A Scenario-driven Role Engineering Process for

Functional

Gustaf Neumann
gustaf.neumann@wu-wien.ac.at

RBAC Roles

Mark Strembeck
mark.strembeck@wu-wien.ac.at

Department of Information Systems, New Media Lab
Vienna University of Economics and BA, Austria

ABSTRACT

In this paper we present a novel scenario-driven role engi-
neering process for RBAC roles. The scenario concept is
of central significance for the presented approach. Due to
the strong human factor in role engineering scenarios are a
good means to drive the process. We use scenarios to derive
permissions and to define tasks. Our approach considers
changeability issues and enables the straightforward incor-
poration of changes into affected models. Finally we discuss
the experiences we gained by applying the scenario-driven
role engineering process in three case studies.

Categoriesand Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications -
Elicitation methods, Methodologies; D.2.9 [Software Engineer-
ing]: Management - Life cycle, Software process models; D.4.6
[Operating Systems]: Security and Protection - Access controls

General Terms

Security, Design, Management, Human Factors

1. INTRODUCTION

Role engineering for role-based access control (RBAC) is
the process of defining roles, permissions, constraints and
role-hierarchies [3]. Roles can be differentiated between
functional and organizational roles. Functional roles reflect
the essential business functions that need to be performed
within a certain company. Organizational roles correspond
to the hierarchical organization in a company in terms of
internal structures. Functional roles, in contrast to orga-
nizational roles, are robust against organizational restruc-
turing since business tasks are most often not reflected in
organizational structures. This paper presents a role en-
gineering process designed for functional RBAC roles. It
is scenario-driven and based on requirements engineering
techniques. The process can be applied to build a concrete
RBAC model, i.e. an actual instance of the abstract RBAC

Permissionto make digital or hard copiesof all or part of this work for
personalor classoom useis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citation onthefirst page.To copy otherwiseo
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

SACMAT 02, June3-4,2002,Montergy, California, USA.

Copyright 2002ACM 1-58113496-7/02/0006..$5.00.

models defined in [9, 23]. The process definition presented in
this paper provides guidance for security engineers and en-
ables the engineering of adaptable models that facilitate the
incorporation of changes into a configuration consisting of
several RBAC related models. To date we gained practical
experiences by applying the scenario-driven role engineering
process in three case studies. Currently we are conducting
a fourth case study that will most probably provide us with
additional interesting insights.

1.1 Motivation

RBAC [9, 23] is a very popular approach in both research
and industry. Many recent RBAC related publications deal
with sophisticated technical aspects of RBAC and the re-
alization of the corresponding techniques (e.g. [8, 12, 17]).
Nevertheless only few contributions are concerned with the
process of role engineering which is focused on the modeling
of a concrete instance of an RBAC model (see [3]).

Before a concrete RBAC model (which is a result of the
role engineering process) can be implemented technically,
the role engineering activities must take place. Unfortu-
nately many present approaches for role engineering are
merely defined on an ad hoc basis or treat only a small part
of the whole process. We thus aim at a systematic role engi-
neering approach that is flexible enough to be applicable in
different kinds of organizations. An important requirement
for the process is to support change management activities
to ease the propagation of changes that occur within the
information system or its environment into all security rele-
vant models and finally into the concrete RBAC model.

Role engineering is in essence a requirements engineering
process. Our approach is based on the concept of scenario
which is well known and widely applicable in (software) engi-
neering. Scenarios model the usage of systems and facilitate
the communication among engineers as well as the commu-
nication between engineers and non-technical stakeholders.
Therefore scenarios are practical means that allow for the
consideration of the strong human factor in role engineering.

1.2 Scenarios:An Overview

Requirements engineering [16, 20] differentiates functional
requirements and quality (or non-functional) requirements.
Functional requirements define a system’s purpose, i.e. the
intended use of the system, while quality-requirements de-
fine demands like maintainability, portability, interoperabil-
ity or performance. To capture, depict and organize func-
tional requirements three general categories of requirements
models are distinguished:

e Goal models: Goals [25] depict requirements on an ab-
stract level. Goals are, for instance, well suited to
capture requirements on a business process level. Thus
they could be used to facilitate e.g. the communication
with managers.

e Scenario models: Scenarios [4] depict system usage in
the form of action and event sequences. Scenarios are
especially well suited to model systems from a user per-
spective and ease the communication with end users.

e Solution models: Those models capture the intended
solution(s) in more detail and bridge the gap be-
tween requirements models and the system architec-
ture. Therefore they facilitate the communication
of requirements engineers with implementation engi-
neers. UML [1] is the de facto standard for solution-
oriented models. Its different diagram types can be
used in almost every phase of system development.

In general, scenarios describe possible or actual action and
event sequences. Scenarios enable reflections about (poten-
tial) occurrences, and opportunities or risks. Therefore they
facilitate the detection of capable solutions/reactions to cope
with the corresponding situations. The idea of scenarios is
used since ancient history, for example to describe and assess
alternative business-, politics-, or war-strategies.

ATM

Customer
Insert bank customer card

Enter PIN code

] Check PIN code
Enter amount to withdraw

Check credit line
Return customer card :|

Take card |:

Take banknotes |:

Emit bank notes

Figure 1: Example of a simple scenario

In the area of software (systems) engineering scenarios are
used to explore and describe the system behavior as well as
to specify user needs. Although scenarios were used in sys-
tems engineering before, Jacobson’s use case approach [13]
served as a catalyst for the acceptance and dissemination of
scenarios in this area. The huge quantity of scenario-related
literature (e.g. [2, 4, 13, 14, 22]) is an indicator for the great
interest in scenarios and their multifaceted applicability in
the field of systems engineering.

Scenarios can be described in many different ways. Com-
monly they are specified with (structured) text descrip-
tions and different types of diagrams, e.g. message sequence
charts, activity diagrams, or petri-nets. Figure 1 shows a
simple scenario for the withdrawal of money from an auto-
mated teller machine (ATM), depicted as message sequence
chart. Each scenario step is represented by an arrow and a
short textual description. The same scenario could also be
described through a video sequence or with structured text
for example. Each type of description emphasizes differ-
ent things and enables the detection of different connections
and interrelations. Moreover scenarios on the requirements

level can be further refined and concretized into “solution-
oriented” scenarios that depict the dynamic runtime struc-
tures of a system, e.g. how a specific user functionality is
realized on the level of interacting software components. For
example the “check credit line” step of the scenario shown
in Figure 1 could be described by an own scenario. The cor-
responding concretized scenario then shows how the ATM
interacts with a bank server to check if the customer is al-
lowed to withdraw a certain amount of money from her /his
account. Thus concretized scenarios may also depict system
internal activities that are not (directly) visible to the user.

After this short introduction to scenarios, the remainder
of the paper is structured as follows. In Section 2 we give an
overview of the scenario-driven role engineering approach.
Section 3 presents the different models which are build in
the course of the process and describes their interrelations.
In Section 4 we give a detailed process description before
we discuss the experiences we gained from the application
of the process in Section 5. We then give an overview of
related work in Section 6 and conclude the paper and give
an outlook on future activities.

2. THE SCENARIO-DRIVEN
ENGINEERING APPROACH

In the scenario-based approach each action and event
within a scenario can be seen as a step that is (typically)
associated with a particular access operation. Thus a sce-
nario is a good source for the derivation of permissions which
are applied in a particular order to reach a predefined (user)
goal. A subject (e.g. a user or an autonomous agent) per-
forming a scenario must own all permissions that are needed
to complete every single step of this scenario.

ROLE-

Work Profile

O e O

Figure 2: Composition of Work-Profiles

Every task definition (e.g. processing a damage event in
an insurance company) corresponds to one or more scenar-
ios. These tasks are again combined to form work profiles.
A work profile comprises all tasks that a certain type of em-
ployee (or user in general) can perform. Since each scenario
is linked to a set of permissions it is possible to derive the
permissions for a particular work profile directly from the
tasks/scenarios (see Figure 2). Therefore work profiles are
the source for the definition of a preliminary role-hierarchy.

The scenario-driven role engineering process is composed
of seven major activities which define own sub-processes re-
spectively (depicted in Figure 3 as activity diagram):

[scenario model incomplete]

[change case]

.—> Identify and modell Derive permissions Identify constraints Refine scenario model —><>
(new) usage scenarios from scenarios

Define RBAC Model |«—| Derive preliminary
role-hierarchy

Define tasks
j and work profiles [scenario modeling completed]

Figure 3: High-level view of the role-engineering process

1. Identify and model usage scenarios: In this activity
sensible system usages are identified and explicitly
modeled in terms of scenarios.

2. Derive permissions from scenarios: For each scenario
the access operations that are necessary to execute the
corresponding step-sequence are identified and stored
in a permission catalog as (operation, object) pairs.

3. Identify constraints: Constraints to be enforced on
permissions are identified and made explicit, e.g. sep-
aration of duties, cardinalities, or time-dependencies.
All constraints are stored in a constraint catalog.

4. Refine scenario model: This activity reviews the cur-
rent scenario model (defined in step 1). For simi-
lar scenarios a common generalization can be defined.
In addition each scenario is examined if one or more
of its steps can be further concretized by an own
(sub)scenario. This activity is therefore similar to the
definition of class-hierarchies in object-oriented design.

5. Define tasks and work profiles: Different scenarios are
composed to form task definitions. This is done in
accordance with the constraint catalog. Subsequently
these tasks serve as building blocks for work profiles.
A scenario may be associated with several tasks and a
task may be associated with several work profiles, i.e.
the scenario to task relation and the task to work pro-
file relation are many-to-many relations respectively.

6. Derive preliminary role-hierarchy: The work pro-
files and the permission catalog are used for a semi-
automatic creation of a preliminary role-hierarchy, i.e.
obvious junior- and senior-roles are identified and ar-
ranged in an inheritance hierarchy. Potentially redun-
dant roles are identified and marked for review.

7. Define RBAC Model: Here the preliminary role-
hierarchy, the permission catalog and the constraint
catalog serve as input for the definition of the concrete
RBAC model. In this sub-process redundant roles are
removed, new roles and role constraints are defined and
role-hierarchies are merged or separated. These steps
are repeated until the role model is complete, i.e. un-
til the engineers who are responsible for this activity
define the model as adequate.

As depicted in Figure 3 the activities 1 to 4 form a cy-
cle that is repeated until the scenario model is complete.
This is a prerequisite for activities 5 to 7. Nevertheless, the
whole process (activities 1 to 7) is intended to be executed in
an iterative and incremental manner, where each iteration
results in a new evolutionary stage of the different models.

Once a scenario model is built (after the first iteration of
the steps 1 to 4) changes that enrich the functionality of
the system can be incorporated straightforwardly. Such a
change case is characterized through the definition of a new
usage scenario and may take place in step 4 (refinement of
the scenario model) or after the concrete RBAC Model is
built in step 7 (see Figure 3). The new scenario is then in-
serted into the existing scenario model. Afterwards the new
permissions (if any) are derived from this scenario, the sce-
nario is assigned to one or more task definitions and work
profiles and finally the corresponding RBAC Model is up-
dated accordingly. Of course one has to make provisions
for such a change case in advance, so that the change can
be correctly propagated into the different models. We deal
with these aspects in more detail in the following sections.

3. MODEL INTERRELA TIONS

Figure 4 depicts the interrelations of the models and doc-
uments that are produced during the scenario-driven role
engineering process:

e The Scenario Model comprises all usage scenarios of
the system under consideration and serves as the base
model for our approach.

e The Permission Catalog consists of all permissions
identified for a system. Since scenario steps are asso-
ciated with access operations, the permissions are de-
rived directly from the scenarios. Permissions consist
of (operation, object) pairs and have a unique name
or identifier.

e The Constraint Catalog contains the constraints that
must be enforced for permissions. In the further course
of the process the constraint catalog may be extended
with constraints that must be enforced for roles (which
are defined later). However, we do not restrict the kind
of constraints that can be defined, nor do we require
certain types of constraints to be defined. Therefore
the constraint types to be modeled are only restricted
by the RBAC service that is applied to implement the
concrete RBAC model (i.e. the constraint types that
can be enforced by a particular RBAC service).

e The Task Definitions describe tasks that are per-
formed by certain users of the system, or by other sub-
jects as autonomous agents for example. Every task
consists of one or more scenarios which are performed
in succession or in parallel to reach a particular goal.

e The Work Profiles consist of different task definitions.
Every single work profile is (intended to be) a com-
plete description of all tasks that a specific kind of

Permission Catalog

perm_1 = {operation, object}
perm_2 = {operation, object}

Scenario Model

derived from used for

definition

70N f E T\ .
A P perm_n = {operation, object}
3

4
refer to

Constraint Catalog

perm_3 <exclude> perm_9 refer to
perm_5 <exclude> perm_12

RBAC Model

created in
accordance with

v

derived from and

composed of used for definition

v

maxicardinality.(permin) =4

created in
accordance with
Work Profiles

Profile_1 = {Task_2, ..., Task_7}
Profile_2 = {Task_6, Task_8} used for
. definition

Task Definitions

Task_1 = Scenario-sequence{S1,S7,54}
Task_2 = Scenario S3

consist of

Task_n = Scenario-sequence{S21,S14} Profile_n = {Task_'x, ..., Task_y}

Figure 4: Interrelations of the models and documents used and produced in the role-engineering process

user needs to perform or is allowed to perform. In
our approach work profiles can thus be seen as prelim-
inary RBAC roles. In the following we provide more
details concerning the differences of our work profiles
and RBAC roles, and on the process of deriving an
RBAC role-hierarchy from these work profiles.

e The concrete RBAC Model is the final result of the
role-engineering process and comprises all roles of the
system arranged in one or more role-hierarchies. We
define role-hierarchies as inheritance hierarchies were
senior-roles inherit permissions and constraints from
all of their junior-roles (transitively).

3.1 Work Profilesvs. Roles

As described above permissions are not explicitly asso-
ciated with work profiles but can be transitively obtained
through the scenarios associated with a specific work pro-
file (see Figure 2). This is an essential difference between
work profiles and RBAC roles, since in RBAC permissions
are directly assigned to roles.

Furthermore work profiles are standalone definitions and
have no direct link to other work profiles. Since a task may
be assigned to more than one work profile and each scenario
may be assigned to more than one task there are potentially
many redundancies in the work profile definitions. This
is another important difference between work profiles and
RBAC roles which are arranged in inheritance-hierarchies
and thus try to minimize redundancies. Therefore work pro-
files can be viewed as a preliminary stage of RBAC roles.
Nevertheless, work profiles are a significant step towards the
definition of a concrete RBAC model.

It is important to mention that the principle of least priv-
elege is directly supported by the scenario-driven process.
Since each task definition is associated precisely with the
scenarios that need to be performed to fulfill a specific goal
(e.g. a business function) the corresponding RBAC role can
be equipped with the exact number of permissions that are
needed to perform the respective task.

3.2 Traceability: Designfor Change

The model interrelations depicted in Figure 4 already indi-
cate that explicit traceability links [11] between the models
have to be established. Those traces are essential to enable
an efficient management of the models, e.g. to easily review
which permissions are needed in a particular scenario as well
as all scenarios (and therefore tasks, and work profiles) a
specific permission is used in. Moreover traceability links
facilitate the comprehensibility of models and are a prereq-
uisite for an effective change management that enables the
correct and cost efficient propagation of changes into affected
models, e.g. if a new usage scenario is defined which must
be assigned to tasks and work profiles and may finally result
in an updated RBAC model. Some examples for such trace
relations are: concretized by between two scenarios, needed
to perform between a permission and a scenario, defined by
between a constraint and the origin of this constraint, part
of between a scenario and a task, or implemented through
between a work profile and an RBAC role.

Unfortunately it is by far too expensive and time consum-
ing to capture all possible traces. Furthermore, recording
all possible trace relations would result in an unmanageable
amount of information, and efficiently selecting the relevant
traces to be considered in a given situation would be al-
most impossible. Therefore the information to be recorded
has to be carefully selected and must be organized in a way
which facilitates the use of the information in later develop-
ment/change situations. However, the selection and man-
agement of trace information is an own field of research and
a very complex task (see for instance [11, 19]) which is be-
yond the scope of this article. Nevertheless, we mentioned
this problem domain since it is very important for the effi-
cient handling of evolving complex models of all kinds.

4. A DETAILED PROCESSDESCRIPTION

In this section we describe the different activities of the
role-engineering process in more detail. Each activity defines
an own sub-process and is described in an own subsection.

4.1 Identify and modelusagescerarios

In this sub-process sensible usage scenarios for the system
under consideration are identified and modeled. At first
the identified usage scenarios are described with a short
sentence. Simple examples of such short descriptions for
scenarios from different domains could be: “Enter an exam
result into a student profile” in a university information sys-
tem; “Transfer money from one bank account to another”
in a banking application; “Create a new patient record” in
a hospital information system.

. Identify sensible * [for each usage scenario]
system usages
make scenario
@ Assign name * [for each scenario]
(identifier)

step sequence
Figure 5: Scenario modeling sub-process

explicit

Since these scenarios subsequently serve as the basis for
the derivation of permissions and the definition of tasks and
work profiles, it is essential that the step sequence within
each scenario is explicitly defined and written down (see
Figure 5). Therefore each scenario is described through a
detailed description in the form of structured text and a
corresponding diagram (cf. Section 1.2). To identify scenar-
ios and the corresponding step sequences, security engineers
rely on the assistance of domain experts, like a professor,
students and an administration secretary for a university
information system, or a physician, a nurse, and a hospital
clerk for a hospital information system. In the third step of
the scenario modeling sub-process each scenario is provided
with a unique name to identify the scenario and to facilitate
search operations within the scenario model.

4.2 Permissionderivation

The permission derivation sub-process is depicted in Fig-
ure 6. The goal of the corresponding activities is the identifi-
cation of the permissions which are necessary to perform the
usage scenarios of the system. The result of this sub-process
is the permission catalog (see Figure 4), which contains all
permissions that were detected from the scenarios.

. Fetch current * [for each scenario step]
— "
scenario model 1
Identify associated
access operation

Store
access operation identified
@ , object} [P] |

air

Figure 6: Permission derivation sub-process

During permission derivation every single scenario is re-
viewed. To identify permissions we take each scenario step
and check which operation a subject (e.g. a user) needs to
perform to complete this step. For each of these operations
we define and store an (operation, object) pair in the per-
mission catalog. Figure 7 illustrates a generic scenario as
message sequence chart. The left hand side shows the sub-
ject depicted by an actor symbol, the object is shown on
the right hand side. The arrows between the subject and

the object represent operations that the subject invokes on
the object. Therefore we are able to derive the (operation,
object) pairs directly from the scenarios.

Subject
Invoke operation 1

j Perform operation

Invoke operation o

j Perform operation 5

Figure 7: A generic scenario

Some of the basic steps are often included in many differ-
ent scenarios (e.g. “load customer record” or “check credit
line”). Nevertheless each permission is registered exactly
once in the permission catalog. However, each permission
(typically) has links to several scenarios (see Section 3).

Permissions can be differentiated in abstract and basic
permissions (see [23]), i.e. permissions on different levels of
granularity. Abstract permissions (like “transfer money”)
are composed of basic permissions (like “read account” or
“write account”) or of other abstract permissions. The
scenario-based approach also enables the detection of per-
missions with different granularity. As described in Section
1.2 each step in a scenario may be further concretized by a
new scenario. The operations performed in the concretized
scenario are the elements of the abstract permission defined
in the more general scenario.

4.3 Identification of permisgon constraints

The identification of constraints is one of the most dif-
ficult parts of the role-engineering process. The first step
is to define which types of constraints should be modeled.
Two of the most common types are separation of duties and
cardinalities. However one may also model other kinds of
constraints like time-dependencies (e.g. only between 6 a.m.
and 8 p.m.) or maximum executions in an interval (e.g.
maximum number of money transfer operations per day).
The constraint types that are effectively modeled are only
restricted by the RBAC service that should be used to im-
plement the corresponding constraints. Nevertheless it may
be sensible to model constraints even though the applied
RBAC service is not (yet) able to enforce these constraints.

Having defined the relevant constraint types the identi-
fication of the actual constraints can begin. In essence an
own sub-process is needed for every constraint type, e.g. one
for static separation of duties (SSD) constraints, one for car-
dinality constraints and so on. Figure 8 shows an example
for the identification of statically mutual exclusive permis-
sions (SSD constraints). If for instance the RBAC model to
be build should contain SSD constraints and cardinalities, a
similar sub-process has to be executed for the identification
of cardinality constraints. Of course several of these con-
straint identification sub-processes may run in parallel, but
on a logical level each of them is an autonomous sub-process.

The constraint definition process in general is difficult be-
cause every organization has an individual access control
policy and sometimes every department within an organiza-

tion has specific rules that need to be enforced in addition
to the corporate policy. Small inaccuracies could already
result in severe security leaks.

i * [for each permission in catalog]
._> Fetch permission
catalog 1

Identify mutual
exclusive permissions

@ Define SSD * [for each exclusion relation]
«—|
constraint

Figure 8: A constraint definition sub-process

Constraints are identified by talking to domain experts
like the executives that define the access control policy for
an organization. These persons are (or should be) able to
indicate the permissions which must never be given to the
same person or the minimal and maximum number of people
who must or should posses a particular access right. Another
possibility for constraint identification is that the security
engineers who build the RBAC model try to identify the
constraints from their experiences. Subsequently this initial
constraint model is refined together with domain experts,
e.g. stock-brokers for a stock and bond trading system.

The ideal case for the constraint definition would, how-
ever, be a situation were the organization that runs the an-
alyzed information system has a clearly defined access con-
trol policy and a dedicated security officer who is able to
thoroughly define the security requirements. Unfortunately
even in large organizations the security officer position is
often a “sideline job” of system administrators. However,
administrators usually have good knowledge of the techni-
cal issues of computer system security but are not involved
in the planning and definition of organization wide security
policies for sensitive information. Thus they are mostly not
the correct contact persons for the identification of security
policies in general, and for constraints in specific.

Another important issue is that from our experiences it
is sensible to identify constraints on individual permissions
prior to the identification of constraints for roles (which
“contain” the permissions). The reason for that is twofold,
on the one hand some constraints may only be sensibly de-
fined on the permission level and not on the role level and
vice versa, on the other hand certain types of constraints
may be defined on both levels (for permissions and roles).

A good example are mutual exclusive permissions. Two
mutual exclusive permissions must never be assigned to the
same role (or user). Therefore a role to which such a per-
mission is assigned must automatically inherit the separa-
tion of duties constraint that is attached to this permission,
although the constraint is defined on the permission and not
on the role. The consequence of that is that no user must
ever acquire two roles which possess two mutual exclusive
permissions. Nevertheless these two roles are only mutual
exclusive since each of them owns a permission that is mu-
tual exclusive to at least one permission of the other role.

Aside from that it may also be sensible to define two roles
as mutual exclusive to prevent that the same user can per-
form certain access-sequences (scenarios). This means that
every single operation may be unobjectionable but their
combination (sequential application) is not. An alterna-
tive way to resolve such a situation is to define an abstract
permission (see Section 4.2) that represents this access se-

quence. Afterwards this abstract permission can be assigned
to a role and defined as mutual exclusive to other permis-
sions. Nevertheless situations may occur where the defini-
tion of an additional (abstract) permission is not possible or
undesired, it is then sensible to relocate this problem from
the permission level to the role level (to prevent the execu-
tion of particular sequences).

Another example can be time-dependencies. While it may
be inoffensive to execute a certain access right in general, one
can imagine a constraint where the members of a particular
role (e.g. customers) should only be able to apply the cor-
responding permission from 8 a.m. to 6 p.m. for instance.
In such a situation it is sensible to define a respective con-
straint on one particular role and not on the permission in
general.

Permissions can be seen as basic building blocks while
roles (at least) consist of permissions and are therefore more
complex entities. As a rule of thumb we recommend to de-
fine constraints on the lowest possible level. This means
that one should first try to define constraints on the permis-
sion level and only specify constraints on the role level if the
corresponding constraint cannot be sensibly defined on the
permission level. From our experiences this eases the con-
straint management in general since constraints exponen-
tially raise the complexity of the assets they are assigned to
(on a logical and on the implementation level).

4.4 Scenariomodelrefinement

Here the initial scenario model that was built in step
one (see Section 4.1) is reviewed and further refined. In
essence one can distinguish two essential activities in this
sub-process:

. Fetch current
scenario model

l* [for each scenario]

* [for each step] W
\J

Define concretized-scenario
(if necessary)

v

Find/define similar scenarios
and derive abstract type
(if necessary)

[28]

Store new @
scenario model

Figure 9: Scenario model refinement

e (Concretion: each step within each scenario is reviewed
if it is complex enough to be described more detailed
through an own sub-scenario.

e (Generalization: first the current scenario model is re-
viewed if similar scenarios exist. Second, for each sce-
nario additional (similar) scenarios are defined. Third,
for each group of similar scenarios it is examined if an
abstract type for these scenario can be defined. An ex-
ample are scenarios that describe the process of with-
drawing money from a bank account, e.g. at an ATM,
at the counter, or with an internet banking applica-
tion. These scenarios are then grouped and a com-
mon abstract type is derived, e.g. the type “withdraw
money”.

4.5 Definition of tasksand work profiles

In this sub-process scenarios that logically belong together
are combined to tasks. These tasks are then used to define
work profiles (see Figure 2):

e A task is a collection of scenarios which can be com-
bined to perform a complex operation. The process-
ing of a damage event in an insurance company (like a
car accident) may for instance consist of the scenarios:
register new damage event, request survey of a motor
vehicle expert, close case and process payment.

e A work profile consists of one or more tasks. There-
fore each work profile is a job description for a certain
position within the organization under consideration.

Fetch scenario model,
. permission catalog and
constraint catalog

* [for each scenario]

Associate scenario
with tasks
©4_ Associate task « [for each task]
with work profiles

Figure 10: Definition of tasks and work profiles

The definition process for tasks and work profiles is by far
more complex than the corresponding sub-process depicted
in Figure 10 suggests. Like constraints, the specifications
for tasks and work profiles are usually very different within
diverse organizations and for diverse information systems.
Thus in the majority of cases it is inevitable to define them
together with domain experts (e.g. a state attorney, a judge
and a secretary for a court information system). The most
challenging part is to select the correct group of scenarios
for a particular task.

4.6 Derivation of apreliminary role-hierarchy

At this stage of the role engineering process enough in-
formation has been gathered to build a first version of the
RBAC role-hierarchy. Figure 11 depicts the corresponding
sub-process. The work profiles and the permission cata-
log are the starting points to derive the preliminary role-
hierarchy. For each work profile we first create a role with
the same or a similar name (e.g. Front-Office, Back-Office,
or Rolel44). Since work profiles consist of tasks which again
consist of scenarios, we can directly identify all permissions
that need to be assigned to a particular role. Remember
that we already derived the permissions that are needed to
perform the scenarios in a previous step (see Section 4.2).

Now that we have transformed all work profiles into roles
that possess permissions we identify potentially redundant
roles. That means we are looking for roles which possess
exactly the same permissions as one or more other roles
(permissions of 7 = permissions of r2). These roles are,
however, not deleted but marked for later review. We do
this since it may sometimes be sensible to have two separate
role definitions although they temporary possess the same
permissions. In the further course of the role-engineering
process such roles may be equipped with additional permis-
sions or permissions may be revoked from them. Another
possibility is that a common junior-role for two such roles is
defined or that one of two equivalent roles may later become
the junior-role of the other.

. Fetch work profiles x [for each work profile] [create role and assign
and permission catalog permissions
for each role] i i
\dentity junior-roles * [] Identify (potential)
redundant roles
Define Inheritance * [for each role] Remove redundant @
relations permissions

Figure 11: Derivation of a preliminary role-
hierarchy from work profiles

However, before the final RBAC role-hierarchy can be de-
fined, the preliminary role-hierarchy has to be build. There-
fore the next step is the identification of junior-roles (see
Figure 11). In this activity we look for roles whose permis-
sions are a real subset of the permissions assigned to another
role. For two roles r; and r2 where the permissions of 7o
compose a subset of the permissions of r1 we say that r1 is
greater than ro (r1 > r2). After we identified all of those
greater than relations, we define an inheritance relation be-
tween each two roles r; and r2 were r; > 12 applies. Each
r2 is defined as junior-role for the corresponding r;. Finally
we remove the redundant permissions from each role. That
means that we remove all permissions that are directly as-
signed to a role and are also inherited from its junior-roles.
When this step is finished we have defined a preliminary role
hierarchy.

for each work-profile {
create role and assign pernissions
add role to allRoles
}
for each rolel in allRoles {
for each role2 in allRoles {
if {perm ssions of rolel = permssions of role2} {
add rolel and role2 to potentiall yRedundant Rol es

}
if {rolel > role2} {
add role2 to juniorRoles(rolel)
}
}
}
for each role in allRoles {
if {juniorRoles(role) exists} {
for each jrolel in juniorRoles(role) {
for each jrole2 in juniorRoles(role) {
if {jrolel > jrole2} {
delete jrole2 fromjuniorRol es(role)
}

}
}

for each role in allRoles {
for each jrole in juniorRoles(role) {
rol e addl nheritanceRel ati onTo jrole

}

rol e renove redundant pernissions

}

Figure 12: Pseudo code to derive a preliminary role-
hierarchy from work profiles

As you may have already noticed, the derivation of
the preliminary role-hierarchy is a good structured pro-
cess which is suited for a support by a software tool
that generates this first version of the role-hierarchy semi-
automatically. Figure 12 shows the corresponding algorithm
in pseudo code. Here we do only (semi-automatically) define
roles as junior-roles if their permissions are a real subset of

the respective senior-role. Thus we do not define semanti-
cally new relationships. Since the work profiles were already
created in accordance with the constraint catalog (see Figure
4), the constraint definitions need not be considered for the
derivation of the preliminary role-hierarchy. As described
in the following section, constraints are, however, very im-
portant to refine the resulting role-hierarchy in the further
course of the process.

It has to be mentioned that the preliminary role-hierarchy
resulting from the steps described above has in the general
case the form of a directed acyclic graph (DAG). From our
experience role-hierarchies can be described adequately only
through DAGs since tree structures are often not flexible
enough to depict real world hierarchies. If due to some other
constraints the role-hierarchy has to be in the form of a
tree, a further step needs to be executed that transforms
the DAG into a tree. Since this has a direct impact on each
affected role and the semantics of the RBAC model, the
transformation needs to be performed by security engineers
and domain experts and may hardly be automated.

4.7 RBAC Model definition

The preliminary role-hierarchy, the permission catalog
and the constraint catalog serve as input for the RBAC
model definition sub-process. Figure 13 depicts the order
of the corresponding activities. Unlike the derivation of
the preliminary role-hierarchy, this sub-process must be con-
ducted by security engineers and can only be assisted (and
not fully automated) by a software tool.

At first all roles which were previously marked as poten-
tially redundant are reviewed. The security engineers decide
together with domain experts which roles are actually redun-
dant and can be removed from the model, and which roles
do only temporary have the same access rights and must
therefore be kept in the model.

Fetch current
. = | role-hierarchies and
constraint catalog
.
roles role constraints
if necessar

Mergg= differ_ent _ Insert new roles
role-hierarchies into role-hierachy

[role model incomplete] [role modeling completed] @

Identify and define

Figure 13: Sub-process: RBAC model definition

Until this point in time the constraint catalog contains
only constraints on individual permissions (see Section 4.3).
As a next step constraints on roles are defined. As already
discussed in Section 4.3, the identification of constraints is
a complex task that cannot be performed without the input
and feedback from domain experts.

As for the definition of permission constraints in step 3
of the role-engineering process (Section 4.3), we must first
decide which types of constraints should be modeled (e.g.
time-dependencies, cardinalities etc.). Afterwards for each
constraint type an own sub-process is started to identify the
actual constraints (e.g. the minimum user cardinality for the

role Front-Office is two, or the roles Front-Office and Back-
Office are mutual exclusive). Subsequent to the completion
of the constraint catalog, all information that is needed to
define new roles is available to the security engineers. Now
we can for example define private roles (see [23]) or inter-
relate previously independent roles in accordance with the
constraint catalog. Moreover one may merge two different
role hierarchies by defining a new role whose junior-roles
are from different autonomous role-hierarchies. As shown in
Figure 13 the four steps are repeated until the RBAC model
is complete, i.e. until the security engineers (and domain ex-
perts) define the model as adequate.

5. EXPERIENCES: APPLICABI LITY AND
LIMIT ATIONS

So far we completed three case studies based on the
scenario-driven role engineering process. The first case was
a web-based information system for the management of stu-
dent and alumni communities, while the second was a spe-
cialized medical information system for the management
and processing of electronic patient records. The third case
study was a brokerage platform for the collaborative devel-
opment and exchange of learning resources among European
universities. Research and development activities for this
platform are conducted in the UNIVERSAL project [24]
which is funded within the IST-program of the European
commission. These case studies provided us with significant
insights about the scenario-driven role engineering process,
its applicability, and possible limitations.

An expected (though important) finding is that one could
hardly reach a complete scenario coverage of a system. Nev-
ertheless the same holds for (software) testing of non-trivial
systems where a complete test case coverage of the whole
system (including requirements, design, components, etc.)
is nearly impossible (see e.g. [15, 18]). However, from
our experiences we can say that a thoroughly conducted
scenario-driven role engineering process where security en-
gineers interact with domain experts leads to promising re-
sults. Moreover the definition of a concrete RBAC model is
a process with a huge share of social elements. Every orga-
nization has a distinct security policy that is tailored to the
specific needs and duties of the corresponding organization.
Therefore we think that a scenario-driven role engineering
process can be a good means to build actual RBAC models.

Changes that may occur when new scenarios are incorpo-
rated (e.g. if the system is extended with new functionality)
can be integrated straightforwardly (cf. Section 3). The new
scenario is added to the scenario model, new permissions
and constraints are derived (if necessary), the scenario is as-
signed to one or more tasks and work profiles, and finally
the changes are propagated into the RBAC model.

Another important finding was the suitability of con-
straints for both permissions and roles and the need to ex-
plicitly model each of these types. Before we applied our ap-
proach for the first time we were not sure about the “best”
point in the process where the different constraint categories
should be modeled. We finally chose the straightforward way
to model the respective constraints as soon as all necessary
information is available. As described in this paper both are
distinct and important activities that are a vital part of the
role engineering process (see Section 4.3 and Section 4.7).

We found that in the majority of cases it is not possible to

reflect all roles of a complex system in a single role-hierarchy,
rather we often have the situation that an RBAC model
comprises several small hierarchies with approximately ten
or less roles and a (small) number of standalone roles or role-
hierarchies consisting of only two or three roles. Neverthe-
less role-hierarchies are well suited to remove redundancies
from an RBAC model and thus make a good contribution
to an improved maintainability and comprehensibility. In
so far we found that real systems often need to be depicted
by several rather than one hierarchy. However from our ex-
periences we cannot completely agree with [10] which states
that the concept of role-hierarchies usually translates only
badly into practical application.

Our final remark relates to the granularity of the permis-
sions which are modeled in the role engineering process and
are later assigned to roles. As mentioned in Section 4.2 the
scenario-based approach may also facilitate the detection
and modeling of abstract and basic permissions. Although
we did not encounter any concrete difficulties with the si-
multaneous modeling and assignment of abstract and basic
permissions we are not completely sure about the long-term
implications of such a step. We therefore suggest to model
both kinds of permissions but to assign only abstract per-
missions to roles, if possible.

6. RELATED WORK

In [3] Coyne shortly describes a basic approach that could
be used to identify RBAC roles. In essence, he suggests
to collect different user activities and describe them as
verb/object pairs. These activities may then be clustered
to define candidate roles. Duplicate candidate roles are
deleted, the remaining roles are equipped with the minimal
possible set of permissions. In the next step constraints are
defined before role-hierarchies can be build.

Fernandez and Hawkins suggest to determine role rights
from use cases [7]. In their approach authorizations are de-
rived from the preconditions modeled for a use case. They
propose a UML stereotype to extend use case descriptions
with additional security requirements. These security re-
quirements are then specified within the textual description
of a use case (usually defined in a use case template) by writ-
ing an additional comment marked with the keyword “secu-
rity” (e.g. in the pre- or postcondition slot). The permissions
a specific actor (role) needs can then be determined from the
use cases this actor participates in. The approach does, how-
ever, not describe when and how constraints are elicited, nor
does it deal with the definition of role-hierarchies.

In [5] Epstein and Sandhu present an approach to express
the different parts of an RBAC model with different UML
diagrams. On an example from the health care domain they
show how the UML may be applied in principle to document
an RBAC model. Nevertheless they do not present a role
engineering process or framework, and do therefore not deal
with the definition process of constraints and role-hierarchies
or the derivation of permissions.

Roeckle et al. suggest a process-oriented approach for role
finding [21]. They present the experiences they gathered
from a case study conducted at Siemens. They distinguish
three different layers, the process layer, the role layer and the
access rights layer. At first the business processes of the cor-
responding organization are modeled (process layer). Then
role candidates are identified from these process descriptions
and registered in a role catalog (role layer). The role layer

is used as input to derive the access rights layer. Roeckle
et al. draw the important conclusion, that RBAC roles are
closely related to the core (business) functions, and that role
engineering itself should therefore revert to the business pro-
cesses supported by the corresponding information system.
However, they describe the process of role finding only on
a meta level and do not go into detail about the derivation
of permissions, the assignment of permissions to roles or the
definition of role-hierarchies or constraints.

In [6] Epstein and Sandhu describe a model for the engi-
neering of role-permission assignments which builds upon
the RBAC96 model [23]. They introduce three addi-
tional layers between roles and permissions to divide role-
permission assignment into smaller and better manageable
steps. The new layers are tasks, workpatterns and jobs. In
their approach a task represents a specific piece of work (a
step) and is associated with the permissions that are re-
quired to perform this step. A workpattern is a sequence
of tasks. Each task thus represents a specific step within a
workpattern. Jobs are mapped to workpatterns. The task
to workpattern relation is a many-to-many relation, while
the workpattern to job relation is a many-to-one-relation.
A role is composed of one or more jobs. Since the focus is
on role-permission assignment only, the approach does, how-
ever, not go into detail how constraints and role-hierarchies
affect the role-permission assignment process and vice versa
(e.g. for mutual exclusive permissions, or maximum cardi-
nalities defined on permissions). Nevertheless the approach
shows that every single activity of the role engineering pro-
cess as a whole needs to be further elaborated.

7. CONCLUSION AND FUTURE WORK

The scenario-driven role engineering process supports the
definition of a concrete RBAC model and provides adapt-
ability of the resulting models through the straightforward
propagation of changes into all affected models. In the
course of the process a permission catalog, a constraint cat-
alog and definitions of work profiles are produced. These
models/documents serve as the foundation for the defini-
tion of the RBAC model which consists of permissions, roles,
role-hierarchies and constraints.

The scenario concept is of central significance for our ap-
proach. A scenario can be seen as collection of permissions
that are applied in a particular order to reach a predefined
(user) goal. In order to perform a certain scenario, a subject
must therefore own all permissions that are needed to com-
plete every single step of this particular scenario. Once a
scenario model is built changes that enrich the functionality
of the system can be incorporated straightforwardly. In our
model such a change case is characterized through the defi-
nition of a new usage scenario. The new scenario is added to
the scenario model, new permissions and constraints are de-
rived (if necessary), the scenario is assigned to one or more
tasks and work profiles, and finally the changes are propa-
gated into the RBAC model. The deletion of a scenario has
the reverse effect.

The defined process provides a systematic approach to role
engineering and has already proven its applicability in some
case studies. Nevertheless we are continuing to apply the
process in other application areas to extend our knowledge
of role engineering and to further improve the process defini-
tion. This also includes the detection of gaps in the current
process definition. For instance in the scenario-driven ap-

Role
Engineering

Figure 14: Role engineering context

proach it is difficult to detect system intrinsic permissions
(and roles) that do not result from the system’s (abstract)
functionality but from the chosen technology. For example if
a certain system function is implemented through web-based
services using CGI scripts or internal web-server functions,
additional permissions need to be defined for the correspond-
ing configuration files or scripts. Therefore we further refine
and elaborate the role engineering process to extend its com-
prehensiveness and applicability.

Furthermore Figure 14 suggests that role engineering is of
course only one part of a larger process for the definition and
implementation of access controls. Therefore the interrela-
tions of the role engineering process and its context need
to be further investigated to design a comprehensive life-
cycle model for (role-based) access controls. Especially the
mapping of an (abstract) access control policy on a concrete
RBAC model and the seamless realization with a specific
RBAC service are interesting fields for future work. There-
fore the definition of a technology selection process that en-
ables the engineers to select an RBAC service that is well
suited to implement all aspects of a certain access control
policy (e.g. separation of duties) is an important subject.

Like every requirements engineering process, the process
of role engineering depends significantly on human factors.
Therefore many elements of the process cannot be auto-
mated (or at most partially). Nevertheless from our point
of view tool support is certainly sensible, since a tool can
provide user/process guidance for security engineers, keep
track of changing models and remind the security engineer
about unfrequent tasks. We are currently developing such a
tool for the support of security engineers.

8. REFERENCES

[1] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[2] J.M. Carroll. Five reasons for scenario-based design.
In Proc. of the IEEE Annual Hawaii International
Conference on System Sciences (HICSS), 1999.

[3] E.J. Coyne. Role engineering. In Proc. of the ACM
Workshop on Role-Based Access Control, 1996.

[4] J.M. Carroll (ed.). Scenario-Based Design:
Envisioning Work and Technology in System
Development. John Wiley & Sons, 1995.

[5] P. Epstein and R. Sandhu. Towards A UML Based
Approach to Role Engineering. In Proc. of the ACM
Workshop on Role-Based Access Control, 1999.

[6] P. Epstein and R. Sandhu. Engineering of
Role/Permission Assignments. In Proc. of the 17th
Annual Computer Security Applications Conference
(ACSAC), December 2001.

[7] E.B. Fernandez and J.C. Hawkins. Determining role
rights from use cases. In Proc. of the ACM Workshop
on Role-Based Access Control, 1997.

[8] D.F. Ferraiolo, J.F. Barkley, and D.R. Kuhn. A
Role-Based Access Control Model and Reference
Implementation within a Corporate Intranet. ACM
Transactions on Information and System Security,
2(1), February 1999.

[9] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and
R. Chandramouli. Proposed NIST Standard for
Role-Based Access Control. ACM Transactions on
Information and System Security, 4(3), August 2001.

[10] C. Goh and A. Baldwin. Towards a more complete
model of role. In Proc. of the ACM Workshop on
Role-Based Access Control, 1998.

[11] O. Gotel and A. Finkelstein. An analysis of the
requirements traceability problem. In Proc. of the
IEEFE International Conference on Requirements
Engineering (ICRE), 1994.

[12] K. Gutzmann. Access control and session management
in the HTTP environment. [EEFE Internet Computing,
January/February 2001.

[13] 1. Jacobson. Object-Oriented Software Engineering.
Addison-Wesley, 1992.

[14] M. Jarke, X.T. Bui, and J.M. Carroll. Scenario
management: An interdisciplinary approach.
Requirements Engineering Journal, 3(3/4), 1998.

[15] C. Kaner, J. Falk, and H.Q. Nguyen. Testing
Computer Software (second edition). John Wiley &
Sons, 1999.

[16] G. Kotonya and I. Sommerville. Requirements
Engineering - Processes and Techniques. John Wiley
& Sons, 1998.

[17] G. Neumann and M. Strembeck. Design and
Implementation of a Flexible RBAC-Service in an
Object-Oriented Scripting Language. In Proc. of the
8th ACM Conference on Computer and
Communications Security (CCS), November 2001.

[18] W.E. Perry. Effective Methods for Software Testing
(second edition). John Wiley & Sons, 2000.

[19] B. Ramesh and M. Jarke. Toward reference models for
requirements traceability. IEEE Transactions on
Software Engineering, 27(1), January 2001.

[20] S. Robertson and J. Robertson. Mastering the
Requirements Process. Addison-Wesley, 1999.

[21] H. Roeckle, G. Schimpf, and R. Weidinger.
Process-oriented approach for role-finding to
implement role-based security administration in a
large industrial organization. In Proc. of the ACM
Workshop on Role-Based Access Control, 2000.

[22] C. Rolland, G. Grosz, and R. Kla. Experience with
goal-scenario coupling in requirements engineering. In
Proc. of the IEEE International Symposium on
Requirements Engineering (RE), 1998.

[23] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman. Role-based access control models. IEEE
Computer, 29(2), February 1996.

[24] The UNIVERSAL Brokerage Platform Homepage.
http://www.ist-universal.org.

[25] A. van Lamsweerde. Goal-Oriented Requirements
Engineering: A Guided Tour. In Proc. of the 5th IEEE
International Symposium on Requirements
Engineering (RE), August 2001.

