
Definition of an Aspect-Oriented DSL
using a Dynamic Programming Language

Mark Strembeck, Uwe Zdun
Institute of Information Systems, New Media Lab

Vienna University of Economics, Austria

{mark.strembeck|uwe.zdun}@wu-wien.ac.at

ABSTRACT
We present an approach to define an aspect-oriented DSL usinga
dynamic language. In particular, we describe an extensibleaspect-
oriented DSL for role-based access control and its implementation.
Furthermore, we show how a dynamic pointcut language can be used
to compose the different elements of our DSL. We implementedthe
approach using the XOTcl scripting language. The general approach,
however, can be realized using any other dynamic language aswell.

1. INTRODUCTION
Domain-specific languages (DSL) are “small” languages thatare

particularly expressive in a certain problem domain. Recently, in
the area of model-driven software development and related research
areas (see, e.g., [1, 3, 4, 11]), DSLs are used as languages which rep-
resent the abstractions familiar to domain experts (so-called domain
modeling languages). A DSL may have a textual or graphical rep-
resentation or both. This concrete syntax of the DSL is basedon an
abstract syntax which is defined by the underlying formal language
model. In the model-driven approach, the semantics of the DSL are
defined using model transformation and code generation. That is, a
generator translates the DSL into an executable representation, ac-
cording to the models and meta-models, and the semantics of the
model elements. Sometimes DSLs define semantics that are aspect-
oriented in their nature. Consider, for instance, a DSL for defining
role-based access control policies1. In this context, an access con-
trol subject has a number of roles that are assigned to this subject.
Moreover, permissions are assigned to roles, and permissions can be
associated with context constraints (see [13]). This basicmodel is
shown in Figure 1. On the source code level, each of the elements
in the model is represented via classes or class hierarchies, and the
definition of individual elements is independent of the other classes
and hierarchies. It is, however, not trivial to achieve thisgoal since
the context constraint concerns cross-cut the permission concerns,
which again cross-cut role concerns, and the roles cross-cut concerns
in the subjects. To avoid tangled code in the definition of theDSL
as well as in the code written in the DSL, we introduce an aspect-
oriented specification of a role-based access control DSL. From an
aspect-oriented point of view, roles can be interpreted as aspects of
subjects, permissions as aspects of roles, and context constraints as
aspects of permissions (see also Section 4).

* *1.. **1..**1..

 assigned to assigned to linked to
PermissionSubject Role

Context
Constraint

Figure 1: High-level model for role-based access control

In this paper, we want to explore the combination of the DSL con-
cept and aspect-oriented programming concepts. We believethe re-
1This is used as a running example throughout the paper.

quirements of the role-based access control DSL are quite typical for
an aspect-oriented DSL:

• The AOP framework must be able to depict “aspects of as-
pects”. In the access control example, and many other exam-
ples, the aspects are related to other aspects which must be
reflected by the AOP framework because the DSL user must
be able to define and control how the aspects interact.

• The pointcut language of the AOP framework must be exten-
sible, so that we can define new domain-specific pointcuts,
which can be exposed to the DSL.

• The AOP framework and its programming language must al-
low for the extension with new elements or to define new DSL
language elements, i.e. their syntax and semantics. Moreover,
the AOP framework should be able to directly generate an exe-
cutable representation from a specification written in the DSL.

• In the access control example, and many other examples, the
aspects must be dynamic. A recompilation for new or chang-
ing roles, permissions, or constraints is not feasible.

To meet these requirements we especially need an open aspect
language that is dynamic and able to handle “aspects of aspects”. In
this paper, we will use the scripting language XOTcl [8] as anopen
aspect language. Please note that we use XOTcl just for exploration
of the approach. The general concept of an aspect-oriented DSL is
not depending on this specific language. In particular, we will de-
scribe an aspect-oriented DSL that provides the same functionality
as the xoRBAC component [5, 13]. Our aspect-oriented DSL for
RBAC, however, separates the different concerns in a more efficient
way and thus results in a more comprehensible and better maintain-
able implementation that allows for a straightforward evolution of
xoRBAC.

2. EXTENDED OBJECT TCL (XOTCL) AS
AN OPEN ASPECT LANGUAGE

Before showing how to realize an aspect-oriented DSL, we briefly
explain how the scripting language XOTcl [8, 14] can be used as
an open, dynamic aspect language. Like most scripting languages,
XOTcl can be extended with new language elements. Thus, it is
a good starting point to rapidly define a DSL. In addition, XOTcl
supports the dynamic composition of aspects. That is, the XOTcl
interpreter receives symbolic invocations that are indirected to the
actual implementations of all objects in the system. The interpreter
can dynamically intercept any message in the call flow when itis
dispatched. At this point, the aspects are applied.

The idea of applying aspects as dynamic message interceptors on
top of a (given) interpreter architecture is quite simple: we specify
all calls that are in focus of an aspect as criteria for the message inter-
ceptor, and let the interpreter execute this message interceptor every

time such messages are called. In this way, we can implement any
aspect that relies on message exchanges. To receive the necessary
information for dealing with the invocations, the message intercep-
tor should be able to obtain the message context to find out which
method was called on which object (the callee). Often the calling
object and the respective method are required as well. Introspection
options are used to obtain structure information via reflection.

XOTcl providesmixin classes[6] as a dynamic message intercep-
tor implementation. In XOTcl, any “ordinary” class can be registered
as a mixin. The predefinedinstmixin2 method accepts a list of
classes to be registered as per-class mixins, whereas the predefined
mixin method registers classes as per-object mixins.

XOTcl mixins may be dynamically added and removed at
any time. To keep track of these dynamic relationships,info
instmixin and info mixin provide introspection functions for
mixins. Thus, one can always determine the current mixins ofan
object or class at runtime (see also [8, 14]).

For instance, consider the following XOTcl code (corresponding
to one of the introductory AspectJ examples):

Class Point
...
Class PointAssertions
PointAssertions instproc assertX x {
if {$x <= 100 && $x >= 0} {return 1}
return 0
}
PointAssertions instproc setX x {
if {[my assertX $x]} {

puts "Illegal value for x"
} else { next }
}
Point instmixin add PointAssertions

At first, the corresponding code for the class and the aspect (here
also implemented as a class) is defined. Then, we dynamicallyregis-
ter one of these classes as an instance mixin (a class-based message
interceptor) for all points. Thus, all method calls tosetX are inter-
cepted by thePointAssertionmixin’s same-named methodsetX.

There are two common ways to ensure the non-invasiveness of
aspects (i.e. the obliviousness property in the terminology of Filman
and Friedman [2]) when using mixins:

• Mixins can be applied to a superclass or interface, and are
automatically applied to all subclasses in the class hierarchy.
Thus, developers of subclasses can be oblivious to the aspect.

• A mixin can be registered for a set of classes using introspec-
tion options (aka reflection). For instance, one can apply a
mixin for all class names starting withPoint*. This way mix-
ins can be applied in a non-invasive way for any kind of criteria
(pointcuts) that can be specified using the dynamic introspec-
tion options of XOTcl.

The first variant was demonstrated in the previous code example.
An example for the second variant is shown in the code below. We
use introspection options to get all classes defined in the system and
check whether they matchPoint*.

Pointcut definition based on introspection
foreach p [Object getAllSubclasses] {
if {[string match $p ::Point*]} {

Mixin registration for weaving the mixin aspect
$p instmixin add PointAssertion

}
}

The instructionnext is responsible for forwarding the invocation.
It thus handles (non-invasive) ordering of the message interceptors
in a chain. Thus, the placement of thenext instruction enables us
2Note that “instmixin” is a short form of “instance mixin”, meaning
that a corresponding mixin is applied for all instances of the class the
mixin was registered for.

to implement before, after, or around behavior of the message inter-
ceptor.

In addition to mixin classes, XOTcl provides another message in-
terceptor, called thefilter. In contrast to mixin classes which only
intercept specific methods, a filter can automatically intercept any
invocation sent to an object, class, or class hierarchy. Filters are de-
scribed in detail in [7].

In contrast to AspectJ, we do not have to “introduce” the method
assertX onPoint (in the example above) using an intertype decla-
ration, as the mixin shares its object identity with the class or object
it extends. However, in other cases we might want to change the
class structure. In XOTcl, a new class or a new method can be de-
fined at any time (because all XOTcl structures are fully dynamic).
Such dynamics require introspection options to ensure thatwe do not
violate some architectural constraints when re-structuring the archi-
tecture. For instance, in the example above we can first perform a
runtime check that there is no methodassertX defined forPoint
yet, before we introduce it:

if {[Point info instprocs assertX] == ""} {
Point instproc assertX x {
if {$x <= 100 && $x >= 0} {return 1}
return 0

}
}

3. TRANSITIVE MIXINS IN XOTCL
In XOTcl, “aspects of aspects” can be modeled using transitive

mixins. For example, consider a situation in which a classPCM 2 is
used as a per-class mixin, and we want to define an aspect for this
mixin class. The aspect is implemented in a classTMix 13. Con-
sider further that the aspectTMix 1 itself should have another aspect
TMix 2 (see Figure 2). In addition, the original composition of mix-
ins should stay unaffected by the addional aspects.

MyClass

myMethod

TMix_1

myMethod

PCM_2

myMethod per
class
mixin PCM_1

myMethod

 per
class
mixin

TMix_2

myMethod

 per
class
mixin

Figure 2: Example of transitive per-class mixins

In XOTcl, this is solved by adding the corresponding per-class
mixins to the method resolution order of the affected mixin4. After
weaving the mixins as aspects, the configuration in Figure 2 is gener-
ated. This configuration means that all per-class mixins of the mixin
itself (and their superclasses) are searched before the method resolu-
tion order proceeds to the next mixin, resulting in a chain ofmixins
that is visited in a transitive fashion (see also Figure 2). This scheme
is applied recursively, because mixins might themselves have mix-
ins, which again might have mixins, and so on.

4. ROLE-BASED ACCESS CONTROL DSL
The foundation of our aspect-oriented DSL for role-based access

control (RBAC) consists of subjects, roles, permissions, and context
constraints. Each of these basic elements is implemented via an own
class that defines the specific functions of the corresponding concept.
Some of these classes can also be used as the root of a complex class
hierarchy. The four classes represent orthogonal concernsthat we
like to define independently from each other, and compose as aspects
of each other (as outlined in Section 1).

To implement an aspect-oriented DSL, we need to define a
domain-specific aspect weaver that is capable to weave aspects
3In this example “TMix” is an abbreviation for “transitive mixin”.
4As mentioned above, XOTcl mixins can be dynamically registered
and de-registered at any time.

Context Constraint Aspect Permission Aspect

 per-object-mixin per-object-mixin checkAccess

constraint1
subject1 per-object-mixin checkAccess

permission1

checkAccess

role1

checkAccess

Permission

checkAccess

Role Subject

checkAccess

checkAccess

constraint2

checkAccess

ContextConstraint

 per-object-mixin

Role Aspect

Per-object mixin relationships generated using dynamic pointcuts based on introspection options (reflection)

 instance-of instance-of instance-of
 instance-of

 instance-of

Figure 3: Example of an executable model generated form the RBAC DSL

according to domain-specific constraints and which realizes a
pointcut language offering domain abstractions. For this task, we
define the new classRBACAspectWeaver. Below we show an
excerpt of the methods (“instprocs”) of this class, which are mapped
to DSL instructions:
Class RBACAspectWeaver
RBACAspectWeaver instproc createRole {r}
RBACAspectWeaver instproc createPermission {p}
...
RBACAspectWeaver instproc roleSubjectAssign {r s}
RBACAspectWeaver instproc roleSubjectRevoke {r s}
RBACAspectWeaver instproc permRoleAssign {p r}
RBACAspectWeaver instproc permRoleRevoke {p r}
RBACAspectWeaver instproc linkCtxConstraintToPerm {cc p}
RBACAspectWeaver instproc unlinkCtxConstraintFromPerm {cc p}
...
RBACAspectWeaver instproc allSubjectInstances {}
RBACAspectWeaver instproc allRoleInstances {}
RBACAspectWeaver instproc allPermissionInstances {}
RBACAspectWeaver instproc allContextConstraintInstances {}
...
RBACAspectWeaver instproc allSubjectsOwningRole {r}
RBACAspectWeaver instproc allRolesAssignedToSubject {s}
...
RBACAspectWeaver instproc checkAccess {s op ob}
...

Our RBAC DSL weaver provides functions for weaving role
to subject assignment and revocation (roleSubjectAssign and
roleSubjectRevoke), as well as corresponding weaving functions
for permission to role assignment and revocation, and for linking and
unlinking permissions and context constraints. Moreover,it allows
to generate new role, permission or context constraint classes at
runtime which are again dynamically registered as mixins (cf. Figure
3). Besides, the RBAC DSL weaver offers different introspection
options that allow to define domain-specific, dynamic pointcuts on
all instances of the basic DSL elements (allSubjectInstances,
allRoleInstances etc.), as well as on specific DSL elements
(e.g.allSubjectsOwningRole). The checkAccess function is
applied to define pointcuts that check if a certain access canbe
granted or must be denied, i.e. if a certain subjects is allowed to
perform operationop on objectob. An example of a domain-specific
weaving function isroleSubjectAssign:
RBACAspectWeaver instproc roleSubjectAssign {r s} {
if {[my existSubject $s]} {

if {[my existRole $r]} {
if {[my ssdConstraintsAllowRSA $r $s]} {
if {[my roleMaxSubjectCardinalityAllow $r]} {

$s mixin add $r
return 1

} else { return 0 }
} else { return 0 }

} else { return 0 }
} else { return 0 }

}

In the formal definition of this weaving function, we first have
to make sure that the respective role and subject exist (calls of

existSubject and existRole). Subsequently, we check if the
assignment of this particular role to this particular subject can be
granted with respect to the static separation of duty constraints on
roles which are in effect at this very moment (for details see[12]).
If so, we further check that the maximum subject cardinalitydefined
on the role is not yet reached. In case all checks are passed, we
dynamically register the role as a new mixin for our subject.

Next, we give an example of an unweaving function, namely the
revocation of a permission from a role. Again, we first have toassure
that the corresponding role and permission exist. Then, we check
that the minimum owner cardinality for this particular permission is
not violated if we revoke the permission. Finally, we can dynami-
cally delete the permission from the mixin list of the respective role
(see source code below).

RBACAspectWeaver instproc permRoleRevoke {p r} {
if {[my existRole $r]} {

if {[my existPermission $p]} {
if {[my permMinOwnerCardinalityAllow $p]} {

$r mixin delete $p
return 1
}

} else { return 0 }
} else { return 0 }

} else { return 0 }
}

In addition to the weaving and unweaving functions, used for
assigments and revocations, our aspect-oriented DSL for RBAC
offers various introspection functions that are used as elements
of pointcuts in the DSL. Below we exemplary describe the
allSubjectsOwningRole function which uses XOTcl reflection
options to dynamically determine all subjects that own a given role.
After checking if the respective role exists, the function checks for
each subject if this particular role is assigned to the subject, i.e. if
the role is registered as a mixin on the corresponding subject. All
subjects owning the role are written to a list which is returned as the
function result.

RBACAspectWeaver instproc allSubjectsOwningRole {r} {
if {[my existRole $r]} {

foreach s [my allSubjectInstances] {
if {[$s ismixin $r]} {

lappend roleOwners $s
}

}
if {[info exists roleOwners]} {

return $roleOwners
} else { return "" }

} else { return "" }
}

After defining our DSL’s weaving functions and pointcut el-
ements, we can use XOTcl as a dynamic pointcut language to
define domain-specific pointcuts based on the different introspection
options (using XOTcl reflection). Below we show two simple

example pointcuts. The first pointcut matches all permissions
starting with an “A” and links the context constraintcc A to each
of these permissions. The second pointcut matches all rolesof type
StudentRole and assigns the permissionget exam to each of
these roles.
Instantiate a domain-specific weaver
RBACAspectWeaver aw

Instantiate two aspects
aw createPermission get_exam
aw createContextConstraint cc_A

Pointcut definition
foreach p [$aw allPermissionInstances] {
if {[string match $p ::A*]} {

Use the domain-specific weaving function
to weave the advice (implemented as a mixin)
aw linkContextConstraintToPerm cc_A $p

}
}

Pointcut definition
foreach r [$aw allRoleInstances] {
if {[$r isType StudentRole]} {

Use the domain-specific weaving function
to weave the advice (implemented as a mixin)
aw permRoleAssign get_exam $r

}
}

Figure 3 depicts a composed class model (i.e. an executable model
in XOTcl generated from the DSL). In particular, the rolerole1 is
assigned to a subjectsubject1. Again, there is a permission as-
signed torole1, and the permission is linked to two context con-
straintsconstraint1 andconstraint2. Each of these assignment
relations is realized through an XOTcl mixin relation. In this way,
we are not only able to define aspects on objects and classes, but also
to define aspects on aspects. This specification of aspects onaspects
can be realized via transitive mixins (as mentioned in Section 3).

The user of the DSL only uses the domain-specific pointcuts and
weaving functions to compose the aspects. That is, the user only sees
the domain-oriented view, not the technical details of the mixin and
introspection model used internally. The weaver automatically (and
dynamically) realizes a mixin chain from these definitions.

5. RELATED WORK
JAC [10] provides a way to define DSLs for configuring aspects.

Like many other application server AOP frameworks, JAC makes
use of metadata configurations. In JAC the metadata languagecan
be extended by the user: operations of the aspect component can
be provided as Command implementations and invoked from the
configuration file. This way each aspect can define its own con-
figuration language. For instance, JAC predefines an authentica-
tion aspect component which offers domain-specific functions like
addTrustedUser to configure the aspect. In [9] Zhang et al. de-
scribe how they extended their role slice approach to support some-
thing they call dynamic permissions. These dynamic permissions
consider certain runtime information, esp. the state of related class
instances, when making an access decision. However, they donot
use an aspect-oriented RBAC DSL to define access control policies
nor do they use a dynamic pointcut language.

6. CONCLUSION
In this paper, we presented an aspect-oriented DSL for role-based

access control that provides all functions of the xoRBAC compo-
nent. However, in comparison to the xoRBAC component our DSL
is aspect-oriented in nature and offers a strict separationof concerns
between the basic language elements of the DSL (especially sub-
jects, roles, permissions, and context constraints). Moreover, we
used XOTcl as a dynamic pointcut language to weave the different
aspects.

Our approach allows for a straightforward evolution of the DSL
and all of its language features. The approach is not limitedto the
domain of role-based access control, of course. In principle, it is
applicable to arbitrary application domains where we first define a
domain-specific language which is then mapped to a concrete im-
plementation, e.g. an XOTcl implementation. Subsequently, we use
a dynamic pointcut language (for example XOTcl including its rich
introspection/reflection features) to compose the different elements.
Note that the XOTcl language was primarily used for demonstration
purposes and that the general approach can of course be realized with
other dynamic languages.

7. REFERENCES
[1] S. Dmitriev. Language oriented programming: The next

programming paradigm. Onboard Magazine, http://
www.onboard.jetbrains.com/is1/articles/04/10/lop/index.html,
November 2004.

[2] R. Filman and D. Friedman. Aspect-oriented programmingis
quantification and obliviousness. InOOPSLA Workshop on
Advanced Separation of Concerns, Minneapolis, USA,
October 2000.

[3] M. Fowler. Language workbenches: The killer-app for domain
specific languages? http://www.martinfowler.com/articles/
languageWorkbench.html, June 2005.

[4] J. Greenfield and K. Short.Software Factories: Assembling
Applications with Patterns, Frameworks, Models & Tools. J.
Wiley and Sons Ltd., 2004.

[5] G. Neumann and M. Strembeck. Design and Implementation
of a Flexible RBAC-Service in an Object-Oriented Scripting
Language. InProc. of the 8th ACM Conference on Computer
and Communications Security (CCS), November 2001.

[6] G. Neumann and U. Zdun. Enhancing object-based system
composition through per-object mixins. InProceedings of
Asia-Pacific Software Engineering Conference (APSEC),
Takamatsu, Japan, December 1999.

[7] G. Neumann and U. Zdun. Filters as a language support for
design patterns in object-oriented scripting languages. In
Proceedings of COOTS’99, 5th Conference on
Object-Oriented Technologies and Systems, pages 1–14, San
Diego, California, USA, May 1999.

[8] G. Neumann and U. Zdun. XOTcl, an object-oriented scripting
language. InProceedings of Tcl2k: The 7th USENIX Tcl/Tk
Conference, Austin, Texas, USA, February 2000.

[9] J. Pavlich-Mariscal, L. Michel, and S. Demurjian. Role Slices
and Runtime Permissions: Improving an AOP-based Access
Control Schema . InProc. of the International Workshop on
Aspect-Oriented Modeling, October 2005.

[10] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: a
flexible framework for AOP in Java. InReflection 2001:
Meta-level Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, Sep 2001.

[11] T. Stahl and M. Voelter.Modellgetriebene Software
Entwicklung. D.Punkt, 2005.

[12] M. Strembeck. Conflict Checking of Separation of Duty
Constraints in RBAC - Implementation Experiences. InProc.
of the Conference on Software Engineering (SE 2004),
February 2004.

[13] M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC
Environments.ACM Transactions on Information and System
Security (TISSEC), 7(3), August 2004.

[14] Extended Object Tcl (XOTcl) Homepage.
http://www.xotcl.org, 2006.

