Embedding Policy Rules for Software-Based Systems in a Requirements Context

Mark Strembeck
Department of Information Systems, New Media Lab
Vienna University of Economics and BA, Austria
mark.strembeck @ wu-wien.ac.at

Abstract

Policy rules define what behavior is desired in a software-
based system, they do not describe the corresponding action
and event sequences that actually “produce” desired (“legal”)
or undesired (“illegal”) behavior. Therefore, policy rules
alone are not sufficient to model every (behavioral) aspect of
an information system. In other words, like requirements poli-
cies only exist in context, and a policy rule set can only be
assessed and sensibly interpreted with adequate knowledge of
its embedding context. Scenarios and goals are artifacts used
in requirements engineering and system design to model dif-
ferent facets of software systems. With respect to policy rules,
scenarios are well suited to define how these rules are embed-
ded into a specific environment. A goal is an objective that the
system under consideration should or must achieve. Thus, the
control objectives of a system must be reflected in the policy
rules that actually govern a system’s behavior.

1 Introduction and Motivation

Information systems are software-based systems that assist
human-users in the execution of complex tasks and support the
business processes of an organization. Business processes, in
turn, are performed to reach the operational goals of the cor-
responding organization. Scenarios describe action and event
sequences and make process descriptions explicit. They are
used in different research areas like human-computer interac-
tion, strategic management, and software engineering for ex-
ample (see, e.g., [5]). Operational goals and scenarios are de-
rived from long-term strategic and mid-term tactical goals and
scenarios. Operational scenarios define standardized action
and event sequences and therefore describe the routine busi-
ness processes of an organization which are performed to meet
the corresponding operational goals.

Policies are rules governing the choices in behavior of a
system [10]. They exist on different levels of abstraction and
provide a means to synchronize software-based systems with
the operational goals and scenarios of a specific organization
(as indicated by Figure 1). A policy rule set consists of several
related or interdependent rules, and a software system may be
controlled by various policy rule sets. In this paper, we see

Strategic & Tactical Goals Strategic & Tactical Scenarios .
Strategic

Management

| Operational Goals | | Business [(e]

|<—>

| Security Policies | | Business Policies | | | | System Operation Policies |<—>

Software
Engineering

Policies for Software-based Systems

(]
(]

| Software-Systems | -

< | (Principles,
Methods,
Techniques,
Methodologies.
Tools)

ccess Control|
Policies

Authentication|
Policies

Obligation
Policies

Privacy
Policies

Backup

Quality of Service]
Policies i

Policies

Authentication|
Monitor

Obligation
Monitor

Privacy
Monitor

Backup

up | [Quality of Service] __,
Monitor

Monitor

ccess Control|
Monitor

Figure 1. Policies synchronize software systems
with operational goals and scenarios

requirements and policy rules as interrelated artifacts to de-
scribe complementary perspectives of software-based systems.
In particular, we present an approach to model the embedding
context of policy rules. On the one hand, scenarios and goals
serve as a means to understand the objectives that should be
achieved via a set of policy rules (and from a requirements
perspective policy rules can be seen as a form of solution mod-
els). On the other hand, requirements engineering techniques
allow for a systematic engineering of policy rules, and, to a
certain degree, enable to check a set of policy rules for com-
pleteness with regard to the goals and scenarios that model the
requirements of a software-based system. Both purposes rely
on traceability links (see, e.g., [8]) between modeling level (re-
quirements) artifacts and the corresponding policy rules.

2 Scenarios and Goals

Scenarios are tools for understanding (cognitive aspect),
tools for elicitation and specification (engineering aspect), and
tools for communication (social aspect). In the area of soft-
ware engineering, scenarios are used to explore and to describe
the (actual or intended) system behavior as well as to specify
user needs. Scenarios can be described in many different ways.
Commonly, they are specified with (structured) text descrip-
tions and with different types of diagrams, e.g. message se-
quence charts, activity diagrams, or petri-nets. Scenarios may
also depict system internal activities that are not (directly) vis-
ible to the user.

Moreover, scenarios may also be applied to describe what
should not happen (see, e.g., [1]), and they can easily be inte-
grated with goals (see, e.g., [9]). Goals are, like scenarios, a
familiar concept in the area of requirements engineering (see,
e.g., [12]). They are well-suited to be applied in combination
with scenarios to elicit and define requirements and to drive
a requirements engineering process (see, e.g., [, 9]). In gen-
eral, a goal is an objective that the system under consideration
should or must achieve. Goals can be defined on different lev-
els of abstraction, ranging from high-level business goals to
low-level technical concerns. They can be arranged in a di-
rected graph to form goal hierarchies. Goals can model func-
tional as well as non-functional aspects (e.g. performance). In
turn, scenarios can be applied to describe alternative ways to
reach a goal. Moreover, each step within a scenario is likely to
be associated with a step-goal, and a step-goal then is a natural
sub-goal of the (super-)goal linked to the corresponding sce-
nario. An obstacle is an undesired condition which obstructs
the fulfillment of one or more goals. Thus, obstacles can be
seen as the opposite of goals. In the area of requirements en-
gineering, obstacles are a valuable means to define more com-
plete and realistic requirements (see, e.g., [13]).

Figure 2 shows a scenario/goal information model that is
explicitly tailored to the purposes of this paper: the definition
of the embedding context of policy rules. Approaches focusing
different purposes of course apply other (tailored) information
models. A scenario consists of one or more steps, and each
step may be part of several scenarios (see Figure 2). Scenarios
are performed by subjects. From the system’s perspective, a
subject is an external agent and may be either a human being
or an other system or software program. Note that the linked
to relations depicted in Figure 2 serve as placeholders for dif-
ferent kinds of possible trace relations (see, e.g., [8]).

successor /
predecessor linked to

*

*
* *
* <~—— performs
Scenario 1x Subject

] ka provides infrastructure
"
P
Tx | 1 1.x Software
accesses | Predefined | Ad hoc System

Scenario Scenario

1% . [J(" *
linked to

. i linked to
Obled 1 linked to
10..* 1% 0.%

1% 1 2l
linked to ———
ascertain = Event Goal Obstacle
" [5
0.% *
linked to
can be | may contribute to

is-a is-a

consist of

External
Event

Internal
Event

Temporal 0.%

Control
Event

Objective
i

Figure 2. Scenario/Goal information model

Individual Goal

impedes

A scenario can be modeled as a directed (possibly cyclic)
graph. Each node in such a scenario graph represents a step,
and steps are connected via directed edges. Each step invokes
an action, and each action consists of an operation and a target
object (cf. Figure 2). Actions may raise events, and an event
is defined as an occurrence that may influence further steps or
scenarios which can, or must, be executed within the respective

system. Events are ascertained by objects, and the decision
which events are released depends on the return value of the
operation that accesses the corresponding object.

Moreover, for the purposes of this paper we distinguish two
kinds of goals: control objectives and individual goals: A con-
trol objective is a goal specified by the authority which is re-
sponsible for the operation of a particular system. Thereby,
control objectives define acceptable system behavior as in-
tended by the system authority. In contrast to that, we define
an individual goal as a goal representing a subject’s intentions
when using the system - in opposition to control objectives
which reflect goals of the system authority. However, individ-
ual goals are not necessarily in conformance with the control
objectives defined for a system and may even be contrary to
the control objectives (see also [1]). This is especially true for
malicious individual goals, like attempts to hack/crack a sys-
tem, to deliberately circumvent protection measures, or to use
system functions in an unintended manner. Therefore, (mali-
cious) individual goals can be obstacles impeding the control
objectives defined for a system (cf. Figure 2).

Control objectives can be derived from predefined as well
as from ad hoc scenarios, while individual goals are (often)
derived by observing ad hoc scenarios. Here, a predefined sce-
nario is a scenario which was explicitly defined to model the
execution of a certain intended (or unintended) system func-
tion. These scenarios are then linked to one or more control
objectives (and maybe to one or more obstacles). Predefined
scenarios therefore define the context of related control objec-
tives and facilitate understanding of its origin. An ad hoc sce-
nario, on the other hand, is a scenario that may be performed
by executing a certain step sequence, but was not originally
intended by the system authority. Moreover, predefined sce-
narios can be seen as an instantiation of a system’s decision
making procedures in case of a specific action and event se-
quence. Policies are rules governing the choices in behavior
of a system. Therefore, scenarios are an important prerequisite
for the specification and comprehension of policy rules.

3 Policies for Software-based Systems

Policies apply to a set of operations and objects, whereby
an object invoking an operation on another object is called the
active object, or the subject, of this invocation. The object
an operation is aimed at is called the passive object, or tar-
get, of the respective invocation. A policy rule set consists of
several related or interdependent rules, and a software system
may be controlled by various policy rule sets. In a policy-
hierarchy, higher level policies are more abstract policy de-
scriptions which are refined on lower levels. In addition, policy
definitions for a specific system may be influenced by orthog-
onal policies acting as meta-policies or invariants.

Figure 3 depicts an information model for policy rules.
Note that this information model does not include each policy-
related concept but focuses the core assets that are needed for
the purposes of this paper. Here, a Policy Rule consists of a tu-
ple including the following elements: a Role or an other suit-

able type of subject abstraction, and an Action-Spec (abbre-
viation of: action-specification). With respect to policies for
software-based systems, a Role contains the rights and duties
of a certain subject-type, and subjects may be either human
users or other software-based systems. An Action-Spec (cf.
Figure 3) consists of an operation-type (or an actual operation)
and an object-type (or an individual object). An Operation-
type groups a number of similar operations. An Object-type
represents a number of objects with similar characteristics.
Due to the administrative overhead it is often not practical to
specify policy rules relating to each individual entity in real-
world systems. However, if required, it is of course possible to
define policy rules for individual subjects or objects.

Pol\cy Rule Set
\\V\Ked to

(sub‘ect abstracﬂon
Conslramt 0% o s sonann 1 Pchcy Ru\e consiste of

5

N Operaﬂon -type
lopevawm abstraction)

g
Action- Spec &
linked to o
omem type
De\egaﬂcn 0 (object abslvacﬂum
- vevevslo
isa isa
| o
Dynamic Obligation Authorization issi o
Condition Invariant (mustedo rule) candio o) Permission uty
1 0.% 1.% 1.% 1 1
I— requires) I— contains _t |
contains

Figure 3. Core information model for policies

Here, an action-spec may be either a permission or a duty
(see Figure 3). A Permission grants the right to perform the
specified operation (or type of operation) on the specified ob-
ject (or on objects of a particular type). In contrast to that, a
Duty obliges to perform the specified operation on the speci-
fied object. A policy rule can be an Obligation, an Authoriza-
tion, or a Delegation. A Delegation is a specific-type of autho-
rization which contains the permission for a role to delegate
a specific Action-Spec to another role. In order to discharge
an obligation a subject needs sufficient authority, which means
that an obligation requires at least one corresponding autho-
rization. Therefore, an obligation must be linked to at least one
authorization, while an authorization can be linked to obliga-
tions. However, note that in a system which uses obligation
policies and strictly enforces the principle of least privilege
each authorization must be linked to at least one obligation. A
Constraint defines a function that checks one or more predi-
cates. A constraint is either a system Invariant that must hold
at any time or a Dynamic Condition that is evaluated at runtime
depending on the given input parameters (see, e.g., [11]). A
policy rule which is linked to one or more constraints is called
a constrained policy rule.

4 A Complementary View

A Policy Domain defines the scope of a policy rule set. A
subject or object that is referenced by a domain is said to be a
direct member of this domain. Subjects and objects may enter
and leave domains dynamically and may be members of sev-
eral domains at the same time. Domains can be nested, and

a member of a subdomain is an indirect member of the corre-
sponding parent domain(s). Moreover, subdomains inherit the
policies defined for their parent-domains (see, e.g., [10]).

1 * 0.% *
i +— controlled by —— —raises——> 9.*
Policy Rule Set 1% Policy Monitor 1 Event
- interprets & __1.% catches ——»

enforces
0.* 1% *
linked to

Ho\e

specifies specifedfor sub]ecl abstraction) ra'ses
[1.
i 1.
Legislator < managed by —— PoI|Cy Domam —— groups Acllon Spec

Figure 4. Policy rule set and policy domain

A Legislator is a person or an organizational unit which is
empowered to specify policy rules that are valid within a well-
defined policy domain (see also Figure 4). Each policy rule set
is interpreted and enforced via a Policy Monitor. Policy mon-
itors are trusted system objects which (depending on the re-
spective implementation) are themselves (implicitly or explic-
itly) controlled by a policy rule set that governs the behavior of
this particular policy monitor. A policy monitor catches sys-
tem events that are relevant for the evaluation of certain policy
rules (e.g. an access request raises an event that triggers the
evaluation of corresponding authorization rules). Further on,
the policy monitor raises system events to indicate the result
of a rule evaluation and to trigger subsequent actions.

[active policy rule set up-to-date]

n)eiine control obiective(sﬂh[Observe and J
cl r

L and/or obstacle(s) lassify behavio

\[else]

[objective/obstacle not yet covered] : [rule/constraint no longer required]

Define policy rule(s)
and/or constraint(s)

[rule/constramt not adequate]

Change policy rule(s) Delete policy rule(s)
and/or conslralnt(s) and/or constraint(s)

Check policy rule set
for consistency/integrity

[check failed]

[check passed]l l
Ac_tivate new Define/gngineer initial
policy rule set policy rule set

rlﬁ [(changed or new behavior) or
Apply policy rule set (new context) or (new requirements)]

Figure 5. Maintenance of policy rule sets

Authorizations and obligations alone are not sufficient to
model every behavioral aspect of an information system. In
particular, suitable means are required to enable the descrip-
tion of interactions between different system entities. Thus,
scenarios are well suited to define how policy rules are embed-
ded into a specific environment. In other words, like require-
ments policies only exist in context, and a policy rule set can
only be assessed and sensibly interpreted with adequate knowl-

edge of its embedding context. Subsequent to the definition
of an initial policy rule set, the legislator observes the scenar-
ios/processes that are performed within the respective domain.
For example, changes to the policy rule set may be required
if an (undesired) new behavior occurs (e.g. a subject performs
unforeseen scenarios, i.e. ad hoc scenarios which are not ex-
plicitly modeled), or if the system context changes (e.g. by im-
plementing new features in the system), or if new requirements
arise (see Figure 5). In such situations, the legislator classifies
the new behavior, defines the corresponding control objectives
and/or obstacles (see, e.g., [7, 11]), and, if necessary, modifies
the policy rule set accordingly (cf. Figure 5 and 6).

0..%

| Individual Goal
presume | reverse engineer —|

. 1.%
defines—| Legislator

defines

0.% * *
0.% 1.% Control
Obstacle =i -
impedes = Opjective
* 1%

derived from

can be | may contribute to

Iink?d to

* Scenario/ 1%
observes ——| -
Process

*

periorms

Subject

derived from ass\qned to linked

Policy Domain Environment Model

o

Role

defines side-condition (sumecl abstraction)

* 0..% 1.% 1.%
Poliey Aule -
0..%

Figure 6. Embedding into a system context

Actlon Spec

consists of

Policy Rule Set

The lower box in Figure 6 symbolizes a policy rule set,
while the upper box covers the Policy Domain Environment
Model. Individual goals are not (directly) included in the envi-
ronment model since they represent a subject’s individual in-
tentions which may be very hard to elicit and may be contrary
to the control objectives defined by the respective legislator
(see also Section 2).

5 Related Work

Moffett [6] suggests that (relatively static) high-level poli-
cies can be seen as system requirements, while low-level poli-
cies can be seen as implementations of the respective high-
level policies. In [6], however, the interrelations of policies
and requirements are not further elaborated. In [4] Barrett mo-
tivates the need for a discussion of policy-driven system man-
agement from a human perspective, rather than a pure techni-
cal perspective. He states that, due the advantages of policy-
based systems on a technical level, it is equally important to
support human users in the definition and comprehension of
systems that are controlled via complex policy rules. Since
specifications for policy-based systems still need to be read
and understood by human users, it is crucial to correctly un-
derstand when a policy applies, why it exists, and what the
risks and alternatives of certain policies could be. As machine-
readable policies are not likely to include such information, it

is necessary to embed policies in a system context and thereby
enable readers to trace policies back to their origin.

Alghathbar and Wijesekera [2] suggest to specify and ana-
lyze information flow control policies during requirements en-
gineering. In particular, they describe the derivation of policies
from UML sequence diagrams. In [3] Bandara et al. present an
approach to refine high-level goals into implementable policy
rules. In essence, Bandara et al. describe an engineering ap-
proach for policy rules that is based on goals and scenarios.
Their approach, however, focuses on the refinement of (high-
level) goals into policy rules based on Event Calculus to allow
for a formal analysis of policies and to verify the correctness of
a goal refinement hierarchy. Thereby it has a different perspec-
tive and a different purpose than our paper that primarily fo-
cuses on the integration of requirements engineering artifacts
and policy rules on a modeling level.

References

[1] 1. Alexander. Misuse Cases: Use Cases with Hostile Intent.
IEEE Software, 20(1), January/February 2003.

K. Alghathbar and D. Wijesekera. Analyzing Information Flow
Control Policies in Requirements Engineering. In Proc. of the
Sth International Workshop on Policies for Distributed Systems
and Networks (POLICY), June 2004.

[3] A. Bandara, E. Lupu, J. Moffett, and A. Russo. A Goal-based
Approach to Policy Refinement. In Proc. of the 5th Interna-
tional Workshop on Policies for Distributed Systems and Net-
works (POLICY), June 2004.

R. Barrett. People and Policies: Transforming the Human-
Computer Partnership. In Proc. of the 5th International Work-
shop on Policies for Distributed Systems and Networks (POL-
ICY), June 2004.

M. Jarke, X. Bui, and J. Carroll. Scenario Management: An In-
terdisciplinary Approach. Requirements Engineering Journal,

3(3/4), 1998.

J. Moftett. Requirements and Policies. In Proc. of the Ist In-
ternational Workshop on Policies for Distributed Systems and
Networks (POLICY), November 1999.

[71 G. Neumann and M. Strembeck. A Scenario-driven Role En-
gineering Process for Functional RBAC Roles. In Proc. of 7th
ACM Symposium on Access Control Models and Technologies
(SACMAT), June 2002.

B. Ramesh and M. Jarke. Toward reference models for require-
ments traceability. [EEE Transactions on Software Engineering

(TSE), 27(1), January 2001.

C. Rolland, C. Souveyet, and C. B. Achour. Guiding Goal Mod-

eling using Scenarios. [EEE Transactions on Software Engi-

neering (TSE), 24(12), 1998.

[10] M. Sloman. Policy Driven Management for Distributed Sys-
tems. Journal of Network and Systems Management, 2(4),
Plenum Press, December 1994.

[11] M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC Environ-
ments. ACM Transactions on Information and System Security

(TISSEC), 7(3), August 2004.

[12] A. van Lamsweerde. Goal-Oriented Requirements Engineer-
ing: A Guided Tour. In Proc. of the 5th IEEE International
Symposium on Requirements Engineering (RE), August 2001.

[13] A.van Lamsweerde and E. Letier. Handling Obstacles in Goal-
Oriented Requirements Engineering. [EEE Transactions on
Software Engineering (TSE), 26(10), October 2000.

2

—

[4

—_

[5

—

[6

—_

[8

—

[9

—

