Definition of an Aspect-Oriented DSL
using a Dynamic Programming Language

Mark Strembeck, Uwe Zdun
Institute of Information Systems, New Media Lab
Vienna University of Economics, Austria

{mark.strembeck|uwe.zdun}@wu-wien.ac.at

ABSTRACT

We present an approach to define an aspect-oriented DSL asing

dynamic language. In particular, we describe an extensifject-
oriented DSL for role-based access control and its impléatiem.
Furthermore, we show how a dynamic pointcut language casdx u
to compose the different elements of our DSL. We implemetiied
approach using the XOTcl scripting language. The genembagh,
however, can be realized using any other dynamic languagelas

1. INTRODUCTION

Domain-specific languages (DSL) are “small” languages ahat
particularly expressive in a certain problem domain. Régem
the area of model-driven software development and relasehrch
areas (see, e.g., [1, 3, 4, 11]), DSLs are used as languagesep-
resent the abstractions familiar to domain experts (skec¢aomain
modeling languages). A DSL may have a textual or graphiqal re
resentation or both. This concrete syntax of the DSL is baseah
abstract syntax which is defined by the underlying formafjleage
model. In the model-driven approach, the semantics of thie &8
defined using model transformation and code generationt i$ha
generator translates the DSL into an executable repreiemtac-
cording to the models and meta-models, and the semantidseof t
model elements. Sometimes DSLs define semantics that azetasp
oriented in their nature. Consider, for instance, a DSL fefining
role-based access control polidies*.n this context, an access con-
trol subject has a number of roles that are assigned to thigcu
Moreover, permissions are assigned to roles, and permissin be
associated with context constraints (see [13]). This bamidel is
shown in Figure 1. On the source code level, each of the elsmen
in the model is represented via classes or class hierarcnesthe
definition of individual elements is independent of the ottlasses
and hierarchies. It is, however, not trivial to achieve thisl since
the context constraint concerns cross-cut the permissiooerns,
which again cross-cut role concerns, and the roles crasssogerns
in the subjects. To avoid tangled code in the definition of D&t
as well as in the code written in the DSL, we introduce an aspec
oriented specification of a role-based access control D& mFan
aspect-oriented point of view, roles can be interpretedspeds of
subjects, permissions as aspects of roles, and contextraions as
aspects of permissions (see also Section 4).

Context
assngned to a55|gned to Imked to \Constraint

Figure 1: High-level model for role-based access control

In this paper, we want to explore the combination of the DSh-co
cept and aspect-oriented programming concepts. We behieve-

1This is used as a running example throughout the paper.

quirements of the role-based access control DSL are quatestyfor
an aspect-oriented DSL:

e The AOP framework must be able to depict “aspects of as-
pects”. In the access control example, and many other exam-
ples, the aspects are related to other aspects which must be
reflected by the AOP framework because the DSL user must
be able to define and control how the aspects interact.

e The pointcut language of the AOP framework must be exten-
sible, so that we can define new domain-specific pointcuts,
which can be exposed to the DSL.

e The AOP framework and its programming language must al-
low for the extension with new elements or to define new DSL
language elements, i.e. their syntax and semantics. Mereov
the AOP framework should be able to directly generate an exe-
cutable representation from a specification written in ti$.D

e In the access control example, and many other examples, the
aspects must be dynamic. A recompilation for new or chang-
ing roles, permissions, or constraints is not feasible.

To meet these requirements we especially need an open aspect
language that is dynamic and able to handle “aspects of &Sp&t
this paper, we will use the scripting language XOTcl [8] aopan
aspect language. Please note that we use XOTcl just for rexialp
of the approach. The general concept of an aspect-orienBdi$
not depending on this specific language. In particular, wede-
scribe an aspect-oriented DSL that provides the same anadify
as the xoRBAC component [5, 13]. Our aspect-oriented DSL for
RBAC, however, separates the different concerns in a mficesit
way and thus results in a more comprehensible and bettetaimain
able implementation that allows for a straightforward etiohn of
XORBAC.

2. EXTENDED OBJECT TCL (XOTCL) AS
AN OPEN ASPECT LANGUAGE

Before showing how to realize an aspect-oriented DSL, weflgri
explain how the scripting language XOTcl [8, 14] can be used a
an open, dynamic aspect language. Like most scripting kg
XOTcl can be extended with new language elements. Thus, it is
a good starting point to rapidly define a DSL. In addition, XDT
supports the dynamic composition of aspects. That is, th&cKO
interpreter receives symbolic invocations that are irdded to the
actual implementations of all objects in the system. Therpreter
can dynamically intercept any message in the call flow whes it
dispatched. At this point, the aspects are applied.

The idea of applying aspects as dynamic message intereegior
top of a (given) interpreter architecture is quite simple specify
all calls that are in focus of an aspect as criteria for thesags inter-
ceptor, and let the interpreter execute this message antEncevery

time such messages are called. In this way, we can implenngnt a
aspect that relies on message exchanges. To receive thesapce
information for dealing with the invocations, the messagercep-
tor should be able to obtain the message context to find outhwhi
method was called on which object (the callee). Often théncal
object and the respective method are required as well.dpéetion
options are used to obtain structure information via rafhact

XOTcl providesmixin classe$6] as a dynamic message intercep-
torimplementation. In XOTcl, any “ordinary” class can bgistered
as a mixin. The predefineidnst ni xi n> method accepts a list of
classes to be registered as per-class mixins, whereasdtiefipred
mi xi n method registers classes as per-object mixins.

XOTcl mixins may be dynamically added and removed at
any time. To keep track of these dynamic relationshipsf o
instm xin andinfo m xi n provide introspection functions for
mixins. Thus, one can always determine the current mixinarof
object or class at runtime (see also [8, 14]).

For instance, consider the following XOTcl code (corresfing
to one of the introductory AspectJ examples):

Cl ass Poi nt

Cl ass Poi nt Assertions

Poi nt Assertions instproc assertX x {
if {$x <= 100 && $x >= 0} {return 1}
return 0

}
Poi nt Assertions instproc setX x {
if {[my assertX $x]} {
puts "Illegal value for x"
} else { next }

Poi nt instmxin add Poi nt Assertions

At first, the corresponding code for the class and the aspece (
also implemented as a class) is defined. Then, we dynamreagjiy-
ter one of these classes as an instance mixin (a class-bassage
interceptor) for all points. Thus, all method callsstet X are inter-
cepted by th€oi nt Asser t i on mixin’s same-named methaet X.
There are two common ways to ensure the non-invasiveness of
aspects (i.e. the obliviousness property in the terminotddg-ilman
and Friedman [2]) when using mixins:

e Mixins can be applied to a superclass or interface, and are
automatically applied to all subclasses in the class hibgar
Thus, developers of subclasses can be oblivious to thetaspec

e A mixin can be registered for a set of classes using intrespec
tion options (aka reflection). For instance, one can apply a
mixin for all class names starting witoi nt . This way mix-
ins can be applied in a non-invasive way for any kind of ciéter
(pointcuts) that can be specified using the dynamic introspe
tion options of XOTcl.

The first variant was demonstrated in the previous code ebeamp
An example for the second variant is shown in the code beloe. W
use introspection options to get all classes defined in thesyand
check whether they matctoi nt ».

Poi ntcut definition based on introspection
foreach p [Object getAll Subcl asses] {

if {[string match $p ::Point*]} {

Mxin registration for weaving the mxin aspect
$p instnixin add PointAssertion

}
}

The instructiomext is responsible for forwarding the invocation.
It thus handles (non-invasive) ordering of the messagedeptors
in a chain. Thus, the placement of thext instruction enables us

°Note that “instmixin” is a short form of “instance mixin”, raging
that a corresponding mixin is applied for all instances efdlass the
mixin was registered for.

to implement before, after, or around behavior of the mesgatgr-
ceptor.

In addition to mixin classes, XOTcl provides another messag
terceptor, called thélter. In contrast to mixin classes which only
intercept specific methods, a filter can automatically og#pt any
invocation sent to an object, class, or class hierarchyerSikare de-
scribed in detail in [7].

In contrast to AspectJ, we do not have to “introduce” the oéth
assert XonPoi nt (in the example above) using an intertype decla-
ration, as the mixin shares its object identity with the slasobject
it extends. However, in other cases we might want to change th
class structure. In XOTcl, a new class or a new method can be de
fined at any time (because all XOTcl structures are fully dyic
Such dynamics require introspection options to ensurexbato not
violate some architectural constraints when re-structutie archi-
tecture. For instance, in the example above we can first peréo
runtime check that there is no methaslser t X defined forPoi nt
yet, before we introduce it:

if {[Point info instprocs assert " {
Poi nt instproc assertX x {
if {$x <= 100 && $x >= 0} {return 1}
return 0
}
}

3. TRANSITIVE MIXINS IN XOTCL

In XOTcl, “aspects of aspects” can be modeled using traesiti
mixins. For example, consider a situation in which a ck@¥.2 is
used as a per-class mixin, and we want to define an aspectior th
mixin class. The aspect is implemented in a clalsx_13. Con-
sider further that the aspett x_1 itself should have another aspect
TM x_2 (see Figure 2). In addition, the original composition of mix
ins should stay unaffected by the addional aspects.

per [pcM2 |
per -

<-class -
mixin | myMethod --
class

PCM 1 <~ mixin _
myMethod

per
<--class-
mixin

TMix_2 TMix_1

myMethod myMethod MyClass

myMethod

Figure 2: Example of transitive per-class mixins

In XOTcl, this is solved by adding the corresponding pessla
mixins to the method resolution order of the affected nfixiAfter
weaving the mixins as aspects, the configuration in Figusey2iner-
ated. This configuration means that all per-class mixins@fixin
itself (and their superclasses) are searched before therthetsolu-
tion order proceeds to the next mixin, resulting in a chaimofins
that is visited in a transitive fashion (see also Figure &isBcheme
is applied recursively, because mixins might themselve® naix-
ins, which again might have mixins, and so on.

4. ROLE-BASED ACCESS CONTROL DSL

The foundation of our aspect-oriented DSL for role-basewtss
control (RBAC) consists of subjects, roles, permissions, @ontext
constraints. Each of these basic elements is implemensegivown
class that defines the specific functions of the correspgratincept.
Some of these classes can also be used as the root of a corastex ¢
hierarchy. The four classes represent orthogonal contkatsve
like to define independently from each other, and composs@ts
of each other (as outlined in Section 1).

To implement an aspect-oriented DSL, we need to define a
domain-specific aspect weaver that is capable to weave taspec

3In this example “TMix” is an abbreviation for “transitive min”.

4As mentioned above, XOTcl mixins can be dynamically regisie
and de-registered at any time.

Per-object mixin relationships generated using dynam

(Context Constraint Aspect) Permission Aspect Role Aspect
ContextConstraint Permission Role Subject
checkAccess checkAccess checkAccess checkAccess
A A A A A
instance-of 1 . ' . : . :
v instance-of instance-of instance-of
! instance-of ; i ;
constraint2 constraintl permissionl rolel
. L . L . - subjectl
checkAccess || checkAccess per-object-mixin | checkAccess per-object-mixin | checkAccess per-object-mixin
D R R e €-4--------d--- B e
7y T
_ "=~ per-object-mixin "™~ 'J‘ *'\"\L """] \ \

ic pointcuts based on introspection options (reflection)

Figure 3: Example of an executable model generated form the BAC DSL

according to domain-specific constraints and which resliae
pointcut language offering domain abstractions. For thgktwe
define the new clasRBACAspect Weaver. Below we show an
excerpt of the methods (“instprocs”) of this class, which mwapped
to DSL instructions:

Cl ass RBACAspect W\eaver
RBACAspect Weaver i nstproc
RBACAspect Weaver i nstproc

createRole {r}
creat ePerm ssion {p}

RBACAspect Weaver
RBACAspect WWeaver

i nst proc
i nst proc

rol eSubj ect Assign {r s}
rol eSubj ect Revoke {r s}

RBACAspect Weaver instproc pernRol eAssign {p r}

RBACAspect Weaver instproc pernRol eRevoke {p r}

RBACAspect Weaver instproc |inkC xConstraintToPerm{cc p}
RBACAspect Weaver instproc unlinkCtxConstraintFronPerm{cc p}

RBACAspect Weaver

i nstproc all Subj ectlnstances {}
RBACAspect Weaver instproc all Rol el nstances {}
RBACAspect Weaver instproc all Perm ssionlnstances {}
RBACAspect Weaver instproc all ContextConstraintlnstances {}
ﬁBAO-\spect Weaver instproc all SubjectsOwmingRole {r}
RBACAspect Weaver instproc all Rol esAssi gnedToSubj ect {s}
RBACAspect Weaver instproc checkAccess {s op ob}

Our RBAC DSL weaver provides functions for weaving role
to subject assignment and revocatioml(eSubj ect Assi gn and
rol eSubj ect Revoke), as well as corresponding weaving functions
for permission to role assignment and revocation, andtfiéirig and
unlinking permissions and context constraints. Moreoitellows
to generate new role, permission or context constraintsemst
runtime which are again dynamically registered as mixifsHigure
3). Besides, the RBAC DSL weaver offers different introgjmec
options that allow to define domain-specific, dynamic paitgon
all instances of the basic DSL elemenas I(Subj ect | nst ances,
al | Rol el nstances etc.), as well as on specific DSL elements
(e.g.al | Subj ect sOwni ngRol e). The checkAccess function is
applied to define pointcuts that check if a certain accessbean
granted or must be denied, i.e. if a certain subjed allowed to
perform operatiomp on objectob. An example of a domain-specific
weaving function ig ol eSubj ect Assi gn:

RBACAspect Weaver instproc rol eSubjectAssign {r s} {
if {[my existSubject $s]} {
if {[nmy existRole $r]} {
if {[my ssdConstraintsAl |l owRSA $r $s]} {
if {[nmy rol eMaxSubject CardinalityAl low $r]} {
$s mi xin add $r
return 1
} else { return 0}
} else { return 0}
} else { return 0}
} else { return 0}

}
In the formal definition of this weaving function, we first eav
to make sure that the respective role and subject exists(cdll

exi st Subj ect andexi st Rol e). Subsequently, we check if the
assignment of this particular role to this particular sabjean be
granted with respect to the static separation of duty caimgs on
roles which are in effect at this very moment (for details ge&).

If so, we further check that the maximum subject cardinalgfined

on the role is not yet reached. In case all checks are passed, w
dynamically register the role as a new mixin for our subject.

Next, we give an example of an unweaving function, namely the
revocation of a permission from a role. Again, we first havagsure
that the corresponding role and permission exist. Then, veelc
that the minimum owner cardinality for this particular péssion is
not violated if we revoke the permission. Finally, we can alyi
cally delete the permission from the mixin list of the regjpecrole
(see source code below).

RBACAspect Weaver instproc pernRol eRevoke {p r} {
if {[nmy existRole $r]} {
if {[nmy existPermssion $p]} {
if {[my pernmM nOwner CardinalityAl low $p]} {
$r nmixin delete $p
return 1

} else { return 0}
} else { return 0}
} else { return 0}

}

In addition to the weaving and unweaving functions, used for
assigments and revocations, our aspect-oriented DSL fok(RB
offers various introspection functions that are used amefts
of pointcuts in the DSL. Below we exemplary describe the
al | Subj ect sOani ngRol e function which uses XOTcl reflection
options to dynamically determine all subjects that own &gixole.
After checking if the respective role exists, the functidrecks for
each subject if this particular role is assigned to the subjee. if
the role is registered as a mixin on the corresponding stibjsit
subjects owning the role are written to a list which is reaaras the
function result.

RBACAspect Weaver instproc all SubjectsOmingRole {r} {
if {[my existRole $r]} {
foreach s [ny all Subjectlnstances] {
if {[$s ismixin $r]} {
| append rol eOmers $s
}

if {[info exists roleOaers]} {
return $rol eOwners
} else { return "" }
} else { return"" }

}

After defining our DSL's weaving functions and pointcut el-
ements, we can use XOTcl as a dynamic pointcut language to
define domain-specific pointcuts based on the differermgpiection
options (using XOTcl reflection). Below we show two simple

example pointcuts. The first pointcut matches all permissio
starting with an “A” and links the context constraiot A to each
of these permissions. The second pointcut matches all oblgpe
St udent Rol e and assigns the permissiaet _exam to each of
these roles.

Instantiate a domai n-specific weaver
RBACAspect Weaver aw

Instantiate two aspects
aw creat ePer m ssi on get _exam
aw creat eCont ext Constraint cc_A

Poi ntcut definition
foreach p [$aw al | Permi ssionl nstances] {
if {[string match $p ::A«]} {
Use the domai n-specific weaving function
to weave the advice (inplenmented as a mxin)
aw | i nkCont ext Const r ai nt ToPerm cc_A $p
}
}

Pointcut definition
foreach r [$aw al | Rol el nstances] {
if {[$r isType StudentRole]} {
Use the domai n-specific weaving function
to weave the advice (inplenmented as a mxin)
aw per nRol eAssi gn get _exam $r
}
}

Figure 3 depicts a composed class model (i.e. an executalgelm
in XOTcl generated from the DSL). In particular, the rol& el is
assigned to a subjestubj ect 1. Again, there is a permission as-
signed tor ol e1, and the permission is linked to two context con-
straintsconst r ai nt 1 andconst r ai nt 2. Each of these assignment
relations is realized through an XOTcl mixin relation. Instkvay,
we are not only able to define aspects on objects and clasgedsbd
to define aspects on aspects. This specification of aspeetspatts
can be realized via transitive mixins (as mentioned in $acl).

The user of the DSL only uses the domain-specific pointcuds an
weaving functions to compose the aspects. That s, the nbesees
the domain-oriented view, not the technical details of themand
introspection model used internally. The weaver autoraliyi¢and
dynamically) realizes a mixin chain from these definitions.

5. RELATED WORK

JAC [10] provides a way to define DSLs for configuring aspects.
Like many other application server AOP frameworks, JAC rsake
use of metadata configurations. In JAC the metadata langueage
be extended by the user: operations of the aspect compoaant ¢
be provided as Command implementations and invoked from the
configuration file. This way each aspect can define its own con-
figuration language. For instance, JAC predefines an authent
tion aspect component which offers domain-specific fumstitke
addTrust edUser to configure the aspect. In [9] Zhang et al. de-
scribe how they extended their role slice approach to sugoone-
thing they call dynamic permissions. These dynamic peiotiss
consider certain runtime information, esp. the state afteel class
instances, when making an access decision. However, theptdo
use an aspect-oriented RBAC DSL to define access contraigsli
nor do they use a dynamic pointcut language.

6. CONCLUSION

In this paper, we presented an aspect-oriented DSL forbhased
access control that provides all functions of the xoRBAC pom
nent. However, in comparison to the xoRBAC component our DSL
is aspect-oriented in nature and offers a strict separafieoncerns
between the basic language elements of the DSL (especidly s
jects, roles, permissions, and context constraints). Mae we
used XOTcl as a dynamic pointcut language to weave the difter
aspects.

Our approach allows for a straightforward evolution of th8LD
and all of its language features. The approach is not lintibeithe
domain of role-based access control, of course. In priagciplis
applicable to arbitrary application domains where we fiefiree a
domain-specific language which is then mapped to a conanete i
plementation, e.g. an XOTcl implementation. Subsequewiyuse
a dynamic pointcut language (for example XOTcl includirgrith
introspection/reflection features) to compose the diffeetements.
Note that the XOTcl language was primarily used for dematistn
purposes and that the general approach can of course teecbaiih
other dynamic languages.

7. REFERENCES

[1] S. Dmitriev. Language oriented programming: The next
programming paradigm. Onboard Magazine, http://
www.onboard.jetbrains.com/is1/articles/04/10/logér.html,
November 2004.
R. Filman and D. Friedman. Aspect-oriented programnisng
quantification and obliviousness. ®OPSLA Workshop on
Advanced Separation of Concermhdinneapolis, USA,
October 2000.
M. Fowler. Language workbenches: The killer-app for dam
specific languages? http://www.martinfowler.com/aetit|
languageWorkbench.html, June 2005.
J. Greenfield and K. Shorgoftware Factories: Assembling
Applications with Patterns, Frameworks, Models & Todls
Wiley and Sons Ltd., 2004.
G. Neumann and M. Strembeck. Design and Implementation
of a Flexible RBAC-Service in an Object-Oriented Scripting
Language. IrProc. of the 8th ACM Conference on Computer
and Communications Security (CC8lpvember 2001.
G. Neumann and U. Zdun. Enhancing object-based system
composition through per-object mixins. Rroceedings of
Asia-Pacific Software Engineering Conference (APSEC)
Takamatsu, Japan, December 1999.
G. Neumann and U. Zdun. Filters as a language support for
design patterns in object-oriented scripting languages. |
Proceedings of COOTS'99, 5th Conference on
Object-Oriented Technologies and Systepages 1-14, San
Diego, California, USA, May 1999.
G. Neumann and U. Zdun. XOTcl, an object-oriented samipt
language. IProceedings of Tcl2k: The 7th USENIX Tcl/Tk
ConferenceAustin, Texas, USA, February 2000.
[9] J. Pavlich-Mariscal, L. Michel, and S. Demurjian. Rolkc8s
and Runtime Permissions: Improving an AOP-based Access
Control Schema . IProc. of the International Workshop on
Aspect-Oriented Modelin@ctober 2005.
R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. J4C
flexible framework for AOP in Java. IReflection 2001:
Meta-level Architectures and Separation of Crosscutting
ConcernsKyoto, Japan, Sep 2001.
[11] T. Stahl and M. VoelteModellgetriebene Software
Entwicklung D.Punkt, 2005.
[12] M. Strembeck. Conflict Checking of Separation of Duty
Constraints in RBAC - Implementation ExperiencesPhoc.
of the Conference on Software Engineering (SE 2004)
February 2004.
M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC
EnvironmentsACM Transactions on Information and System
Security (TISSECY (3), August 2004.
Extended Object Tcl (XOTcl) Homepage.
http://www.xotcl.org, 2006.

(2]

(3]

[4]

5]

(6]

[7]

(8]

(10]

(13]

(14]

