

Definition 1 (Business Activity RBAC Model). A Business Activity
RBAC Model BRM = (E,Q,D) where E = S [R [PT [PI [TT [TI refers
to pairwise disjoint sets of the metamodel, Q = rh [rsa [es [
er [tra [ti to mappings that establish relationships, and
D = sb [rb [sme [dme to binding and mutual exclusion con-
straints, such that

**

*

* *

* 1..*

juniorRoleseniorRole

owner role

ProcessType

*

TaskType

staticExclusion
0..*

Role

1..*

1..*

Subject
(User)

ProcessInstance TaskInstance

dynamicExclusion
0..**

1

1

*
* 1..*

1

*

0..*

*

subjectBinding

*

roleBinding

0..*

1

executingRole
executingSubject

instanceOf

instanceOf
participates

Fig. 4. Conceputal overview: main elements of Business Activity RBAC models.

460 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
� For the sets of the metamodel:
– An element of S is called Subject. S – ;.
– An element of R is called Role. R – ;.
– An element of PT is called Process Type. PT – ;.
– An element of PI is called Process Instance.
– An element of TT is called Task Type. TT – ;.
– An element of TI is called Task Instance.

Below, we iteratively define the partial mappings of the
Business Activity RBAC Model and provide corresponding formal-
izations (P refers to the power set):

1. Roles can be arranged in a role hierarchy [24,70], where
senior-roles inherit the permissions from their junior-roles.
For example, in a banking context we may have a junior-role
‘‘Bank Clerk’’ and a corresponding senior-role ‘‘Bank Man-
ager’’. The ‘‘Bank Manager’’ role then inherits all permissions
from the ‘‘Bank Clerk’’ role. Moreover, because the ‘‘Bank
Clerk’’ role may itself have one or more junior-roles (such
as a role ‘‘Bank Intern’’), the ‘‘Bank Manager’’ does inherit
the permissions from its direct as well as his transitive
junior-roles. Formally: The mapping rh : R#PðRÞ is called
role hierarchy. For rh(rs) = Rj we call rs senior role and Rj the
set of direct junior roles. The transitive closure rh⁄ defines the
inheritance in the role hierarchy such that rh�ðrsÞ ¼ Rj� includes
all direct and transitive junior roles that the senior role rs inher-
its from. The role hierarchy is cycle-free, i.e. for each
r 2 R:rh⁄(r) \ {r} = ;.

2. Task types are assigned to roles to define the permissions of
the corresponding roles. The task-to-role assignment rela-
tion is a many-to-many relation, so that each role can own
the permissions to execute several different task types and
each task type may be assigned to several roles. Moreover,
in a role hierarchy each role owns the permissions that are
directly assigned to this role, as well as the permissions
inherited from its junior-roles. Consider an example where
the junior-role ‘‘Bank Intern’’ has the (directly assigned) per-
mission to perform the task ‘‘Check application form’’, and
its senior-role ‘‘Bank Clerk’’ has the (directly assigned) per-
mission to perform the ‘‘Negotiate contract’’ task (see
Fig. 2). In this example, the ‘‘Bank Clerk’’ role inherits the
permission to perform the ‘‘Check application form’’ task
from its junior-role ‘‘Bank Intern’’. Formally: The mapping
tra : R#PðTTÞ is called task-to-role assignment. For
tra(r) = Tr we call r 2 R role and Tr # TT is called the set of tasks
assigned to r. The mapping tra�1 : TT#PðRÞ returns the set of
roles a task is assigned to (the set of roles owning a task).
This assignment implies a mapping task ownership
town : R#PðTTÞ, such that for each role r 2 R the tasks inher-
ited from its junior roles are included, i.e. townðrÞ ¼

S
rinh2rh�ðrÞ

traðrinhÞ [traðrÞ. The mapping town�1 : TT#PðRÞ returns the
set of roles a task is assigned to (directly or transitively via a
role hierarchy).

3. Roles are assigned to subjects, and through their roles the
subjects acquire the rights to execute corresponding tasks.
The role-to-subject assignment relation is a many-to-many
relation, so that each subject may own several roles and each
role can be assigned to different subjects. For example, in
case the ‘‘Bank Clerk’’ role is assigned to two subjects called
Alice and Bob, both can perform all tasks assigned to the
‘‘Bank Clerk’’ role. Formally: The mapping rsa : S#PðRÞ is
called role-to-subject assignment. For rsa(s) = Rs we call
s 2 S subject and Rs # R the set of roles assigned to this sub-
ject (the set of roles owned by s). The mapping rsa�1 : R#PðSÞ
returns all subjects assigned to a role (the set of subjects owning
a role). This assignment implies a mapping role ownership
rown : S#PðRÞ, such that for each subject s 2 S all direct and
inherited roles are included, i.e. rown(s) =

S
r2rsa(s)rh⁄(r) [

rsa(s). The mapping rown�1 : R#PðSÞ returns all subjects
assigned to a role (directly or transitively via a role hierarchy).

4. Each process type consists of an arbitrary number of task
types, and each task type can be associated with an arbitrary
number of process types. Thus the process-type to task-type
relation is a many-to-many relation. For example, the credit
application process from Fig. 2 consists of five task types.
Each of these five task types may also be associated with

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 461
other process types. The ‘‘Approve contract’’ task type could
also be associated with a ‘‘Purchase real estate’’ process type,
for instance. Formally: The mapping ptd : PT#PðTTÞ is called
process type definition. For ptdðpTÞ ¼ TpT

we call pT 2 PT pro-
cess type and TpT

TT the set of task types associated with
pT.

5. For each process type we can create an arbitrary number of
corresponding process instances. For example, each actual
credit application is handled via an own instance of the
credit application process from Fig. 2. Formally: The mapping
pi : PT#PðPIÞ is called process instantiation. For pi(pT) = Pi

we call pT 2 PT process type and Pi # PI the set of process
instances instantiated from process type pT.

6. For each task type we can create an arbitrary number of
respective task instances. For example, for each instance of
the credit application process (see Fig. 2) we also have an
own instance of the ‘‘Check credit worthiness’’ task type.
Thus, if we have two instances of the credit application pro-
cess, e.g. one for applicant Claudia and one for applicant
Diane, we also have two instances of the ‘‘Check credit wor-
thiness’’ task for each of the two process instances. Formally:
The mapping ti : ðTT � PIÞ#PðTIÞ is called task instantiation.
For ti(tT,pI) = Ti we call Ti # TI set of task instances, tT 2 TT is
called task type and pI 2 PI is called process instance.

7. Because role-to-subject assignment is a many-to-many rela-
tion (see Definition 1.3), more than one subject may be able
to execute instances of a certain task type. For example, if we
have two subjects, Alice and Bob, who are assigned to the
‘‘Bank Clerk’’ role, each of them may execute instances of
the ‘‘Check credit worthiness’’ task type (which we assume
is assigned to this role). However, for each instance of the
respective task type only one of the potential candidates
actually executes the corresponding task instance. For exam-
ple, if we have two credit applications filed by Claudia and
Diane, respectively, Alice may execute the ‘‘Check credit
worthiness’’ task instance for Claudia, while Bob executes
the corresponding task instance for Diane. The subject exe-
cuting a particular task instance is called the executing-sub-
ject of this instance. Formally: The mapping es:TI ´ S is called
executing-subject mapping. For es(t) = s we call s 2 S the exe-
cuting subject and t 2 TI is called executed task instance.

8. Via the role hierarchy, different roles may posses the permis-
sion to perform a certain task type (see Definitions 1.1 and
1.2). For example, if the ‘‘Check application form’’ task type
is assigned to the ‘‘Bank Intern’’ role, this permission is also
inherited by the corresponding ‘‘Bank Clerk’’ senior-role. The
role that is used to actually execute a certain task instance is
called the executing-role of this instance. Formally: The map-
ping er:TI ´ R is called executing-role mapping. For er(t) = r
we call r 2 R the executing role and t 2 TI is called executed
task instance.

9. To enforce subject-based BOD constraints, we define sub-
ject-binding relations between task types (for a discussion
of subject-based BOD see Section 2). Formally: The mapping
sb : TT#PðTTÞ is called subject-binding. For sb(t1) = Tsb we
call t1 2 TT the subject binding task and Tsb # TT the set of
subject bound tasks.

10. To enforce role-based BOD constraints, we define role-bind-
ing relations between task types (for a discussion of role-
based BOD see Section 2). Formally: The mapping
rb : TT#PðTTÞ is called role-binding. For rb(t1) = Trb we call
t1 2 TT the role binding task and Trb # TT the set of role bound
tasks.

11. To enforce static task-based SOD constraints, we define sta-
tic mutual exclusion (SME) relations between task types (for
a discussion of static SOD see Section 2). Formally: The map-
ping sme : TT#PðTTÞ is called static mutual exclusion. For
sme(t1) = Tsme with Tsme # TT we call each pair t1 2 TT and tx

2Tsme statically mutual exclusive tasks.
12. To enforce dynamic task-based SOD constraints, we define

dynamic mutual exclusion (DME) relations between task
types (for a discussion of dynamic SOD see Section 2).
Formally: The mapping dme : TT#PðTTÞ is called dynamic
mutual exclusion. For dme(t1) = Tdme with Tdme # TT we call
each pair t1 2 TT and tx 2Tdme dynamically mutual exclusive
tasks.

For Business Activity RBAC Models there are two different types
of correctness that need to be considered: static correctness and
dynamic correctness. Static correctness refers to the logical consis-
tency of the elements and relationships in the Business Activity
RBAC Model. It is static in the sense that it refers to the design-time
of the model, i.e. it refers to process types and task types. Dynamic
correctness relates to the compliance of process instances with the
mutual exclusion and binding constraints at runtime. Thus, it is
dynamic in the sense that it refers to the runtime execution of a
particular process. Definition 2 provides the rules for static
correctness.

Definition 2. Let BRM = (E,Q,D) be a Business Activity RBAC Model.
BRM is said to be statically correct if the following requirements
hold:
1. Mutual exclusion constraints between tasks define that a sub-
ject who owns (in case of a SME relation) or executes (in case
of a DME relation) one of two mutual exclusive tasks must
not own or execute the other task (see Section 2). Therefore:
Tasks cannot be mutual exclusive to themselves:
8t2 2 smeðt1Þ : t1–t2 and 8t2 2 dmeðt1Þ : t1–t2
2. As indicated by their name, mutual exclusion constraints are
bidirectional. If, for example, the task ‘‘Negotiate contract’’ is
defined as (dynamically or statically) mutual exclusive to the
task ‘‘Approve contract’’ (see Fig. 2), the ‘‘Approve contract’’ task
is also mutual exclusive to ‘‘Negotiate contract’’. Therefore we
define the: Mutuality of mutual exclusion constraints:
8t2 2 smeðt1Þ : t1 2 smeðt2Þ and 8t2 2 dmeðt1Þ : t1 2 dmeðt2Þ
3. Binding constraints between tasks define that a subject or role
who executes one bound task must also execute the other task
(see Section 2). For example, if a binding is defined between the
‘‘Check credit worthiness’’ task and the ‘‘Negotiate contract’’
task (see Fig. 2), the subject or role executing an instance of
the first task must also execute the corresponding instance of
the second task (see also Definitions 1.7, 1.9, 1.10). Therefore:
Tasks cannot be bound to themselves:
8t2 2 sbðt1Þ : t1–t2 and 8t2 2 rbðt1Þ : t1–t2
4. Similar to mutual exclusion constraints, binding constraints are
bidirectional. If, for example, the task ‘‘Check credit worthiness’’
is bound to the task ‘‘Negotiate contract’’ (see Fig. 2), the ‘‘Nego-
tiate contract’’ task is also bound to ‘‘Check credit worthiness’’.
Therefore we define the: Mutuality of binding constraints:
8t2 2 sbðt1Þ : t1 2 sbðt2Þ and 8t2 2 rbðt1Þ : t1 2 rbðt2Þ
5. A SME constraint defines that two task types must never be
assigned to the same subject, while a DME constraint defines
that the instances of two task types must never be executed
by the same subject (see Section 2). Thus, because a SME con-
straint completely prevents the assignment, and thereby
implicitly the execution, of two mutual exclusive tasks through

462 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
the same subject, it is global with respect to all process
instances. Thus, it is not sensible to define a SME and a DME
relation between the same two tasks. Therefore: Tasks are
either statically or dynamically mutual exclusive:
8t2 2 smeðt1Þ : t2 R dmeðt1Þ and 8t2 2 dmeðt1Þ : t2 R smeðt1Þ
6. SME constraints conflict with all types of binding constraints
(subject-binding as well as role-binding). This is because a bind-
ing constraint defines that (in the context of the same process
instance) the instances of two bound task types must be per-
formed by the same subject respectively the same role, while
a SME constraint defines that the instances of two statically
mutual exclusive task types must not be performed by the same
subject respectively the same role (see Section 2). It is impossi-
ble to fulfill both constraints at the same time. Therefore, it is
not allowed to define a SME constraint and a binding constraint
between the same two task types t1 and t2: Either SME con-
straint or binding constraint:
8t2 2 smeðt1Þ : t2 R sbðt1Þ ^ t2 R rbðt1Þ and
8t2 2 sbðt1Þ [rbðt1Þ : t2 R smeðt1Þ
7. DME constraints and subject-binding constraints conflict. This is
because a subject-binding constraint defines that (in the con-
text of the same process instance) the instances of two bound
task types must be performed by the same subject (the same
individual). In contrast, a DME constraint defines that (in the
context of the same process instance) the instances of two task
types must not be performed by the same subject. It is not pos-
sible to fulfill both constraints at the same time. Therefore, it is
not possible to specify a DME constraint and a subject-binding
constraint between the same two task types t1 and t2:Either
DME constraint or subject-binding constraint:
8t2 2 dmeðt1Þ : t2 R sbðt1Þ and 8t2 2 sbðt1Þ : t2 R dmeðt1Þ
Note that it is possible, however, to simultaneously define a role-
binding constraint and a DME constraint on two tasks. This is be-
cause a DME constraint defines that (in the context of the same pro-
cess instance) a subject must not own the instances of two
dynamically mutual exclusive task types (see above). A role-binding
constraint yet only defines that (in the context of the same process
instance) the instances of two bound task types must be performed
by the same role, not by the same subject/individual. This can, for
instance, be achieved in the credit application process of Fig. 2 if
there is a role binding and a DME constraint between the tasks
‘‘Check creditworthiness’’ and ‘‘Approve contract’’. This can be inter-
preted as a peer review (different subjects owning the same role).
Therefore, DME constraints and role-binding constraints do not
conflict.
8. Because each role owns the tasks that are directly assigned to this

role as well as the tasks assigned to its junior-roles (see also Def-
initions 1.1 and 1.2), we have to make sure that no role can own
two SME tasks, neither directly nor via a role hierarchy. Therefore,
we must ensure the: Consistency of task ownership and SME:
8t2 2 smeðt1Þ : town�1ðt2Þ \ town�1ðt1Þ ¼ ;
2 When we instantiate a task type, we check which subjects are allowed to execute
e respective task type according to their roles. Next, we choose one of the subjects
at can potentially be allocated to this task instance and actually allocate the task
stance to the respective subject (see also Section 7). This subject becomes the

xecuting-subject of the corresponding task instance. In contrast to SME constraints,
ME constraints must be checked at runtime, i.e. in context of a specific process
stance (see also [87], Section 2, and Definition 3.2).
9. Subjects acquire the rights to perform certain task types via
role-to-subject assignment relations (see Definition 1.3). How-
ever, it must never happen that a subject acquires the rights
to perform two SME task types (see Section 2). This is because
the role-to-subject assignment relations of a certain subject also
define indirect/transitive relations between all task types
assigned to this subject (see Definitions 1.1, 1.2, and 1.3). There-
fore, the assignment of two SME task types to a certain subject
must be prevented directly at design-time (in contrast to run-
time checks which are performed on task instances). Otherwise,
the transitive relation between two SME task types would vio-
late the SME constraints, which would, again, result in an incon-
sistent and invalid model. Based on the relations defined at
design-time (in particular, the task-to-role assignment and
role-to-subject assignment relations), we can then perform
the runtime allocation of task instances to subjects.2 Therefore,
we must ensure the: Consistency of role ownership and SME:
8t2 2 smeðt1Þ; r2 2 town�1ðt2Þ; r1 2 town�1ðt1Þ :

rown�1ðr2Þ \ rown�1ðr1Þ ¼ ;
In addition to static correctness, Definition 3 provides the rules
for dynamic correctness of a Business Activity RBAC Model, i.e. the
rules that can only be checked in relation to existing task and pro-
cess instances.

Definition 3. Let BRM = (E,Q,D) be a Business Activity RBAC Model
and PI its set of process instances. BRM is said to be dynamically
correct if the following requirements hold:
1. In the same process instance, the executing subjects of SME
tasks must be different (see Section 2):
8t2 2 smeðt1Þ;pi 2 PI : 8tx 2 tiðt2;piÞ; ty 2 tiðt1;piÞ :

esðtxÞ–esðtyÞ

We include this rule for the sake of completeness only, as the
rule must always hold due to the consistency rule for role own-
ership and SME (see Definition 2.9).

2. In the same process instance, the executing subject of DME
tasks must be different (see Section 2):
8t2 2 dmeðt1Þ;pi 2 PI : 8tx 2 tiðt2; piÞ; ty 2 tiðt1;piÞ :

esðtxÞ–esðtyÞ
3. In the same process instance, role bound tasks must have the
same executing role (see Section 2):
8t2 2 rbðt1Þ;pi 2 PI : 8tx 2 tiðt2; piÞ; ty 2 tiðt1;piÞ :

erðtxÞ ¼ erðtyÞ
4. In the same process instance, subject bound tasks must have
the same executing subject (see Section 2):
8t2 2 sbðt1Þ; pi 2 PI : 8tx 2 tiðt2;piÞ; ty 2 tiðt1; piÞ :

esðtxÞ ¼ esðtyÞ
3.2. Generic metamodel for Business Activity process flows

As we have now defined the structure of a Business Activity
RBAC Model, we can formalize the generic flow metamodel.
Fig. 5 shows the basic elements of Business Activity Process Flows
and the main relations between these elements. Again, while this
graphical model only gives an overview, we now provide a formal
specification of the process flow model. This formalization defines
a process flow model as a graph with specific types of nodes for ac-
tions and control elements, as well as arcs capturing the flow of
control. The behavioural semantics are formalized as a labeled
transition system [15,53]. Before a task can be completed, we have
to check whether it is possible to find a subject who owns a corre-
sponding role, and who is allowed to execute the task without vio-
th
th
in
e
D
in

1

1

* sourceoutgoing

targetincoming*

Arc Node TaskType

ControlNode

Fork Join Decision Merge

EndNodeStartNode

Fig. 5. Conceptual overview: main elements of Business Activity Process Flows.

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 463
lating mutual exclusion and binding constraints [87]. Therefore,
our formalization has to explicitly take the execution history of a
process instance into account – which is in contrast to most for-
malizations of process modeling languages which only cover the
control flow.
Definition 4 (Business Activity Process Flow Model). A Process
Flow Model PFM = (N,A) where N = TT [CF [CJ [CD [CM [
{start,end} refers to pairwise disjoint sets and A # N � N such
that

� An element of N is called node and an element of A is called arc.
� An element of TT is called task type.
� An element of C = CF [CJ [CD [CM is called control node. An

element of CF is called fork, an element of CJ join, an element
of CD decision, and an element of CM merge.
� start is called start node and end is called end node.
� All nodes n 2 N are on a path from start to end.

We will now define the dynamics of a process flow model based
on its interplay with a Business Activity RBAC model. In this con-
text, we need to explicitly refer to the execution history h(p) of a
process instance p. If the reference to a particular process instance
is clear, we will simply write h instead of h(p). This history is re-
corded in the Business Activity RBAC Model BRM since it has to re-
flect which subject has executed which task instance. Therefore,
we now define the history of a process instance based on BRM.

Definition 5. Let BRM = (E,Q,D) be a Business Activity RBAC Model
and PI its set of process instances. For a particular process instance
p 2 PI, an execution event exec(p) 2 (TI � TT � R � S) is a record of a
particular task execution where TI refers to the set of task
instances, TT to the set of corresponding task types, R to the set
of executing roles, and S to the set of executing subjects. The
execution history h(p) of a process instance p is defined as a
mapping h : PI#Pðfðti; tt; r; sÞjti 2 TI; tt 2 TT ; r 2 R; s 2 SgÞ, which
maps h(p) to a set of execution events exec(p).

For a Business Activity Process Flow Model we define a no-
tion of state, based on the distribution of control tokens on
the arcs and the execution history. This resembles the state
concept of [94]. Yet, our notion of history is richer in the sense
that it covers also historic role assignments and subject assign-
ments. We use letter m to refer to a state and letter M to refer
the set of states, respectively. These letters are commonly used
in Petri net formalizations, and are derived from the term
‘‘marking’’, which is used as a synonym for state in the Petri
net context.
Definition 6 (State of a Process Instance). Let PFM be a Business
Activity Process Flow Model and BRM a Business Activity RBAC
Model such that the tasks of the first match the latter, that is
TPFM

T ¼ TBRM
T , and such that a 2 A are the arcs of PFM. The state of a

process instance p 2 PI is defined as a pair m = (d,h) where h refers
to the execution history of p and where d is an element of
D : A#N, which is a distribution of tokens on the arcs of the model
with N being the natural numbers. The initial state mi = (di,h) of p
is a state m such that
� h = ;
� For each a = (n1,n2) with n1 = start:d(a) = 1.
� For each a = (n1,n2) with n1 – start:d(a) = 0.

Based on these definitions we can specify the behavioural
semantics of a Business Activity RBAC Model. Similar to Petri nets,
we define its behaviour using a notion of state and firing rules that
can be used to construct the reachability graph. Yet, in our defini-
tion we do not use a Petri net translation but rather directly ex-
press state transitions in terms of a labeled transition system.
This approach is typically used when formalizing complex behav-
iour in workflow languages that is difficult to express directly in
terms of Petri net constructs. It is used, for instance, in the formal-
ization of YAWL and of EPCs [2,37,47]. Formalizations via a map-
ping to Petri nets have been defined for EPCs [1], BPMN [19], and
activity diagrams [21]. For an overview see [45].

For the definition, notationwise, we refer to the set of incoming
and outgoing arcs of a node as follows: for each noden 2 N, we de-
fine the set of incoming arcs nin = {(x,n)jx 2 N ^ (x,n) 2 A}, and the
set of outgoing arcs nout = {(n,y)jy 2 N ^ (n,y) 2 A}. The result is a
reachability graph definition in terms of a labeled transition sys-
tem [46]. The transition relations of ‘‘fork’’ and ‘‘join’’ control nodes
are visualized in the first row of Fig. 6: if each of the incoming arcs
has a token, then a transition can be applied to a subsequent state
where each outgoing arc receives a token. The ‘‘decision’’ and
‘‘merge’’ control nodes (the diamond shape symbols in Fig. 6) de-
fine a transition for every token that is coming through one of
the input arcs to be propagated to exactly one of the output arcs.
Most interestingly is the transition for a task node, depicted via
the round-cornered rectangles at the bottom row of Fig. 6. It has
to consider the availability of subjects with suitable roles, such
that, given the execution history, none of the mutual exclusion
and binding constraints are violated (see also Definition 3). Then,
the state change can be applied and a new execution entry is added
to the history.

A consequence of this specification is that if there is no subject-
role combination that is allowed to execute a task at a particular

Fig. 6. Transition relations in a Business Activity Process Flow Model.

464 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
point in time, then the process instance will deadlock. This is an
analysis feature that allows us to trace back the satisfiability prob-
lem to standard techniques for deadlock detection.

Definition 7 (Reachability Graph). Let PFM = (N,A) be a Business
Activity Process Flow Model with N = TT [CF [CJ [CD [
CM [{start,end},BRM a Business Activity RBAC Model including TI,
p 2 PI a process instance, and h the execution history of p. Then the
Reachability Graph RG = (M,TR) with TR # M � N �M must com-
ply with the following constraints:
1. The initial state is in M, i.e. mi 2M with TI = ;.
2. If m = (d,h) 2M and n 2 CF [CJ and for all a 2 nin:d(a) > 0 and
m0 = (d0,h0) exists such that
for all a 2 An(nin [nout):d0(a) = d(a),
for all a 2 nin:d0(a) = d(a) � 1, and
for all a 2 nout:d0(a) = d(a) + 1,
then m0 2M and (m,n,m0) 2 TR.

3. If m = (d,h) 2M and n 2 CD [CM and for all a 2 nin:d(a) > 0 and
m0 = (d0,h0) exists such that
for all a 2 An(nin [nout):d0(a) = d(a),
there exists an a 2 nin:d0(a) = d(a) � 1, and
there exists an a 2 nout:d0(a) = d(a) + 1,
then m0 2M and (m,n,m0) 2 TR.

4. If m = (d,h) 2M and n 2 TT and for all a 2 nin:d(a) > 0 and there
exists i0 2 ti(n,p),r0 2 R,s0 2 S with n 2 tra(r0) and r0 2 rsa(s0) such
that for all (i,t,r,s) 2 h holds that:
� if n 2 sb(t) then for all ti 2 ti(t,p):s = es(ti) = es(i0) = s0, and
� if n 2 rb(t) then for all ti 2 ti(t,p):r = er(ti) = er(i0) = r0, and
� if n 2 sme(t) then for all ti 2 ti(t,p):s = es(ti) – es(i0) = s0, and
� if n 2 dme(t) then for all ti 2 ti(t,p):s = es(ti) – es(i0) = s0; and
m0 = (d0,h0) exists such that
for all a 2 An(nin [nout):d0(a) = d(a),
there exists an a 2 nin:d0(a) = d(a) � 1, and
there exists an a 2 nout:d0(a) = d(a) + 1, and
h0 ¼ h [fði0;n; r0; s0Þg; T 0I ¼ TI [fi0g such that
i0 2 ti(n,p), es(i0) = s0, and er(i0) = r0,
and m0 2M and (m,n,m0) 2 TR.
Proposition 1 (Dynamic Correctness BRM). All BRM that corre-
spond to states M of the reachability graph are dynamically correct.
Proof. by induction:

Base Case: In the initial state holds TI = ; such that all four proper-
ties of Definition 3 are fulfilled.

Induction: For transitions 7.2 and 7.3, BRM0 does not change and
therefore remains correct if BRM was also correct. For transition
7.4, BRM0 remains correct by definition since (i0,n,r0,s0) does not
violate any constraints. h

Note that Proposition 1 has implications for the so-called satis-
fiability problem. This is the question whether it is guaranteed that
there is always a role-subject pair that allows the process to pro-
ceed [17]. However, in this paper we are concerned with modeling
support for process-related RBAC models and do not address the
satisfiability problem. This is because, reachability graph analysis
is already an exponential problem in the general case even without
considering mutual exclusion and binding constraints, but differ-
ent optimization strategies can be employed [93]. What we gain
though is the capability of simulating process execution including
dynamically correct role and subject allocation (see also [87]). In
this way, the formalization serves as the generic foundation for a
thorough workflow and RBAC specification for process modeling
languages.

4. UML extension for Business Activities

In this section, we extend UML activity models so that they pro-
vide modeling support for Business Activities as defined in Section
3. Therefore, we define a new package BusinessActivities as an exten-
sion to the UML2 metamodel. Fig. 7 shows the metamodel of the
BusinessActivities package, including all new modeling constructs
defined in this package. In particular, we introduce BusinessActivi-
ty, BusinessAction, Subject, Role, RoleToSubjectAssignment, and
RoleToRoleAssignment as new modeling elements.

A BusinessActivity is defined as a subclass of Activity (from the
BasicActivities, CompleteActivities, FundamentalActivities, and
StructuredActivities packages, see [61]). A BusinessAction is de-
fined as a subclass of Action (from the CompleteActivities, Fun-
damentalActivities, and StructuredActivities packages, see [61])
and as a subclass of Classifier (from Kernel, Dependencies,
PowerTypes). Defining BusinessAction as a Classifier yields a
number of advantages for our purposes. For example, it allows
modelers to define specialized subtypes of BusinessAction with
own specialized behavioural or structural features. Moreover,
BusinessActions can be instantiated and, in contrast to ordinary
UML Actions, the same instance can be used/executed multiple
times in an activity (see also [61]). Among other things, this
means that each instance of a BusinessAction may have its
own state and history, for example including attributes to
capture how often the action has been executed, which
subjects and roles executed the action, etc. (see Sections 4.1
and 4.2).

With respect to the concepts defined in Section 3, BusinessAc-
tivities are applied to specify process types and BusinessActions de-
fine task types. In other words, BusinessActivities and
BusinessActions define abstract type descriptions. These abstract
processes and tasks can be instantiated as often as required. For
example, we can define the general control and object flow of a
credit application process in a bank via BusinessActions. The cor-
responding workflow and the included tasks can then be exe-
cuted an arbitrary number of times to process incoming credit
applications.

In the remainder of this section, we define OCL invariants for
Business Activities (Section 4.1) and present a visual notation for
our extension (Section 4.2). Subsequently, we illustrate its applica-
tion with examples (Section 5).

**

*

*

*

*
*

1..*

*

staticExclusion
0..*

Package BusinessActivities

0..1 *

+activity +node
ActivityNode

(from FundamentalActivities)

{subsets ownedElement}{subsets owners}

Action
(from FundamentalActivities)

BusinessAction

BusinessActivity

Activity
(from FundamentalActivities)

* *

Role

Classifier
(from Kernel)

dynamicExclusion
0..**

*

roleBinding

0..*

*

subjectBinding

0..*

DirectedRelationship
(from Kernel)

1
1

**

RoleToSubjectAssignment RoleToRoleAssignment

1 1
seniorRole juniorRole

Subject

seniorAssignment juniorAssignment

inheritedTask
inheritedRole

transitiveJuniorRole

transitiveRoleOwner
transitiveTaskOwner

Fig. 7. UML metamodel extension for Business Activities.

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 465
4.1. Invariants for Business Activities

In accordance with Section 3, we now specify OCL invariants
[58] on BusinessActivities and BusinessActions that ensure the
correct semantics of models defined with our UML extension
(see also [61]). In particular, these OCL invariants define the
semantics of the corresponding graphical Business Activity mod-
els (see Section 4.2) and therefore make sure that the graphical
models are correct and complete with respect to the formal spec-
ification from Section 3. However, for the sake of readability, this
section only shows four OCL invariants as examples. The complete
list of OCL invariants for the Business Activity extension is found
in Appendix A.

OCL Constraint 1. Each role may have direct and indirect/transi-
tive junior-roles. In other words, if a role r has junior-roles and these
junior-roles have junior-roles themselves, r inherits the indirect ju-
nior-roles as transitive junior-roles.

context Role inv:

self.seniorAssignment->forAll(sa|
sa.juniorRole.seniorAssignment->forAll(jrsa|
self.transitiveJuniorRole->exists(tjr|
tjr.name=jrsa.juniorRole.name)

and

jrsa.juniorRole.transitiveJuniorRole->forAll(
jrtjr| self.transitiveJuniorRole->exists(tjr|
tjr.name=jrtjr.name)

)))

OCL Constraint 9. To assign subjects to an instance of a Business-
Action, and to determine the subject that executes a particular Busi-
nessAction instance included in a particular BusinessActivity
instance, we require that each BusinessAction defines an attribute
called ‘‘executingSubject’’ (and thereby each instance owns a respec-
tive slot). Moreover, the executingSubject attribute must refer to a
subject that is (via one of its roles) actually allowed to execute this
BusinessAction.
context BusinessAction inv:

self.instanceSpecification->forAll(i|
i.slot->exists(s|
s.definingFeature.name=executingSubject

and

(self.role->exists(r|
r.roleToSubjectAssignment->exists(rsa|
rsa.subject.name=s.value)

or

r.transitiveRoleOwner->exists(tro|
tro.name=s.value))

)))

OCL Constraint 17. In a role-hierarchy, mutual exclusion con-
straints are subject to inheritance (see Section 3). Therefore, two
SME BusinessActions must never be assigned to the same role, neither
directly nor transitively.

context Role

inv:

self.businessAction->forAll(ba1,ba2|
ba1.staticExclusion->select(sme|
sme.name=ba2.name)->isEmpty()

)

inv:

self.businessAction->forAll(ba|
self.inheritedTask->forAll(it|
ba.staticExclusion->select(sme|
sme.name=it.name)->isEmpty()

)))

OCL Constraint 19. To enforce SME constraints on BusinessAc-
tions, we specify that the instances of two SME BusinessActions must
never have the same executing subject (see also Constraint 9 which
specifies the requirement that each BusinessAction defines an attribute
called ‘‘executingSubject’’). For details on the InstanceSpecification ele-
ment see [61].

Table 1
Consistency of the generic metamodel and the UML2 extension for Business Activities.

Generic definitions Covered through

Definition 1.1: rh : R#PðRÞ and r 2 R: rh⁄(r) \ {r} = ; Metamodel extension: RoleToRoleAssignment (see Fig. 7), and OCL constraints 1 and 2

Definition 1.2: tra : R#PðTT Þ and town : R#PðTT Þ Metamodel extension: Association between Role and BusinessAction (see Fig. 7), and OCL
constraint 3

Definition 1.3: rsa : S#PðRÞ and rown : S#PðRÞ Metamodel extension: RoleToSubjectAssignment (see Fig. 7), and OCL constraint 4

Definition 1.4: ptd : PT#PðTT Þ Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61]); OCL constraints 5, 6, 7, and 8

Definition 1.5: pi : PT #PðPIÞ Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61]); OCL constraints 5, 6, 7, and 8

Definition 1.6: ti : ðTT � PIÞ#PðTIÞ OCL constraints 5, 6, 7, and 8

Definition 1.7: es: TI ´ S OCL constraint 9

Definition 1.8: er: TI ´ R OCL constraint 10

Definition 1.9: sb : TT #PðTT Þ Metamodel extension: subjectBinding association; recursive association on BusinessAction (see
Fig. 7)

Definition 1.10: rb : TT #PðTT Þ Metamodel extension: roleBinding association, recursive association on BusinessAction (see Fig. 7)

Definition 1.11: sme : TT #PðTT Þ Metamodel extension: staticExclusion association, recursive association on BusinessAction (see
Fig. 7)

Definition 1.12: dme : TT#PðTT Þ Metamodel extension: dynamicExclusion association, recursive association on BusinessAction (see
Fig. 7)

Definition 2.1: "t2 2 sme(t1): t1 – t2 and "t2 2 dme(t1): t1 – t2 OCL constraint 11

Definition 2.2: "t2 2 sme(t1): t1 2 sme(t2) and "t2 2 dme(t1):
t1 2 dme(t2)

OCL constraint 12

Definition 2.3: "t2 2 sb(t1): t1 – t2 and "t2 2 rb(t1): t1 – t2 OCL constraint 13

Definition 2.4: "t2 2 sb(t1): t1 2 sb(t2) and "t2 2 rb(t1): t1 2 rb(t2) OCL constraint 14

Definition 2.5: "t2 2 sme(t1): t2 R dme(t1) and "t2 2 dme(t1):
t2 R sme(t1)

OCL constraint 15

Definition 2.6: "t2 2 sme(t1): t2 R sb(t1) ^ t2 R rb(t1) and
"t2 2 sb(t1) [rb(t1): t2 R sme(t1)

OCL constraint 16

Definition 2.7: "t2 2 dme(t1): t2 R sb(t1)and "t2 2 sb(t1):
t2 R dme(t1)

OCL constraint 16

Definition 2.8: "t2 2 sme(t1): town�1(t2) \ town�1(t1) = ; OCL constraint 17
Definition 2.9: "t2 2 sme(t1), r2 2 town�1(t2), r1 2 town�1(t1):

rown�1(r2) \ rown�1(r1) = ;
OCL constraint 18

Definition 3.1: "t2 2 sme(t1), pi 2 PI: "tx 2 ti(t2,pi), ty 2 ti(t1,pi):
es(tx) \ es(ty) = ;

OCL constraint 19

Definition 3.2: "t2 2 dme(t1), pi 2 PI: "tx 2 ti(t2,pi), ty 2 ti(t1,pi):
es(tx) \ es(ty) = ;

OCL constraint 20

Definition 3.3: "t2 2 rb(t1), pi 2 PI: "tx 2 ti(t2,pi), ty 2 ti(t1,pi):
er(tx) = er(ty)

OCL constraint 21

Definition 3.4: "t2 2 sb(t1), pi 2 PI: "tx 2 ti(t2,pi), ty 2 ti(t1,pi):
es(tx) = es(ty)

OCL constraint 22

Definition 4: PFM = (N,A) Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61])

Definition 5: h : PI#Pðfðti; tt ; r; sÞjti 2 TI ; tt 2 TT ; r 2 R; s 2 SgÞ Instantiation of metamodel extensions (see [61] and Fig. 7); OCL constraints 5, 6, 7, 8, 9, and 10

Definition 6: m = (d,h) Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61]); OCL constraints 5, 6, 7, 8, 9, and 10

Definition 7.1. 1: initial state Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61])

466 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483

Table 1 (continued)

Generic definitions Covered through

Definition 7. 2: token passing for fork and join nodes Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61])

Definition 7. 3: token passing for decision and merge nodes Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61])

Definition 7. 4: token passing and history for process and task
types (BusinessActivities and BusinessActions)

Implicitly defined via our metamodel extension and the specification of UML activity models (see
Fig. 7 and [61]); OCL constraints 5, 6, 7, 8, 9, 10, 19, 20, 21, and 22

Node Type Notation Explanation & Reference

BusinessActivity A BusinessActivity is shown as
a UML2 activity symbol. The
compartment in the upper right
corner includes a "BA".

A BusinessActivitiy is a specialized
UML2 Activity that models process
types (of business processes).
See BusinessActivity from
BusinessActivities and Activity
from BasicActivities,
CompleteActivities,
FundamentalActivities,
StructuredActivities.

BusinessAction
A BusinessAction is shown as
a UML2 action symbol (a
round-cornered rectangle). The
compartment in the upper right
corner includes a "B".

A BusinessAction is a
specialized UML2 Action
that models task types.
See BusinessAction from
BusinessActivities and Action
from CompleteActivities,
FundamentalActivities,
StructuredActivities.

B
name

BA

...

...
...

Activity name

Fig. 8. Notation elements for BusinessActivities and BusinessActions.

(a)

(b) B
Action1

B
Action2

BAction2

SME: Action1

BAction1

SME: Action2

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 467
context BusinessAction inv:

self.staticExclusion->forAll(sme|
self.instanceSpecification->forAll(i|
sme.instanceSpecification->forAll(j|
i.slot->forAll(is|
j.slot->forAll(js|
if is.definingFeature.name=executingSubject

and

js.definingFeature.name=executingSubject

then

not (is.value=js.value)

endif

)))))

In this way, all definitions from Section 3 can be specified
via corresponding OCL invariants. Table 1 gives an overview
of how each of the generic definitions from Section 3 is mapped
to our UML extension for Business Activities (see also Appendix
A). Note that UML2 activity models include all types of control
nodes needed for our extension (see Section 3). In addition,
activity models have a token semantics and the sequencing of
actions is controlled via control flow edges and object flow
edges which carry control tokens and object tokens respectively
(for details see [61]). In this respect, the abilities of UML2 activ-
ity diagrams go beyond the features that are required by our
generic metamodel (see Section 3) which would only require
control tokens. The consistency requirements induced by the
OCL invariants can be then enforced in a software system to
ensure the correctness of Business Activity models (see also
Section 7).
Fig. 9. Presentation options for BusinessActions.
4.2. Notation elements for Business Activities

Fig. 8 shows the notation elements for BusinessActivities and
BusinessActions and Fig. 9 depicts two different presentation
options for BusinessActions.3 Fig. 9a shows two BusinessActions
Action1 and Action2 that include a mutual exclusion con-
straint. To indicate mutual exclusion or binding constraints in
the graphical representation, we add the names of corresponding
BusinessActions to the graphical representation. The constraints
are separated from the name of the corresponding BusinessAc-
tion via a dashed line (see Fig. 9). In particular, we use the fol-
lowing prefixes to define the different types of constraints:

� SME: indicates static mutual exclusion relations to other
BusinessActions.
� DME: indicates dynamic mutual exclusion relations to other
3 Note that the use of different presentation options is common for UML2 modeling
elements (for details see [61]).
BusinessActions.
� RBind: indicates role-binding relations to other

BusinessActions.
� SBind: indicates subject-binding relations to other

BusinessActions.

However, it is important to understand that the graphical sym-
bols presented in Fig. 9 are only presentation options to visualize
the relations that are formally defined through our UML metamod-
el extension and the corresponding OCL constraints (see Section 4
and Appendix A). This means that a mutual exclusion constraint or
a binding constraint that is defined on two BusinessActions exists
independent of its visualization in the graphical model. Fig. 9b
elides the constraint section shown in Fig. 9a. For example, a mod-
eling tool can allow modelers to switch between both presentation
options.

Node Type Notation Explanation & Reference

Subject

A Subject is shown as a
rectangle. The compartment in the
in the upper right corner includes
a "S".

See Subject from
BusinessActivities.

Role

RoleToSubjectAssignment
«rsAssign»

A RoleToSubjectAssignment
relation is shown as a dashed
arrow with the «rsAssign» keyword
attached to it.

See RoleToSubjectAssignment
from BusinessActivities.

Rname

Sname

A Role is shown as a rectangle.
The compartment in the in the
upper right corner includes a "R".

See Role from BusinessActivities.

RoleToRoleAssignment
«rrAssign»

J

A RoleToRoleAssignment
relation is shown as a dashed
arrow with the «rrAssign» keyword
attached to it. The arrowhead is a
triangle including an "J" to indicate
the end of the relation that points
to the junior-role.

See RoleToRoleAssignment
from BusinessActivities.

Fig. 11. Notation elements for Subjects and Roles.

RRoleX
«rrAssign»

J

RRoleXSSubjectA
«rsAssign»

SSubjectA «rsAssign»

Task: Action1,
 Action5

RRoleY

Task: Action2,
 Action3

RRoleX

Task: Action1,
 Action5

(a)

(b)

(c)

Fig. 12. Presentation options for Roles.

BAction1

DME: Action2, Action3
SBind: Action5

BAction2

DME: Action1, Action5
RBind: Action3

BAction3

DME: Action1, Action5
RBind: Action2

BAAn example process

BAction5

DME: Action2, Action3
SBind: Action1

Action4

Fig. 10. An example process modeled as BusinessActivity.

468 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
Fig. 10 shows an example process modeled as a BusinessActiv-
ity. In particular, this process includes five actions, four of which
are BusinessActions. We recall that a BusinessActivity is a special-
ized UML Activity (see Fig. 7) and therefore may include any mod-
eling element that can be included in UML activities, such as
ordinary UML actions or fork, join, and decision nodes. In the
example, Action1 and Action5 define a DME constraint to
Action2 and Action3, indicated through the DME entries in the
corresponding BusinessAction symbols. This means that the exam-
J

«rrAssign»

J

RRoleA RRoleB RRoleC RRoleD

RRoleFRRoleE RRoleG

J

J

«rrAssign»«rrAssign»

«rrAssign»

J

«rrAssign»

Fig. 13. Example of a role hierarchy.
ple in Fig. 10 defines that in each instance of the example process
the subject performing Action1 and Action5 must be distinct
from the subject performing Action2 and Action3.

In addition, Action1 defines a subject binding to Action5,
which means that in each instance of the example process Ac-

tion1 and Action5 must be performed by the same subject. Fi-
nally, there is a role-binding between Action2 and Action3,
which means that both actions must be executed by a member
of the same role.

As defined above, all these relations are mutual. Thus, each mu-
tual exclusion or binding relation is shown in each of the corre-
sponding BusinessActions (cf. Fig. 10).

Fig. 11 depicts the notation elements for Subjects, Roles, Sub-
jectToRoleAssignment, and RoleToRoleAssignment relations.
Fig. 12 shows different presentation options for Roles. Fig. 12a
shows two roles RoleX and RoleY that are connected through a
RoleToRoleAssignment relation. In the example, the arrowhead of
this RoleToRoleAssignment relation points to RoleY, indicating Ro-
leY as junior-role of RoleX (cf. Fig. 11).

Moreover, we add the names of BusinessActions that are as-
signed to a particular role to the role symbol, see Fig. 12a and b.
In the same style we apply for BusinessActions, this task list is sep-
arated from the respective role name via a dashed line. Again,
remember that this is just a presentation option to visualize the
relations of roles and associated BusinessActions. The association
of a particular role to its BusinessActions, however, exists indepen-
dent of this visualization in the graphical model. Fig. 12c shows the
example from Fig. 12b with elided task associations.

Fig. 13 shows an example of a role-hierarchy. In particular, we
see seven roles (RoleA to RoleG) in two role-hierarchies. The first
hierarchy consists of only two roles, where RoleE is defined as se-
nior-role of RoleA. The second hierarchy consists of five roles and
RoleF is defined as direct senior-role of RoleB and RoleC, while Ro-
leG is defined as direct senior-role of RoleD and RoleF. Thereby Ro-
leG is the most powerful role in this role-hierarchy. That is, in
addition to its own BusinessActions and the BusinessActions asso-
ciated with its direct junior-roles, RoleG transitively inherits the
privilege to perform all BusinessActions associated with RoleB
and RoleC (cf. Sections 3 and 4).

5. Business Activity examples

In this section, we show three examples of how Business Activ-
ities are used to define process-related RBAC models (including
mutual exclusion constraints and binding constraints). Because
each Business Activity model must conform to the OCL invariants
defined in Section 4.1 and Appendix A, the graphical representation
can be reduced to the essential modeling-level information with-
out bothering the process modeler with such formal constraints.

This means that the OCL invariants guarantee that the processes
and process-related RBAC models defined with our Business Activ-
ity extension are correct and conflict-free with regard to the formal
definition given in Section 3 (see Table 1). To actually ensure the
consistency of the OCL constraints for Business Activities in a soft-
ware system, the respective constraints must be checked and

Check credit
worthiness

Credit
application [else]

Credit application process

Credit
application

Check
application form

[Check passed]

[else]

Reject
application

Contract

Contract
Negotiate contract

Approve contract

[approved]

BA

DME: Approve contract
SBind: Check credit
 worthiness

DME: Negotiate contract

B B B
[Form Ok]

[else]

SBind: Negotiate
 contract

Fig. 14. A credit application process modeled as a BusinessActivity.

Task: Check credit worthiness,
 Negotiate contract,
 Approve credit application

RBankClerk
«rrAssign»

J

RBankManager

Task: Define credit policy

Fig. 15. Two roles for the credit application example.

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 469
enforced at the implementation level. In other words, the OCL
invariants make sure of the consistency and correctness of the
models if these constraints can be enforced by software tools. For
this reason, we implemented a Business Activity library and run-
time engine that automatically enforces all invariants defined in
Appendix A, and ensures the design-time as well as runtime con-
sistency of Business Activities in an actual software system (see
Section 7).

Aside from the small-scale examples presented below, Section 6
describes our experience with applying Business Activities to pro-
cesses and process-related RBAC models from actual projects.

5.1. A credit application process

Fig. 14 depicts a BusinessActivity that models the credit appli-
cation process from Fig. 2. The process includes five actions, three
of which are BusinessActions. The process defines a DME con-
straint between the ‘‘Negotiate contract’’ and ‘‘Approve contract’’
actions. This constraint is defined to enforce the four-eyes-princi-
ple for the corresponding tasks, to ensure that each credit applica-
tion is processed by two different bank clerks. Moreover, we define
a subject-binding between the ‘‘Check credit worthiness’’ and the
‘‘Negotiate contract’’ tasks to ensure that these tasks are performed
by the same subject. The subject binding is defined so that the sub-
ject who is already familiar with a particular application also nego-
tiates the contract with the corresponding customer.

Fig. 15 shows two roles modeled for the credit application pro-
cess. The BankClerk role is permitted to perform the ‘‘Check credit
worthiness’’, ‘‘Negotiate contract’’, and the ‘‘Approve credit appli-
cation’’ actions. Moreover, we have a BankManager role which is
defined as senior-role of BankClerk and thereby inherits the corre-
sponding permissions. Additionally, a BankManager is allowed to
conduct the ‘‘Define credit policy’’ action. This task (not included
in the process depicted in Fig. 15) allows a bank manager to define
the basic parameters and conditions that each credit application
and each contract must comply with.

5.2. A paper review process

Fig. 16 shows an example of a review process for research pa-
pers submitted to a scientific conference. The process includes four
BusinessActions and one ordinary action. For each paper submitted
to the conference, an instance of this process is executed. The first
BusinessAction is the ‘‘Submit paper’’ action. It is defined as
dynamically mutual exclusive to the ‘‘Paper review’’ and the ‘‘Make
decision’’ actions. In other words, we define that a subject cannot
submit a paper and write a review, or make an acceptance decision,
for this very paper. However, because DME constraints refer to pro-
cess instances (see Sections 3 and 4) it is possible that a particular
subject submits a paper, and acts as an author for this paper, while
acting as a reviewer for another paper (in another instance of the
paper review process).

Fig. 17 shows the three roles required for the review process.
Note that in this example, the roles do not have inheritance rela-
tions (i.e. RoleToRoleAssignment relations). Such standalone roles
are defined for environments where we have clearly separated
functional areas that not hierarchically structured.

5.3. A radiological image reading process

Fig. 18 shows a reading process for radiological images modeled
as a BusinessActivity. At first, a radiological examination is con-
ducted to produce radiological images (e.g. via a CT scan). Next,
the ‘‘Image reading’’ action is conducted to determine if the image
quality is appropriate, and if so, to produce a radiological finding.
Subsequently, the ‘‘Write report’’ action is performed to write a
radiological report for the images. Finally, the report has to be val-
idated. In case the report includes errors or is incomplete, it must
be revised before it is resubmitted for validation.

We define a subject binding between the ‘‘Image reading’’ ac-
tion and the ‘‘Write report’’ action (see Fig. 18). This is sensible
to ensure that the same radiologist who assessed the images in
the ‘‘Image reading’’ action also writes the radiological report on
these images. Moreover, to enforce the four-eye-principle on radio-
logical reports, we define a DME constraint between the ‘‘Write re-
port’’ and the ‘‘Report validation’’ actions. This means, for any
radiological report these actions must always be conducted by
two different subjects. This is an essential quality and safety mea-
sure to guard against mistakes and malpractices.

Fig. 19 shows the roles required for the image reading process.
The Radiologist role is permitted to perform the ‘‘Radiological
examination’’, ‘‘Image reading’’, and ‘‘Write report’’ actions. The
SeniorRadiologist role is defined as senior-role of Radiologist and
thereby inherits the permission to perform the three tasks. In addi-
tion, members of the SeniorRadiologist role are permitted to per-
form the ‘‘Report validation’’ action. This means that at least one
SeniorRadiologist must participate in each instance of the image
reading process. However, due to the DME constraints on the
‘‘Write report’’ and ‘‘Report validation’’ tasks, no subject can com-
plete the process by herself. In other words, even if a member of

Paper

Paper review process BA

[new version]

Assign
reviewer

B[Deadline expired]
Submit paper

DME: Paper review,
 Make decision

B Paper Paper review

DME: Submit paper

B Make decision

DME: Submit paper

B

Review

Review

Send message

Fig. 16. A paper review process modeled as a BusinessActivity.

RConferenceChair

Task: Assign reviewer,
 Make decision

RAuthor

Task: Submit paper

RReviewer

Task: Paper review

Fig. 17. Roles for the paper review example.

470 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
the SeniorRadiologist role performs the ‘‘Image reading’’ and
‘‘Write report’’ actions, the DME constraint requires that another
subject (acting as SeniorRadiologist) performs the ‘‘Report valida-
tion’’ action (see Fig. 18).
6. Using Business Activities for real-world process models

Scenario-driven role engineering is a systematic approach for
the elicitation, specification, and maintenance of RBAC models.
We are continuously conducting role engineering projects and
gained much experience in this area (see, e.g., [39,54,84,86]). For
example, in 2008 we conducted a role engineering project with
the Austrian Federal Ministry of Finance,4 in 2009 we conducted
a corresponding case study with the German branch of ABB,5 in
2009/10 we were involved in a rights management project with
Ernst & Young,6 and currently we are conducting a role engineering
project with the Vienna City Municipality.7 In each of these (as well
as in other) projects we identified the urgent need for modeling
support of process-related RBAC models (see also Section 1.1).
While we have non-disclosure agreements with our project part-
ners, and are therefore not allowed to discuss business secrets
from these projects, we can discuss our experience and describe
how our Business Activities help to resolve different issues we
identified in these projects.

In one of our projects, most processes/procedures were defined
via purely textual descriptions. Some of these descriptions were
written as prose/running text while others were written as lists
of enumerated text descriptions. In addition, few processes were
specified via proprietary or informal graphical models. Mutual
exclusion and binding constraints were either specified as part of
the textual process descriptions, or they were defined in a supple-
mental textual document (such as ‘‘task 1 and task 3 should be
conducted by the same individual’’, or ‘‘task 1 and task 6 must be
conducted by different individuals’’). For example, the description
of a technical support workflow at a ‘‘Helpdesk’’ workplace in-
cluded a number of binding constraints (role-binding as well as
subject-binding constraints). In particular, the binding constraints
defined that certain tasks in a certain instance of the support work-
flow must be conducted by the same Helpdesk employee or a
4 http://english.bmf.gv.at/.
5 http://www.abb.com/.
6 http://www.ey.com/.
7 http://www.wien.gv.at/ma14/.
member of the same role. However, due to the textual and informal
nature of the process descriptions, the support workflow was diffi-
cult to follow and to learn. We modeled the process as a Business
Activity which included all process and constraint information in a
single graphical model. Thereby, the Business Activity significantly
enhanced the understandability of the process and provided a con-
sistent and complete graphical description.

In another project, the processes were modeled via standard
UML activity models. In addition, for each process a table was de-
fined where the rows and columns consisted of the process’ task
names, respectively. The cells of these tables then included the mu-
tual exclusion and binding constraints between different tasks.
However, while these tables were already complex and required
some effort to be matched with the corresponding process descrip-
tion, this complexity further increased for larger process models
because each task in the process model resulted in an additional
row and an additional column in the respective constraint table.
In this context, our Business Activities provide a lightweight and
easy to use modeling approach for the integrated specification of
process descriptions and corresponding mutual exclusion and
binding constraints. Thus, they consolidate process descriptions
and corresponding constraint tables and thereby render the tables
obsolete.

In a third project, the respective organization’s business pro-
cesses were defined using many different formats, including tex-
tual descriptions and different types of graphical models.
Additional information, such as mutual exclusion and binding con-
straints, were defined using informal textual notes that were at-
tached to the respective process descriptions. In addition, some
processes were not documented at all but only existed as part of
the ‘‘organizational knowledge’’ of certain employees. Moreover,
because the respective organization did not have stringent mainte-
nance procedures for their business processes, many process
descriptions were outdated, at least partially. In this situation,
Business Activities are used as a means to define a complete and
coherent set of process descriptions – including corresponding
roles and constraints. Moreover, because Business Activities are a
native UML extension they allow for a consistency check with soft-
ware systems that are modeled in UML, and facilitate the impact
and effort estimation for the adaption/extension of an existing
software system. In other words, in case an existing software sys-
tem is modeled using UML, we can identify the components or sub-
systems that are participating in the execution of a certain busi-
ness process (modeled via the Business Activities extension).
Thereby, we can also identify the components or sub-systems that
are potentially affected when integrating/implementing the tai-
lored RBAC model which is defined via the Business Activities
extension. Once we know which components or sub-systems are
potentially affected, we can estimate the effort and the impact that
would result from the implementation/integration of the tailored
RBAC model.

http://english.bmf.gv.at/
http://www.abb.com/
http://www.ey.com/
http://www.wien.gv.at/ma14/

Radiological
examination

Image reading process

Image reading

[else]

BA

SBind: Write report

B B Write report
DME: Report validation
SBind: Image reading

B Report validation

DME: Write report

B

Images

Images
[Images Ok]

Report

Report

[else] [Report Ok]

Fig. 18. A reading process for radiological images modeled as a BusinessActivity.

RSeniorRadiologist

Task: Report validation

RRadiologist

Task: Radiological examination,
 Image reading,
 Write report

«rrAssign»
J

Fig. 19. Roles for the image reading example.

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 471
From our experience in role engineering projects and case stud-
ies, we can conclude that Business Activities are a suitable means
to model process-related RBAC models. We applied our extension
to produce project-specific Business Activity models. This model-
ing was conducted in cooperation with domain experts from the
respective projects. In particular, we discussed the Business Activ-
ity models with domain experts and used their feedback for an
iterative refinement of the models. In addition, the domain experts
did also suggest to keep the graphical notation as lightweight as
possible. This was one of the reasons why we defined the notation
elements for BusinessActivity and BusinessAction as variants of the
original Activity and Action symbols including a BA and a B in the
upper right corner respectively (see Section 4.2). The domain ex-
perts found the BusinessActivity models to be well-suited for their
purposes and the notation straightforward to learn.
0.. * *

0..*

*

1 1

*

s

o

target

incoming *

1..*

ActivityNode

ActivityEdge

ControlFlow O

*

Activity

BusinessActivity BusinessAction

RBACModel Role

staticExclusion d

subjectBinding

1..*

*
ro

*

1..* 1..*

associatedRBACModel1

*

* *
juniorsenior

Fig. 20. Class model of the Business Activity
Business Activities enable a consistent and complete descrip-
tion of processes and can be integrated with other types of UML
models. Because the OCL invariants ‘‘in the background’’ enforce
the consistency of Business Activity models, we can provide a
lightweight graphical syntax that is reduced to the essential mod-
eling-level information – without bothering the process modeler
with such formal constraints. Thereby Business Activity models
can serve as a primary communication vehicle and help bridge
the gap between experts from the application domain (such as
bank managers, power plant engineers, or physicians) on the one
hand, as well as software engineers and security engineers on
the other.
7. Platform support for Business Activities

In this section, we give an overview of our platform support for
Business Activities. Section 7.1 first presents the Business Activity
library and runtime engine. Subsequently, Section 7.2 gives an
overview of the mapping of modeling-level Business Activities to
runtime models.
1..*

0..*

ource

utgoing

bjectFlow

ControlNode

ActivityFinalNode

InitialNode

FlowFinalNode

ForkNode

JoinNode

DecisionNode

MergeNode

Action

Subject

ynamicExclusion

0..*
leBinding

*

library and runtime engine (excerpt).

allocate(subject)

sd AllocateTask

alt [if subject=EMPTY_STRING]

role

chooseRandomSubject(result)

id

setExecutingSubject(id)

GetAllocatableSubjects
ref

getAllocatableSubjects()

result

failed

[result=EMPTY_LIST]break

id : Subject

getActiveRole()

setExecutingRole(role)

[else]

IsTaskAllocatableToSubject
ref

isAllocatableToSubject(subject)

result

failed

[result=false]break

role

setExecutingSubject(subject) subject : Subject

getActiveRole()

setExecutingRole(role)

success

aTaskInstance : MyBusinessAction

getAllocatableSubjects()

sd GetAllocatableSubjects

loop

subject_list

IsTaskAllocatableToSubject
ref

initalizeSubjectList()

opt [result=true]

[for each subject]
isAllocatableToSubject(x)

result

addSubjectToList(x)

aTaskInstance : MyBusinessAction

isAllocatableToSubject(x)

sd IsTaskAllocatableToSubject

false

[result=false]break

x : Subject

canExecute(MyBusinessAction)

result

aTaskInstance : MyBusinessAction

false

[result=false]break

canExecuteAllSubjectBoundTasks(MyBusinessAction)

result

true

checkDMEConstraints(x)

result

false

[result=false]break

checkRoleBindingConstraints(x)

result

false

[result=false]break

checkSubjectBindingConstraints(x)

result

false

[result=false]break

Fig. 21. Business Activity runtime engine: allocating tasks to subjects.

472 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
7.1. The Business Activity library and runtime engine

In addition to the modeling level support introduced in Sec-
tion 4, we implemented a software platform that can manage
corresponding runtime models and enforce the different policies
and constraints at the application level. Fig. 20 shows the essen-
tial class relations of our library and runtime engine for Business
Activities. For the sake of simplicity, we only show an excerpt of
the class model including the classes and class relations which
are most relevant for the purposes of this paper. Our software
platform provides complete support for all modeling level ele-
ments defined in Section 4 and automatically enforces all invari-
ants defined via OCL constraints. Furthermore, it ensures the
compliance of processes modeled via Business Activities and
user-defined mutual exclusion and binding constraints. Thus, it
was developed to support a straightforward mapping of model-
ing level Business Activities to corresponding runtime models
(see Section 7.2).

UML Extension for
Business Activities

Processes modeled via
Business Activities

Model-to-Platform
Transformations

Business Activity
Library

Business Activity
Runtime Engine

Business Activity
Process Types

Business Activity
Process Instances

Application-level/Runtime Models

Business Activity
RBAC Model(s)

use

input

output

output
instantiated from

manage

manage

associated

manage

PlatformModeling Language

Generic Meta Model

include

Fig. 22. Modeling and runtime support for Business Activities: conceptual overview.

8 Typically, transformations are conducted by a special purpose generator compo-
nent. The generator component receives models as input and produces platform-
specific generated artifacts as output [81,89]. In order to do this correctly, the
generator ‘‘knows’’ the source metamodel and the target metamodel, as well as the
target platform. However, adding the generator entity to Fig. 22, would significantly
complicate Fig. 22 without providing any added value (from a conceptual point o
view).

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 473
In addition to platform support for the different modeling le-
vel artifacts, the Business Activity library and runtime engine
also provide functions to facilitate the management of corre-
sponding runtime models. One important feature for the man-
agement of Business Activity runtime models is task allocation,
i.e. the assignment of a certain task instance to a certain subject.
In particular, the allocation of task instances included in a spe-
cific process instance must be consistent with the associated
RBAC model as well as the mutual exclusion and binding con-
straints defined for the corresponding process type (see [87], as
well as Sections 3 and 4).

Fig. 21 shows UML interaction models that describe our imple-
mentation of the task allocation concern in detail. When an allo-

cate call reaches a particular task instance (i.e. an instance of a
particular BusinessAction) the corresponding task instance first
checks if the subject parameter is empty or if it includes a subject
name. If the subject parameter is empty (i.e. it includes the empty
string), it calls the getAllocatableSubjects method to deter-
mine the list of all subjects that could potentially be allocated to this
task. The getAllocatableSubjects method, again, checks if a
subject can execute the corresponding task type (according to its
role), and if mutual exclusion or binding constraints exist which pre-
vent an allocation to a particular subject. Subsequently, the method
returns the list of allocatable subjects. If the subject list is empty (i.e.
none of the subjects can be allocated to the task instance), the alloca-
tion procedure is stopped and a ‘‘failed’’ message is returned (see the
‘‘break’’ operator in the AllocateTask model of Fig. 21). In case the
subject list is not empty, however, the allocatemethod randomly
chooses a subject from the list and sets the executing-subject prop-
erty (i.e. the owner of the task instance) and the executing-role
property accordingly and thereby allocates the task instance to this
subject (see also Sections 3 and 4).

In case the subject parameter of the initial allocate invoca-
tion is not empty, the allocate method first checks if this partic-
ular subject is allocatable to the corresponding task instance (see
the ‘‘[else]’’ guarded operand in the AllocateTask model of
Fig. 21). If the subject is not allocatable to this task instance, the
procedure is stopped and a ‘‘failed’’ message is returned. Other-
wise, the method allocates the subject by setting the executing-
subject and executing-role properties accordingly (see Fig. 21).

Thus, before task allocation, a subject just owns a role which de-
fines the subject’s (abstract) capability of performing tasks (Busi-
nessActions) of certain types. However, the subject neither has a
concrete authorization nor an obligation to execute a certain task
instance. Then, on task allocation, a certain subject is assigned to
a particular task instance.

Following this approach we directly enforce the principle of
least privilege and we assure that, at any time, each subject has
the exact set of permissions it needs to perform its tasks. This
means no subject si can access a task instance that is allocated to
another subject sj, neither accidently nor on purpose. Thus, when
using our runtime engine one just has to call the allocate meth-
od to allocate a task instance to a particular user. This can be done
manually (e.g. by some supervisor) as well as automatically (e.g. as
part of an automated workflow escalation management). Depend-
ing on the result of the allocation procedure, the allocate meth-
od either returns a ‘‘success’’ message or a message indicating why
the allocation failed (see UML interaction models in Fig. 21).

7.2. Mapping Business Activities to runtime models

Fig. 22 shows an informal overview of the main conceptual entities
residing on different abstraction levels (namely modeling language,
software platform, and runtime models). The metamodel defined in
Section 3 is generic and can be used to extend modeling languages
with corresponding (native) language abstractions. The UML exten-
sion presented in Section 4 enables the modeling of Business Activi-
ties in a widely used standard modeling language. The modeling
level part of our approach is shown on the left-hand side of Fig. 22.

Actual Business Activities defined with our UML extension are
platform-independent and can (in principle) be mapped to arbitrary
software platforms. However, if the corresponding target platform
does not provide all features that are needed to support Business
Activities, it is likely that the intended target platform must be ex-
tended first [81,89]. To enable a continuous support for Business
Activities, we implemented a corresponding software platform that
supports all facets of the approach (see Section 7.1). This part of our
approach is shown in the upper right compartment of Fig. 22. In par-
ticular, we use model transformations [50,75,81,102] to map UML2
Business Activities to runtime models that are managed by our li-
brary and runtime engine (see Section 7.1).8
f

Table 2
Modeling process-related RBAC models: related work.

Business
Processes

Roles Role
hierarchies

SME
tasks

DME
tasks

Task-based
role binding

Task-based
subject binding

Runtime
support

Approaches to provide modeling support for process-related RBAC models

UML-based representation of RBAC [4,76,78] s s s s

Towards UML-based role engineering [20] s

Using UML to visualize RBAC constraints [65]
p

s s s

UML2 profile for security requirements [66]
p p

BPMN extension for security requirements [67]
p p

Task-based constraints for BPMN [100]
p p p p

Model-driven approaches using RBAC as an illustrative example

CRBAC-a model-driven approach [5] s
p p p

Model-driven security [7]
p p p p

AC spec. using MOF and UML profiles [25]
p

s s s

UML specification of access control policies [38]
p

s

Business Activities (our approach)
p p p p p p p p

474 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
The Business Activity runtime engine then manages the corre-
sponding runtime models of user-defined process types and asso-
ciated RBAC models (see lower right compartment of Fig. 22). Via
the runtime engine’s application programming interface (API), run-
time Business Activities can then be integrated with other software
components. For the sake of simplicity, other UML models and
other application logic are not included in Fig. 22.
8. Related work

In general, we distinguish two types of related work for this
paper. First, we have approaches that primarily aim to provide
modeling support for process-related RBAC models. We see such
approaches as related work in the narrower sense. Second, a num-
ber of different approaches exist that use methods and techniques
from model-driven development to include security in the software
development process. Some of these approaches use examples from
the domain of (role-based) access control for demonstration pur-
poses. However, in these other approaches the main focus is on dif-
ferent aspects of model-driven development, rather than on the
specification of a modeling approach for business processes and
process-related RBAC models. Thus, we see such approaches as re-
lated work in a broader sense. Moreover, many of the model-driven
approaches are complementary to our work and are well-suited to
be combined with our Business Activities.

Table 2 shows an overview of related work on modeling of pro-
cess-related RBAC models. With respect to the concepts specified
in Sections 3 and 4, we use a

p
if a related approach provides sim-

ilar or comparable support for a certain concept, and a s if a re-
lated approach provides at least partial support for a particular
concept.

Many related approaches use pure UML or UML profiles to pro-
vide a certain level of modeling support for (role-based) access
control. For example, in UML Activity diagrams the swimlane nota-
tion is used to visualize the (hierarchical) partitioning of Activity-
Partition elements. Because ActivityPartitions often correspond to
certain actors or organizational units, they can be used to visualize
a certain aspect of mutual exclusion. However, using UML Activity-
Partitions to visualize mutual exclusion would rely on an informal
interpretation of a graphical convention. Thus, because the Activi-
tyPartition element [61, page 340] is not expressive enough to rep-
resent mutual exclusion constraints, such a visualization of mutual
exclusion constraints would entirely rely on the human interpreta-
tion of a graphical model or some informal textual comment at-
tached to a model.
UML profiles provide a mechanism for the extension of existing
UML metaclasses to adapt them for non-standard purposes. How-
ever, UML profiles are not a first-class extension mechanism [61,
page 654]. They extend existing metaclasses of the UML metamodel
and the extension defined through a profile must be consistent
with the semantics of the extended (original) UML metaclasses.
For example, if we extend the UML metaclass ‘‘Class’’ via a profile,
the extended Class will still be a Class. In particular, it is forbidden
to insert new metaclasses in the UML metaclass hierarchy via pro-
files [61, page 654]. Thus, extensions that are based on UML pro-
files all reach their limit if the extension goes beyond a certain
level of complexity. In particular, profiles are not suited for more
complex extensions that require the definition of specialized mod-
eling elements with specialized semantics.

For this reason, more complex extensions are defined via UML
metamodel extensions [60,61,81]. An extension of the UML meta-
model allows to define new and specifically tailored UML elements
(defined via new metaclasses), and allows to define a customized
notation, syntax, and semantics for the new modeling elements.
Because an extension for process-related RBAC models (including
mutual exclusion and binding constraints) clearly goes beyond
the purpose of UML profiles, we chose to demonstrate our ap-
proach via a UML metamodel extension (see Section 4). Moreover,
because our extension is a native UML extension it can directly be
combined with other native UML elements, such as the swimlane
notation, if needed or if desired.

In [20], Epstein and Sandhu introduced an early approach to
model different RBAC aspects. However, their approach is de-
scribed informally and provides only very basic support for the
modeling of RBAC artifacts. In [76], Shin and Ahn suggest how
UML models can be used to represent different aspects of RBAC.
They do not introduce an extension but try to model different RBAC
elements via standard UML models. However, the (expected) result
is that UML does not provide special purpose modeling constructs
for RBAC and thereby provides only limited support for defining
RBAC models. Moreover, in [76] process-related RBAC models are
not addressed. In [4], Ahn and Shin use OCL to define different
types of role-based constraints. Nevertheless, these constraints
are based on examples (e.g. for defining two conflicting manager
roles). In particular, the constraints presented in [4] are not generic
and do not define the semantics of RBAC-specific modeling con-
structs, but are defined for a certain (application-specific) class
model. In [77,78], Sohr, Ahn et al. present an enhanced version of
the approach including a tool to check OCL constraints. However,
their main focus is on the definition and checking of application-
specific RBAC constraints using OCL rather than on modeling

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 475
process-related RBAC models (see Sections 3 and 4). Therefore, Ta-
ble 2 indicates that this approach offers partial support for the dif-
ferent concepts. In [79], Sohr et al. describe how they applied their
approach in a Web services context. A similar approach for speci-
fying RBAC constraints via OCL is described in [96].

Ray et al. [65] use UML to visualize RBAC constraints. In partic-
ular, they use UML object diagrams to define so called template
diagrams. These template diagrams visualize invalid configura-
tions of a particular RBAC model. As an alternative, they propose
to use OCL templates to define RBAC constraints.

Rodriguez et al. [67] present an BPMN extension for modeling
security requirements in business processes. In particular, they
aim to support the definition of non-repudiation, attack harm
detection, integrity, privacy, and access control requirements.
However, as their focus is on security requirements, they do not
provide means for the definition of RBAC models, mutual exclusion
constraints, or binding constraints. In [66], Rodriguez et al. present
a UML profile that provides the same elements introduced in [67]
only this time for UML2 activity diagrams.

In [100], Wolter and Schaad present an approach for the model-
ing of authorization constraints in BPMN. They provide a formal
definition for task-based constraints that allows one to specify the
minimum number of users that must be involved in the execution
of a particular task set (i.e. in the execution of two or more tasks),
and the maximum number of tasks out of this set that can executed
by the same user. Their approach supports the definition of roles, as
well as DME tasks and task-based subject binding. However, the ap-
proach does not provide a direct support for SME tasks as defined in
Section 3. Nevertheless, support for SME tasks could be added with
moderate efforts. Based on the formal definition of task constraints,
Wolter and Schaad describe how to define dynamically mutual
exclusive tasks and task-based subject binding in BPMN. However,
their extension to BPMN is only defined informally.

Basin et al. [7] present a sophisticated approach called model-
driven security. In particular, they first define domain-specific
UML profiles for security modeling languages (e.g. an RBAC profile)
and design modeling languages (e.g. a profile for component mod-
els). Subsequently, these UML profiles are integrated to provide a
bridge between a security modeling language and a design model-
ing language. Based on the integrated (‘‘security-enabled’’) design
language, transformations are used to generate corresponding
source code artifacts for a particular software platform. The gener-
ated artifacts then enforce the application-specific security policies
defined on the modeling level. Basin et al. demonstrate the ap-
proach with an UML profile for RBAC which they call SecureUML.
This profile also includes an element called AuthorizationCon-
straint which can be used to define constraints on permissions.
However, the SecureUML profile does not include semantics for
the definition of SME or DME tasks. The focus of [7] is on integrat-
ing security aspects with a model-driven development approach
rather than modeling of business processes and process-related
RBAC models. In fact, the model-driven security approach of [7]
and our Business Activities are well-suited to be combined in a
complementary fashion.

Another model-driven approach is presented by Alam et al. [5].
They propose an RBAC extension called constraint-based RBAC
(CRBAC) which is supposed to be used in the service-oriented
architecture (SOA) context. A UML profile is defined to provide
modeling support for CRBAC. In addition, they use a special pur-
pose (OCL-inspired) language to define permission-to-role assign-
ments. The models and permission-to-role assignments are then
used to generate corresponding XACML documents. The XACML
policies are then used for access control purposes in a web services
framework. In [12], Breu et al. present a closely related approach
that uses elements of UML use case diagrams and OCL to define
roles and permissions.
In [38] Koch and Parisi-Presicce present an approach for the
UML-based specification and verification of access control policies.
They use standard class models to define a so called type diagram
for a particular access control model (e.g. for RBAC). Subsequently,
UML object diagrams are used to specify certain rules and con-
straints for the different entities included in the respective type
diagram. After the class and object diagrams are defined, graph
transformations are applied to verify the resulting access control
specification. The approach is demonstrated using an RBAC variant,
called view-based access control, where permissions are associated
with views and views are assigned to roles. Nevertheless, in [38]
the example type diagram as well as the corresponding constraints
are only specified informally by means of examples. The semantics
of different access control model elements (e.g. roles, views, per-
missions) or relations between these elements are not defined in
detail. Furthermore, the focus of [38] is on the verification of
UML-based models via graph transformations, rather than on mod-
eling support for process-related RBAC models and corresponding
constraints. In [25], a similar approach is presented which gives
an overview of how model-driven techniques can be applied to
map the (platform-independent) view-based access control model
to a specific software platform, and graph transformations are used
to verify the consistency of the different models. The approaches
presented in [25,38] can be combined with our approach in a com-
plementary fashion.

Another related approach is UMLsec [32,33]. In essence, it pro-
vides a UML profile for the definition and analysis of security prop-
erties for software systems. For example, UMLsec is used to define
and verify cryptographic protocols. In addition, it can be used for
design and runtime checking of permission-based security
[34,35]. However, UMLsec does not deal with process-related RBAC
models and aims at a lower abstraction layer than Business Activ-
ities. Therefore, UMLsec is well-suited to be combined with our ap-
proach. Business Activities would then be used to model business
processes and process-related RBAC models, while UMLsec would
be used to specify the fine-grained system-level procedures for
permission and constraint checking in a particular software
system.

In addition to the approaches described above, other model-dri-
ven security approaches exist that do not address the modeling of
process-related RBAC models but can be combined with our Busi-
ness Activities. An example is the approach for model-driven busi-
ness process security requirement specification presented in [99].
9. Conclusion

In this paper, we presented Business Activities as an integrated
approach to model processes and process-related RBAC models.
The approach was inspired by our experience gained in numerous
role engineering projects and case studies (see Sections 1.1 and 6).
We defined a formal generic metamodel for Business Activities and
demonstrated our approach via an UML2 extension. Moreover, we
implemented a library and runtime engine as a software platform
for Business Activities that enables a seamless mapping from mod-
eling-level Business Activities to corresponding runtime models.
Thereby, the approach supports the continuous consistency of
Business Activities, process-related RBAC models, and constraints
that are defined at the design-level on the one hand, and corre-
sponding runtime models which are managed by the software
platform on the other. The new notation elements for Business
Activities are lightweight and easy to use for modelers who are
familiar with UML2 activity models. In our extension, RBAC-spe-
cific knowledge (including mutual exclusion and binding con-
straints) is encoded via OCL invariants. Therefore, each valid
Business Activity must conform to the corresponding OCL con-

476 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
straints. The UML2 extension for Business Activities can be inte-
grated with other UML-based approaches or tools. However, our
approach is generic and does not rely on UML or any particular
software platform. Thus, it can also be applied to extend other
modeling languages or other software platforms.

Moreover, Business Activities can also help identify shortcom-
ings in technologies or software platforms that are intended to
implement the respective processes and access control policies.
In other words: Business Activity models can serve as an integrated
description of the processes and access control information that is
needed in a certain business context or by a certain organization. In
case we want to enforce the corresponding behaviour in an infor-
mation system, we need to map the different modeling-level arti-
facts to the corresponding target system (i.e. to functions of the
respective software components). This way, we can directly iden-
tify which access control policies and constraints can already be
enforced in the corresponding software system and which parts
of a Business Activity cannot be enforced yet (e.g. because the cor-
responding runtime system lacks corresponding implementation
support).

From our experience in role engineering (see, e.g., [39,54,
84,86,88]) a proper motivation was found to define RBAC models
and constraints even if they cannot (yet) be enforced on a technical
level. The aim to specify and maintain a comprehensive, and prefer-
ably complete, process model that is directly integrated with a tai-
lored RBAC model is probably the most important reason for
specifying a complete RBAC model. Such ‘‘complete’’ models provide
valuable information for the corresponding process and security
engineers. For example, it is then possible to identify which subset
of an organization’s Business Activities can (already) be enforced
by the runtime system and which control objectives cannot be
achieved yet. This information can be applied to thoroughly config-
ure the respective system and to avoid security breaches that could
result from unavailable information. Furthermore, a ‘‘complete’’
description of processes and RBAC models at the level of system
requirements and system design can drive the technical evolution
of the corresponding target systems to close the gap between a pro-
cess-related RBAC model and its enforceable subset.

In our future work, we will investigate how other types of con-
straints, such as context constraints [88], can be expressed at the
modeling-level. Another interesting issue is to define suitable
modeling primitives for the delegation of roles as well as the dele-
gation of task instances. This is especially important because mu-
tual exclusion constraints and binding constraints can directly
influence the delegability of a certain role or task. Thus, we plan
to investigate how modeling-level constructs can express different
types of constraints as well as the delegability of roles and tasks in
a consistent and comprehensive way. In our future work, we also
plan to investigate the integration of our concepts with other
workflow management systems. In particular, we aim to address
the satisfiability of processes with respect to a process-related
RBAC model (including mutual exclusion and binding constraints).
In addition to existing work [17], we plan to explicitly consider the
impact of specific routing elements that are used in a certain pro-
cess model, such as exclusive (XOR) and parallel splits. Moreover,
we plan to conduct further industrial case studies, in particular
to analyze potential issues with regard to the complexity and intel-
ligibility of process-related RBAC models.
Appendix A. Invariants for business actions

This appendix provides the complete set of OCL invariants for
the Business Activity extension presented in Section 4. In particu-
lar, the OCL invariants are defined in accordance with the generic
metamodel specified in Section 3. Table 1 shows how each of the
generic definitions from Section 3 is mapped to our the Business
Activity UML extension.
OCL Constraint 1 Each role may have direct and indirect/transitive junior-roles. In other words, if a role r has junior-roles and these junior-
roles have junior-roles themselves, r inherits the indirect junior-roles as transitive junior-roles.

context Role inv:

self.seniorAssignment->forAll(sa|
sa.juniorRole.seniorAssignment->forAll(jrsa|
self.transitiveJuniorRole->exists(tjr| tjr.name=jrsa.juniorRole.name)

and

jrsa.juniorRole.transitiveJuniorRole->forAll(jrtjr|
self.transitiveJuniorRole->exists(tjr| tjr.name=jrtjr.name)

)))

OCL Constraint 2 A role-hierarchy must be cycle-free. In other words, a role cannot be a junior-role of itself, neither directly nor transitively.

context Role inv:

self.seniorAssignment->forAll(sa|
not (self.name=sa.juniorRole.name))

and

self.transitiveJuniorRole->forAll(tjr|
not (self.name=tjr.name))

OCL Constraint 3 Each role inherits the BusinessActions assigned to its junior-roles (i.e. BusinessActions assigned to junior-roles are indirectly/
transitively assigned to the corresponding senior-roles)

context Role

inv:

self.seniorAssignment->forAll(sa|
sa.juniorRole.businessAction->forall(ba|

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 477
self.inheritedTask->exists(it| it.name=ba.name)

)

and

sa.juniorRole.inheritedTask->forAll(jrit|
self.inheritedTask->exists(it| it.name=jrit.name)

))

inv:

self.inheritedTask->forAll(it|
self.seniorAssignment->exists(sa|
sa.juniorRole.businessAction->exists(ba| ba.name=it.name)

or

sa.juniorRole.inheritedTask->exists(jrit| jrit.name=it.name)

))

OCL Constraint 4 Aside from the roles directly assigned to a subject, each subject owns the junior-roles of its directly assigned roles (i.e. junior-
roles are indirectly/transitively assigned to a subject).

context Subject

inv:

self.roleToSubjectAssignment->forAll(rsa|
rsa.role.seniorAssignment->forAll(sa|
self.inheritedRole->exists(ir| ir.name=sa.juniorRole.name))

and

rsa.role.transitiveJuniorRole->forAll(tjr|
self.inheritedRole->exists(ir| ir.name=tjr.name))

)

inv:

self.inheritedRole->forAll(ir|
self.roleToSubjectAssignment->exists(rsa|
rsa.role.seniorAssignment->exists(sa| sa.juniorRole.name=ir.name)

or

rsa.role.transitiveJuniorRole->exists(tjr| tjr.name=ir.name)

))

OCL Constraint 5 Being a specialized UML2 activity, a BusinessActivity may contain any standard UML2 activity node [61]. In addition to
standard activity nodes, a BusinessActivity includes one or more BusinessActions – and BusinessActions are always included in a BusinessActivity.

context Activity inv:

if self.node->exists(n|
n.oclIsKindOf(BusinessAction))

then self.oclIsKindOf(BusinessActivity)

endif

OCL Constraint 6 In order to unambiguously identify different instances of the same BusinessActivity, we require that each BusinessActivity
defines an attribute called ‘‘processID’’.

context BusinessActivity inv:

self.instanceSpecification->forAll(i|
i.slot->exists(s|
s.definingFeature.name=processID

))

OCL Constraint 7 Each BusinessAction defines an attribute ‘‘owningProcessInstance’’ (and thereby each BusinessAction instance owns a
respective slot) to ensure that at runtime each instance of a BusinessAction can be associated with the corresponding BusinessActivity instance.

context BusinessAction inv:

self.instanceSpecification->forAll(i|
i.slot->exists(s|
s.definingFeature. name=owningProcessInstance

))

(continued on next page)

478 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
OCL Constraint 8 Each instance of a BusinessAction must be included in an instance of the corresponding BusinessActivity.

context BusinessAction inv:

self.instanceSpecification->forAll(i|
self.activity.instanceSpecification->exists(a|
i.slot->select(si|
si.definingFeature. name=owningProcessInstance

a.slot->select(sa|
sa.definingFeature.name=processID

and

si.value=sa.value

))))

OCL Constraint 9 To assign subjects to an instance of a BusinessAction, and to determine the subject that executes a particular BusinessAction
instance included in a particular BusinessActivity instance, we require that each BusinessAction defines an attribute called ‘‘executingSubject’’ (and
thereby each instance owns a respective slot). Moreover, the executingSubject attribute must refer to a subject that is (via one of its roles) actually
allowed to execute this BusinessAction.

context BusinessAction inv:

self.instanceSpecification->forAll(i|
i.slot->exists(s|
s.definingFeature.name=executingSubject

and

(self.role->exists(r|
r.roleToSubjectAssignment->exists(rsa| rsa.subject.name=s.value)

or

r.transitiveRoleOwner->exists(tro| tro.name=s.value))

)))

OCL Constraint 10 In order to define role-binding constraints, we must be able to identify the executing role of a particular BusinessAction.
Thus, we require that each BusinessAction defines an attribute called ‘‘executingRole’’, and therefore each BusinessAction instance (i.e. each run-
time instance of a task modeled via a BusinessAction) owns a corresponding slot. Moreover, the executingRole attribute must refer to a role that is
associated with the corresponding BusinessAction (either directly or transitively via the role-hierarchy).

context BusinessAction inv:

self.instanceSpecification->forAll(i|
i.slot->exists(s|
s.definingFeature.name=executingRole

and

(self.role->exists(r| r.name=s.value)

or

self.transitiveTaskOwner->exists(tto| tto.name=s.value))

))

OCL Constraint 11 A BusinessAction cannot be mutually exclusive to itself.

context BusinessAction

inv: self.staticExclusion->select(sme|
sme.name=self.name)->isEmpty()

inv: self.dynamicExclusion->select(dme|
dme.name=self.name)->isEmpty()

OCL Constraint 12 DME as well as SME constraints on BusinessActions are always mutual–to reflect the corresponding mutual exclusion
relation.

context BusinessActivity

inv:

self.node->select(oclIsKindOf(BusinessAction))->forAll (a1,a2|

if a1.staticExclusion->exists(ax| ax.name=a2.name)

then a2.staticExclusion->exists(ay| ay.name=a1.name)

endif)

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 479
inv:

self.node->select(oclIsKindOf(BusinessAction))->forAll (a1,a2|

if a1.dynamicExclusion->exists(ax| ax.name=a2.name)

then a2.dynamicExclusion->exists(ay| ay.name=a1.name)

endif)

OCL Constraint 13 A BusinessAction cannot be bound to itself.

context BusinessAction

inv: self.subjectBinding->select(sb|
sb.name=self.name)->isEmpty()

inv: self.roleBinding->select(rb|
rb.name=self.name)->isEmpty()

OCL Constraint 14 Binding constraints on BusinessActions are always mutual – to reflect the corresponding binding relation.

context BusinessActivity

inv:

self.node->select(oclIsKindOf(BusinessAction))->forAll (a1,a2|

if a1.subjectBinding->exists(ax| ax.name=a2.name)

then a2.subjectBinding->exists(ay| ay.name=a1.name)

endif)

inv:

self.node->select(oclIsKindOf(BusinessAction))->forAll (a1,a2|

if a1.roleBinding->exists(ax| ax.name=a2.name)

then a2.roleBinding->exists(ay| ay.name=a1.name)

endif)

OCL Constraint 15 Either a DME or a SME constraint can be defined on two BusinessActions but not both.

context BusinessAction inv:

self.staticExclusion->forAll(sme|
self.dynamicExclusion->select(dme|

sme.name=dme.name)->isEmpty()
)

OCL Constraint 16 One may either specify a mutual exclusion constraint or a binding constraint between two BusinessActions, but not both.
The only exception from this rule are DME constraints and role binding constraints which do not conflict (see also discussion from Section 3).
context BusinessAction

inv: self.staticExclusion->forAll(sme|
self.subjectBinding->select(sb|

sb.name=sme.name)->isEmpty())

inv: self.staticExclusion->forAll(sme|
self.roleBinding->select(rb|

rb.name=sme.name)->isEmpty())

inv: self.dynamicExclusion->forAll(dme|
self.subjectBinding->select(sb|

sb.name=dme.name)->isEmpty())

OCL Constraint 17 In a role-hierarchy, mutual exclusion constraints are subject to inheritance (see Section 3). Therefore, two SME Business-
Actions must never be assigned to the same role, neither directly nor transitively.

context Role

inv:

self.businessAction->forAll(ba1,ba2|
ba1.staticExclusion->select(sme|
sme.name=ba2.name)->isEmpty())
)

(continued on next page)

480 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
inv:

self.businessAction->forAll(ba|
self.inheritedTask->forAll(it|

ba.staticExclusion->select(sme|
sme.name=it.name)->isEmpty()

)))

OCL Constraint 18 A subject must never be assigned to two roles which own SME Business Actions, neither directly nor transitively.

context Subject inv:

self.roleToSubjectAssignment->forAll(rsa1,rsa2|
rsa1.role.businessAction->forAll(ba1|
rsa2.role.businessAction->forAll(ba2|
rsa1.role.inheritedTask->forAll(it1|
rsa2.role.inheritedTask->forAll(it2|
ba1.staticExclusion->select(sme| sme.name=ba2.name)->isEmpty()
and

ba1.staticExclusion->select(sme| sme.name=it2.name)->isEmpty()
and

it1.staticExclusion->select(sme| sme.name=it2.name)->isEmpty()
and

ba2.staticExclusion->select(sme| sme.name=it1.name)->isEmpty()
)))))

OCL Constraint 19 To enforce SME constraints on BusinessActions, we specify that the instances of two SME BusinessActions must never have
the same executing subject.

context BusinessAction inv:

self.staticExclusion->forAll(sme|
self.instanceSpecification->forAll(i|
sme.instanceSpecification->forAll(j|
i.slot->forAll(is|
j.slot->forAll(js|
if is.definingFeature.name=executingSubject

and

js.definingFeature.name=executingSubject

then

not (is.value=js.value)

endif

)))))

OCL Constraint 20 To enforce DME constraints on BusinessActions, we define that for each BusinessActivity the instances of two DME Busi-
nessActions which are included in this BusinessActivity must be executed by two distinct subjects.

context BusinessAction inv:

self.dynamicExclusion->forAll(dme|
self.instanceSpecification->forAll(i|
dme.instanceSpecification->forAll(j|
i.slot->select(si1|
si1.definingFeature.name=owningProcessInstance

j.slot->select(sj1|
sj1.definingFeature.name=owningProcessInstance

i.slot->select(si2|
si2.definingFeature.name=executingSubject

j.slot->select(sj2|
sj2.definingFeature.name=executingSubject

if (si1.value=sj1.value)

then

not (si2.value=sj2.value)

endif

))))))

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 481
f

,
)

,

l

)

:

OCL Constraint 21 In case a role-binding is defined on two BusinessActions, instances of these actions must always

be associated with the same executing role.

context BusinessAction inv:

self.roleBinding->forAll(rbt|
self.instanceSpecification->forAll(i|
rbt.instanceSpecification->forAll(j|
i.slot->select(si1|
si1.definingFeature.name=owningProcessInstance

j.slot->select(sj1|
sj1.definingFeature.name=owningProcessInstance

i.slot->select(si2|
si2.definingFeature.name=executingRole

j.slot->select(sj2|
sj2.definingFeature.name=executingRole

if (si1.value=sj1.value)

then (si2.value=sj2.value)

endif

)))))))

OCL Constraint 22 If a subject-binding is defined on two BusinessActions, instances of these actions must always be associated with the same
executing subject.

context BusinessAction inv:

self.subjectBinding->forAll(sbt|
self.instanceSpecification->forAll(i|
sbt.instanceSpecification->forAll(j|
i.slot->select(si1|
si1.definingFeature.name=owningProcessInstance

j.slot->select(sj1|
sj1.definingFeature.name=owningProcessInstance

i.slot->select(si2|
si2.definingFeature.name=executingSubject

j.slot->select(sj2|
sj2.definingFeature.name=executingSubject

if (si1.value=sj1.value)

then (si2.value=sj2.value)

endif

)))))))
References

[1] W.M.P. van der Aalst, Formalization and verification of event-driven process
chains, Information and Software Technology 41 (10) (1999).

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, YAWL: yet another workflow
language, Information Systems 30 (4) (2005).

[3] G.J. Ahn, R. Sandhu, Role-based authorization constraints specification, ACM
Transactions on Information and System Security (TISSEC) 3 (4) (2000).

[4] G.J. Ahn, M.E. Shin, Role-based authorization constraints specification using
object constraint language, in: Proceedings of the 10th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), June 2001.

[5] M. Alam, M. Hafner, R. Breu, Constraint based role based access control in the
SECTET-framework – a model-driven approach, Journal of Computer Security
16 (2) (2008).

[6] B. Axenath, E. Kindler, V. Rubin, AMFIBIA: a meta-model for the integration of
business process modelling aspects, in: F. Leymann, W. Reisig, S.R. Thatte, W.
van der Aalst (Eds.), The Role of Business Processes in Service Oriented
Architectures, No. 06291 in Dagstuhl Seminar Proceedings, 2006.

[7] D. Basin, J. Doser, T. Lodderstedt, Model driven security: from UML models to
access control infrastructures, ACM Transactions on Software Engineering and
Methodology (TOSEM) 15 (1) (2006).

[8] J. Becker, M. Rosemann, C. von Uthmann, Guidelines of business process
modeling, in: Business Process Management, Models, Techniques, and
Empirical Studies, Lecture Notes in Computer Science (LNCS), vol. 1806,
Springer Verlag, 2000.

[9] E. Bertino, J. Crampton, F. Paci, Access control and authorization constraints
for WS-BPEL, in: Proceedings of the IEEE International Conference on Web
Services (ICWS), September 2006.
[10] E. Bertino, E. Ferrari, V. Atluri, The specification and enforcement o
authorization constraints in workflow management systems, ACM
Transactions on Information and System Security (TISSEC) 2 (1) (1999).

[11] R.A. Botha, J.H.P. Eloff, Separation of duties for access control enforcement in
workflow environments, IBM Systems Journal 40 (3) (2001).

[12] R. Breu, G. Popp, M. Alam, Model based development of access policies
International Journal on Software Tools for Technology Transfer 9 (5–6
(2007).

[13] J.C. Cannon, M. Byers, Compliance deconstructed, ACM Queue 4 (7) (2006).
[14] D.D. Clark, D.R. Wilson, A comparison of commercial and military computer

security policies, in: Proceedings of the IEEE Symposium on Security and
Privacy, April 1987.

[15] J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev, Deriving petri nets from
finite transition systems, IEEE Transactions on Computers 47 (1998).

[16] E.J. Coyne, J.M. Davis, Role Engineering for Enterprise Security Management
Artech House, 2008.

[17] J. Crampton, H. Khambhammettu, Delegation and satisfiability in workflow
systems, in: Proceedings of the 13th ACM Symposium on Access Contro
Models and Technologies (SACMAT), June 2008.

[18] M. Damianides, How does SOX change IT?, Journal of Corporate Accounting &
Finance 15 (6) (2004)

[19] R.M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business
process models in BPMN, Information & Software Technology 50 (12
(2008).

[20] P. Epstein, R. Sandhu, Towards a UML based approach to role engineering, in
Proceedings of the 4th ACM Workshop on Role-Based Access Control, October
1999.

[21] R. Eshuis, R. Wieringa, Tool support for verifying UML activity diagrams, IEEE
Transactions on Software Engineering (TSE) 30 (7) (2004).

482 M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483
[22] D.F. Ferraiolo, J.F. Barkley, D.R. Kuhn, A role-based access control model and
reference implementation within a corporate Intranet, ACM Transactions on
Information and System Security (TISSEC) 2 (1) (1999).

[23] D.F. Ferraiolo, D.R. Kuhn, Role-based access controls, in: Proceedings of the
15th National Computer Security Conference, October 1992.

[24] D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli, Role-Based Access Control, second
ed., Artech House, 2007.

[25] T. Fink, M. Koch, K. Pauls, An MDA approach to access control specifications
using MOF and UML profiles, in: Proceedings of the First International
Workshop on Views on Designing Complex Architectures (VODCA), Electronic
Notes in Theoretical Computer Science, vol. 142, January 2006, pp. 161–179.

[26] M.P. Gallaher, A.C. O’Connor, B. Kropp, The Economic Impact of Role-Based
Access Control, National Institute of Standards & Technology (NIST), Planning
Report 02-1, March 2002.

[27] C.K. Georgiadis, I. Mavridis, G. Pangalos, R.K. Thomas, Flexible team-based
access control using contexts, in: Proceedings of the 6th ACM Symposium on
Access Control Models and Technologies (SACMAT), May 2001.

[28] K. Irwin, T. Yu, W.H. Winsborough, Enforcing security properties in task-
based systems, in: Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies (SACMAT), June 2008.

[29] ISO, Information technology – Security techniques – Code of practice for
information security management, ISO/IEC 27002:2005, Stage: 90.92, April
2008, <http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=50297>.

[30] ISO, Information technology – Security techniques – Information security
management systems – Requirements, ISO/IEC 27001:2005, Stage:
90.92, October 2008, <http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=42103>.

[31] ISO, Information technology – Security techniques – Information security
management systems – Overview and vocabulary, ISO/IEC 27000:2009,
Stage: 60.60, April 2009, <http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=41933>.

[32] J. Jürjens, Secure Systems Development with UML, Springer Verlag, 2005.
[33] J. Jürjens, Sound methods and effective tools for model-based security

engineering with UML, in: Proceedings of the 27th International Conference
on Software Engineering (ICSE), May 2005.

[34] J. Jürjens, Model-based run-time checking of security permissions using
guarded objects, in: Proceedings of the 8th International Workshop on
Runtime Verification, Lecture Notes in Computer Science (LNCS), vol. 5289,
Springer Verlag, 2008.

[35] J. Jürjens, M. Lehrhuber, G. Wimmel, Model-based design and analysis of
permission-based security, in: Proceedings of the 10th International
Conference on Engineering of Complex Computer Systems (ICECCS), June
2005.

[36] S.K. Kim, D. Burger, D.A. Carrington, An MDA approach towards integrating
formal and informal modeling languages, in: International Symposium of
Formal Methods Europe, Lecture Notes in Computer Science (LNCS), vol.
3582, Springer Verlag, 2005, pp. 448–464.

[37] E. Kindler, On the semantics of EPCs: resolving the vicious circle, Data &
Knowledge Engineering (DKE) 56 (1) (2006).

[38] M. Koch, F. Parisi-Presicce, UML specification of access control policies and
their formal verification, Software and System Modeling 5 (4) (2006) 429–
447.

[39] S. Kunz, S. Evdokimov, B. Fabian, B. Stieger, M. Strembeck, Role-based access
control for information federations in the industrial service sector, in:
Proceedings of the 18th European Conference on Information Systems
(ECIS), June 2010.

[40] C.E. Landwehr, Formal models for computer security, ACM Computing
Surveys 13 (3) (1981).

[41] F. Leymann, D. Roller, Production Workflow – Concepts and Techniques,
Prentice Hall, 2000.

[42] N. Li, M.V. Tripunitara, Z. Bizri, On mutually exclusive roles and separation-of-
duty, ACM Transactions on Information and System Security (TISSEC) 10 (2)
(2007).

[43] N. Li, Q. Wang, Beyond separation of duty: an algebra for specifying high-level
security policies, Journal of the ACM (JACM) 55 (3) (2008).

[44] B. List, B. Korherr, An evaluation of conceptual business process modelling
languages, in: Proceedings of the 21st ACM Symposium on Applied
Computing (SAC), April 2006.

[45] N. Lohmann, E. Verbeek, R.M. Dijkman, Petri net transformations for business
processes – a survey, Transactions on Petri Nets and Other Models of
Concurrency 2 (2009).

[46] J. Mendling, Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction and Guidelines for Correctness, Lecture Notes in Business
Information Processing (LNBIP), vol. 6, Springer Verlag, 2008.

[47] J. Mendling, W.M.P. van der Aalst, Formalization and verification of EPCs with
OR-joins based on state and context, in: J. Krogstie, A.L. Opdahl, G. Sindre
(Eds.), Proceedings of the 19th Conference on Advanced Information Systems
Engineering (CAiSE), Lecture Notes in Computer Science, vol. 4495, Springer
Verlag, Trondheim, Norway, 2007.

[48] J. Mendling, K. Ploesser, M. Strembeck, Specifying separation of duty
constraints in BPEL4People processes, in: Proceedings of the 11th
International Conference on Business Information Systems (BIS), Lecture
Notes in Business Information Processing (LNBIP), vol. 7, Springer-Verlag, 2008.

[49] J. Mendling, M. Strembeck, G. Stermsek, G. Neumann, An approach to extract
RBAC models from BPEL4WS processes, in: Proceedings of the 13th IEEE
International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE), June 2004.

[50] T. Mens, P. Van Gorp, A taxonomy of model transformation, Electronic Notes
in Theoretical Computer Science 152 (2006) 125–142.

[51] M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific
languages, ACM Computing Surveys 37 (4) (2005) 316–344.

[52] S. Mishra, H.R. Weistroffer, A framework for integrating Sarbanes-Oxley
compliance into the systems development process, Communications of the
Association for Information Systems (CAIS) 20 (1) (2007).

[53] T. Murata, Petri nets: properties, analysis and applications, Proceedings of the
IEEE 77 (4) (1989).

[54] G. Neumann, M. Strembeck, A scenario-driven role engineering process for
functional RBAC roles, in: Proceedings of 7th ACM Symposium on Access
Control Models and Technologies (SACMAT), June 2002.

[55] NIST, An Introduction to Computer Security: The NIST Handbook, National
Institute of Standards& Technology (NIST), Special Publication 800-12,
October 1995, <http://csrc.nist.gov/publications/nistpubs/800-12/
handbook.pdf>.

[56] NIST, Recommended Security Controls for Federal Information Systems and
Organizations, National Institute of Standards & Technology (NIST), Special
Publication 800-53, Revision 3, August 2009, <http://csrc.nist.gov/
publications/nistpubs/800-53-Rev3/sp800-53-rev3-final-errata.pdf>.

[57] S. Oh, S. Park, Task-role-based access control model, Information Systems 28
(6) (2003).

[58] OMG, Object Constraint Language Specification, Version 2.0, formal/06-05-01,
The Object Management Group, May 2006, <http://www.omg.org/
technology/documents/formal/ocl.htm>.

[59] OMG, Business Process Modeling Notation (BPMN), Version 1.2, formal/2009-
01-03, The Object Management Group, January 2009, <http://www.omg.org/
spec/BPMN/1.2/>.

[60] OMG, Meta Object Facility (MOF): Core Specification, Version 2.0, formal/06-
01-01, The Object Management Group, January 2006, <http://www.omg.org/
spec/MOF/2.0/>.

[61] OMG, Unified Modeling Language (OMG UML): Superstructure, Version 2.2,
formal/2009-02-02, The Object Management Group, February 2009, <http://
www.omg.org/technology/documents/formal/uml.htm>.

[62] C. Ouyang, M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede, J. Mendling,
From business process models to process-oriented software systems, ACM
Transactions on Software Engineering and Methodology (TOSEM) 19 (1)
(2009).

[63] J.L. Peterson, Petri nets, ACM Computing Surveys (CSUR) 9 (3) (1977) 223–
252.

[64] C.A. Petri, Fundamentals of a theory of asynchronous information flow, in:
Proceedings of the Information Processing Congress (IFIP Congress), August/
September 1962.

[65] I. Ray, N. Li, R. France, D.K. Kim, Using UML to visualize role-based access
control constraints, in: Proceedings of the 9th ACM Symposium on Access
Control Models and Technologies (SACMAT), June 2004.

[66] A. Rodrı́guez, E. Fernández-Medina, M. Piattini, Capturing security
requirements in business processes through a UML 2.0 activity diagrams
profile, in: Workshop Proceedings of Advances in Conceptual Modeling –
Theory and Practice (ER Workshops), Lecture Notes in Computer Science
(LNCS), vol. 4231, Springer Verlag, 2006, pp. 32–42.

[67] Alfonso Rodrı́guez, Eduardo Fernández-Medina, Mario Piattini, A BPMN
extension for the modeling of security requirements in business processes,
IEICE Transactions on Information and Systems 90-D (4) (2007) 745–
752.

[68] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, D. Edmond, Workflow
resource patterns: identification, representation and tool support, in: O.
Pastor, J. Falcão e Cunha (Eds.), Proceedings of the 17th International
Conference on Advanced Information Systems Engineering, CAiSE 2005,
Porto, Portugal, June 13–17, 2005, Lecture Notes in Computer Science, vol.
3520, Springer, 2005, pp. 216–232.

[69] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, P. Wohed, On the
suitability of UML 2.0 activity diagrams for business process modelling, in:
Proceedings of the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM), January 2006.

[70] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, Role-based access control
models, IEEE Computer 29 (2) (1996).

[71] R.S. Sandhu, P. Samarati, Access control: principles and practice, IEEE
Communications 32 (9) (1994).

[72] A.W. Scheer, ARIS – Business Process Modeling, 3rd ed., Springer Verlag, 2000.
[73] Douglas C. Schmidt, Model-driven engineering – guest editor’s introduction,

Computer 39 (2) (2006).
[74] B. Selic, The pragmatics of model-driven development, IEEE Software 20 (5)

(2003).
[75] S. Sendall, W. Kozaczynski, Model transformation: the heart and soul of

model-driven software development, IEEE Software 20 (5) (2003).
[76] M.E. Shin, G.J. Ahn, UML-based representation of role-based access control,

in: Proceedings of the 9th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), June
2000.

[77] K. Sohr, G.J. Ahn, M. Gogolla, L. Migge, Specification and validation of
authorisation constraints using UML and OCL, in: Proceedings of the 10th
European Symposium on Research in Computer Security (ESORICS), Lecture
Notes in Computer Science (LNCS), vol. 3679, Springer Verlag, 2005.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50297
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50297
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42103
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42103
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41933
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41933
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final-errata.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final-errata.pdf
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

M. Strembeck, J. Mendling / Information and Software Technology 53 (2011) 456–483 483
[78] K. Sohr, M. Drouineaud, G.J. Ahn, M. Gogolla, Analyzing and managing role-
based access control policies, IEEE Transactions on Knowledge and Data
Engineering 20 (7) (2008) 924–939.

[79] K. Sohr, T. Mustafa, X. Bao, G.J. Ahn, Enforcing role-based access control
policies in web services with UML and OCL, in: Proceedings of the 2008
Annual Computer Security Applications Conference (ACSAC), December
2008.

[80] D. Spinellis, Notable design patterns for domain-specific languages, Journal of
Systems and Software 56 (1) (2001) 91–99.

[81] Thomas Stahl, Markus Völter, Model-Driven Software Development, John
Wiley & Sons, 2006.

[82] E.A. Stohr, J.L. Zhao, Workflow automation: overview and research issues,
Information Systems Frontiers 3 (3) (2001).

[83] M. Strembeck, Conflict checking of separation of duty constraints in RBAC –
implementation experiences, in: Proceedings of the Conference on Software
Engineering (SE 2004), February 2004.

[84] M. Strembeck, A role engineering tool for role-based access control, in:
Proceedings of the 3rd Symposium on Requirements Engineering for
Information Security (SREIS), August 2005.

[85] M. Strembeck, Embedding policy rules for software-based systems in a
requirements context, in: Proceedings of the IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY), June 2005.

[86] M. Strembeck, Scenario-driven role engineering, IEEE Security & Privacy 8 (1)
(2010).

[87] M. Strembeck, J. Mendling, Generic algorithms for consistency checking of
mutual-exclusion and binding constraints in a business process context, in:
Proceedings of the 18th International Conference on Cooperative Information
Systems (CoopIS), Lecture Notes in Computer Science (LNCS), vol. 6426,
Springer Verlag, 2010.

[88] M. Strembeck, G. Neumann, An integrated approach to engineer and enforce
context constraints in RBAC environments, ACM Transactions on Information
and System Security (TISSEC) 7 (3) (2004).

[89] M. Strembeck, U. Zdun, An approach for the systematic development of
domain-specific languages, Software: Practice and Experience (SP&E) 39 (15)
(2009).

[90] K. Tan, J. Crampton, C.A. Gunter, The consistency of task-based authorization
constraints in workflow systems, in: Proceedings of the 17th IEEE Workshop
on Computer Security Foundations (CSFW), June 2004.

[91] R.K. Thomas, Team-based access control (TMAC): a primitive for applying
role-based access controls in collaborative environments, in: Proceedings of
the ACM Workshop on Role Based Access Control, 1997.
[92] R.K. Thomas, R.S. Sandhu, Task-based authorization controls (TBAC): a family of
models for active and enterprise-oriented authorization management, in:
Proceedings of the IFIP WG11.3 Conference on Database Security, August 1997.

[93] A. Valmari, The state explosion problem, in: Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced
Course on Petri Nets, held in Dagstuhl, September 1996, Lecture Notes in
Computer Science (LNCS), vol. 1491, Springer Verlag, 1998.

[94] K. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, M. Voorhoeve, History-based
joins: semantics, soundness and implementation, Data & Knowledge
Engineering (DKE) 64 (1) (2008).

[95] J. Wainer, P. Barthelmes, A. Kumar, W-RBAC – a workflow security model
incorporating controlled overriding of constraints, International Journal of
Cooperative Information Systems (IJCIS) 12 (4) (2003).

[96] H. Wang, Y. Zhang, J. Cao, J. Yang, Specifying role-based access constraints
with object constraint language, in: Proceedings of the 6th Asia-Pacific
Conference Advanced Web Technologies and Applications, Lecture Notes in
Computer Science (LNCS), vol. 3007, Springer Verlag, 2004.

[97] J. Warner, V. Atluri, Inter-instance authorization constraints for secure
workflow management, in: Proceedings of the 11th ACM Symposium on
Access Control Models and Technologies (SACMAT), June 2006.

[98] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, On
the suitability of BPMN for business process modelling, in: Proceedings of the
4th International Conference on Business Process Management (BPM),
Lecture Notes in Computer Science (LNCS), vol. 4102, Springer Verlag, 2006.

[99] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, C. Meinel, Model-driven
business process security requirement specification, Journal of Systems
Architecture 55 (4) (2009).

[100] C. Wolter, A. Schaad, Modeling of task-based authorization constraints in
BPMN, in: G. Alonso, P. Dadam, M. Rosemann (Eds.), 5th International
Conference on Business Process Management (BPM), Lecture Notes in
Computer Science, vol. 4714, Springer, 2007, pp. 64–79.

[101] U. Zdun, Patterns of component and language integration, in: D. Manolescu,
M. Voelter, J. Noble (Eds.), Pattern Languages of Program Design, vol. 5,
Addison Wesley, 2006.

[102] U. Zdun, M. Strembeck, Modeling composition in dynamic programming
environments with model transformations, in: Proceedings of the 5th
International Symposium on Software Composition, Lecture Notes in
Computer Science (LNCS), vol. 4089, Springer-Verlag, 2006.

[103] U. Zdun, M. Strembeck, Reusable architectural decisions for DSL design:
foundational decisions in DSL projects, in: Proceedings of the 14th European
Conference on Pattern Languages of Programs (EuroPLoP), July 2009.

	Modeling process-related RBAC models with extended UML activity models
	Introduction
	Motivation
	Approach synopsis

	Access control in a business process context
	Separation of duty
	Binding of duty

	A formal and generic metamodel for Business Activities
	Generic metamodel for Business Activity RBAC models
	Generic metamodel for Business Activity process flows

	UML extension for Business Activities
	Invariants for Business Activities
	Notation elements for Business Activities

	Business Activity examples
	A credit application process
	A paper review process
	A radiological image reading process

	Using Business Activities for real-world process models
	Platform support for Business Activities
	The Business Activity library and runtime engine
	Mapping Business Activities to runtime models

	Related work
	Conclusion
	Invariants for business actions
	References

