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ABSTRACT
This paper presents an approach that uses special purpose
RBAC constraints to base certain access control decisions on
context information. In our approach a context constraint
is defined as a dynamic RBAC constraint that checks the
actual values of one or more contextual attributes for pre-
defined conditions. If these conditions are satisfied, the cor-
responding access request can be permitted. Accordingly, a
conditional permission is an RBAC permission which is con-
strained by one or more context constraints. We present an
engineering process for context constraints, that is based on
goal-oriented requirements engineering techniques, and de-
scribe how we extended the design and implementation of an
existing RBAC service to enable the enforcement of context
constraints. With our approach we aim to preserve the ad-
vantages of RBAC, and offer an additional means for the def-
inition and enforcement of fine-grained context-dependent
access control policies.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications -
Elicitation methods, Methodologies; D.2.9 [Software Engineer-

ing]: Management - Life cycle, Software process models; D.4.6
[Operating Systems]: Security and Protection - Access con-
trols; K.6.5 [Management of Computing and Information
Systems]: Security and Protection - Unauthorized access

General Terms
Security, Design, Management

1. INTRODUCTION
The evolution of software and hardware technologies for

interactive networked applications is progressing at a high
pace. This poses high demands on access control services
that are deployed in interconnected and interactive environ-
ments. In particular, such services often need to consider
context information to enforce fine-grained access control
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policies, that rely on information like time, location, process-
state, or access history, for instance. Therefore permissions
and permission assignment often depend on such context
information. One possibility to deal with a dynamically
changing context is to rapidly modify permission assignment
relations according to the changes in the environment. An
other possibility is to define conditional permissions, i.e. per-
missions that consider certain context conditions in access
control decisions, and thus are context-aware to a certain
degree. Either way it is sensible to adapt existing access
control models and technologies in order to meet the needs
of networked interactive applications, as offered by web-
based services and pervasive computing devices for exam-
ple. Thus we think that an access control mechanism with
context constraints should be based on well known models
and techniques, and should offer a path from “traditional”
to context-dependent access control policies.

RBAC [15, 32] provides an access control model that en-
ables the enforcement of many different access control poli-
cies. A central idea is to support constraints on almost all
parts of an RBAC model (e.g. permissions, roles, or assign-
ment relations) to achieve much higher flexibility. Static and
dynamic separation of duties are two of the most common
types of RBAC constraints (see e.g. [2]). However, as men-
tioned above, it is often required to consider various context
information in authorization decisions, especially in highly
interconnected and interactive environments. Moreover in
many real-world applications it is necessary to enforce fine-
grained policies where permissions are directly assigned to
certain individuals (see e.g. [1, 17]).

In this paper we propose a process for the engineering
of context constraints. This process is designed as an ex-
tension to the scenario-driven role engineering process (see
[26]). Moreover, we describe how we extended the design
and implementation of the xoRBAC component (cf. [25]) to
enable the enforcement of context constraints. With this ex-
tension xoRBAC provides an access control service that pre-
serves the advantages of role-based access control (see e.g.
[32]), and allows for the definition of “traditional” RBAC
policies. Additionally it adds further flexibility through the
specification of fine-grained context-dependent access con-
trol policies via context constraints.

1.1 Motivation
In recent years software-based appliances and applications

rapidly evolved from relatively isolated standalone computer
workstations to interconnected and highly flexible devices
that are used in almost any part of human life. Together



with the widespread deployment of the respective technolo-
gies corresponding security requirements arose to protect
sensitive services and information objects that are (poten-
tially) accessed by many interacting users and/or machines.
One important demand in this respect is the enforcement of
customized context-based access control policies.

Some motivating examples of applications that inevitably
need to consider context information in authorization deci-
sions are sketched below:

• In the area of computer supported cooperative work
(CSCW) such as workflow management, or groupware
applications, context, may, for example, consist of the
interacting persons, the processed documents, the day-
time, the logical and/or physical location of a person,
etc. Researchers have already investigated related ac-
cess control (and other security) issues for more than
two decades and achieved many improvements (see e.g.
[7, 9, 17]). However, even this relatively well known
area still offers a rich field for further research.

• Mobile code applications range from comparatively
simple downloaded Java applets to proactive mo-
bile agents that gather information from distributed
sources, and/or autonomously travel in a computer
network and react on certain events. The protection
of host computers from malicious mobile applications,
as well as the protection of mobile applications from
malicious hosts, results in many access control related
problems where context information needs to be con-
sidered, for example the owner of an agent, the owner
of a host, the access/travel history of an agent etc. (see
e.g. [14, 20]).

• Another example is the purchase of digital goods over
the internet, e.g. downloading research articles from
digital libraries, purchasing music files directly from
an artist, or subscribing to a video streaming channel.
Digital goods may pass into the possession of the re-
spective customer, where the owner may use the corre-
sponding products as often, or as long, as she likes to.
However, one may also sell only a restricted number of
uses, or limit the authorized users to some explicitly
named individuals. This and other context informa-
tion may be captured in special digital contracts for
instance. Although some recent contributions describe
sophisticated approaches for specific sub-domains (e.g.
[1]) the whole field is still young and a large number
of open research questions remains.

• Hardware technologies for wireless communications as
Bluetooth, Wireless LAN (IEEE 802.11), or mobile
phone related technologies distribute quickly. More-
over, middleware standards such as CORBA or the
simple object access protocol (SOAP), and software
technologies for dynamic service lookup and ad hoc
networking like Jini, universal plug and play (UPNP),
or E-Speak evolve (see e.g. [24]). With these technolo-
gies the vision of ubiquitous and pervasive computing
[39, 40] is about to become reality. They enable the re-
alization of novel applications based on mobile devices
(see e.g. [33]). For example customized location-based
services, distance monitoring of medical parameters,
direct and ad hoc interactions through mobile devices,

or an intelligent/aware home that responds to partic-
ular events and actively controls the access to certain
services (see e.g. [12]).

The impressive technical opportunities yet give also an
enormous rise to complexity of information security in gen-
eral, and of access control in particular. For example, pub-
licly offered services (commercial as well as non-profit) must
be protected so that only authorized users may access spe-
cific resources. Furthermore, user-related information needs
to be protected from illegal accesses, no matter if the respec-
tive information is stored on a user’s mobile device, through
an intelligent home environment, or by a publicly available
service (such as connection or movement logs of cell phones).
Among other things the fulfillment of these requirements is
certainly essential to protect the privacy of users in a per-
vasive computing environment.

1.2 Different Categories of RBAC Constraints
In principle RBAC supports the definition of arbitrary

constraints on the different parts of an RBAC model (cf.
[32]). However, at first research efforts concerning RBAC
constraints focused primarily on separation of duties con-
straints. With the increasing interest in RBAC in general
and constraint-based RBAC in particular, research pertain-
ing to other types of RBAC constraints also gained in im-
portance (see e.g. [8, 19]). In this paper we especially deal
with context constraints in an RBAC environment. Subse-
quently we describe some dimensions for the categorization
of RBAC constraints, that are relevant for the purposes of
this paper. Then we use these dimensions to explain our
definition of context constraints. At first we differentiate
between static and dynamic constraints:

• Static constraints refer to constraints that can be eval-
uated directly at design time of an RBAC model (e.g.
static separation of duties).

• Dynamic constraints can only be checked at runtime
according to the actual values of specific attributes, or
with respect to characteristics of the current session
(e.g. dynamic separation of duties, or time constraints)

Another criterion to classify RBAC constraints is the dis-
tinction of endogenous and exogenous factors:

• Endogenous constraints are constraints that relate to
intrinsic properties of an RBAC model, and inherently
affect the structure and construction of a concrete in-
stance of an RBAC model. For example, a static sepa-
ration of duties (SSD) constraint on two mutual exclu-
sive permissions prohibits an assignment of these per-
missions to the same role. Moreover, it also influences
the definition of the respective role-hierarchy since it
further prohibits that two distinct roles to which these
permissions are assigned can have a common senior
role. Otherwise a common senior could acquire both
(mutual exclusive) permissions and thereby violate the
corresponding SSD constraint. Similar effects can be
observed for cardinality constraints for instance.

• Exogenous constraints are constraints that apply to
attributes that do not belong to the core elements of
an RBAC model, but are defined as “side conditions”



for certain operations or decisions of an access con-
trol service. An example can be time constraints that
restrict role activation to a specific time interval, or
allow access operations for a particular resource only
on a specific weekday.

Beside the categorization as static/dynamic, and endoge-
nous/exogenous, constraints can also be subdivided in au-
thorization constraints and assignment constraints:

• Authorization constraints are constraints that place
additional controls on access control decisions. Thus,
even if a subject is in possession of a permission that
grants a certain access request, the access can only be
allowed if the corresponding authorization constraints
are fulfilled at the same time. For example, such con-
straints can be applied to implement access control
policies based on access histories, as in chinese wall
policies for instance.

• Assignment constraints are constraints that control
the assignment of permissions and roles (e.g. maxi-
mum and minimum cardinalities, or separation of duty
constraints). On the source code level assignment con-
straints may be implemented by using the same means
as applied for authorization constraints (e.g. as an au-
thorization constraint on the “assign role” permission).
We think, however, that it is sensible to discriminate
assignment and authorization constraints on the de-
sign level since both types address distinguishable in-
tentions when engineering an RBAC policy.

The above categories are not completely orthogonal, and
do not claim to provide a complete classification framework
for all possible types of RBAC constraints. Nevertheless,
these categories consider different aspects that can be ob-
served individually, and facilitate the communication about
RBAC constraints.

The remainder of this paper is structured as follows. In
Section 2 we introduce the notion of context constraints as
used in this paper. Subsequently we describe an engineering
process for the elicitation and specification of context con-
straints on the requirements level (Section 3). In Section
4 we then describe the conceptual structure of the xoRBAC

component that can be implemented using any suitable pro-
gramming environment. Especially we describe how context
information, which is captured by special xoRBAC context
functions, can be used to define context constraints. After-
wards we show how we used specific object-oriented tech-
niques to implement a respective extension to xoRBAC in
Section 5, before we discuss related work in Section 6. Sec-
tion 7 concludes the paper.

2. CONTEXT CONSTRAINTS
In the first place a context constraint is an abstract con-

cept on the modeling level (like other types of constraints,
or the role concept are). A context constraint specifies that
certain context attributes must meet certain conditions in
order to permit a specific operation. With respect to the
categories mentioned in Section 1.2 we thus define context
constraints as dynamic exogenous authorization constraints.
While context constraints can (in principle) also be applied
as assignment constraints (cf. Section 1.2), our hitherto ex-
periences concerning the modeling and enforcement of con-
text constraints are primarily based on the usage of context

constraints as dynamic exogenous authorization constraints.
As authorization decisions are based on the permissions a
particular subject/role possesses, context constraints are as-
sociated with RBAC permissions (see Figure 1).

Permission

Context Constraint

 .    .    .

* * * * PermissionRoleSubject

*
Context

Condition 1

Context
Condition 2

Context
Condition n

Role Hierarchy

*

Figure 1: RBAC permission with context constraint

A context constraint is defined through the terms context
attribute, context function, and context condition:

• A context attribute represents a certain property of the
environment whose actual value might change dynam-
ically (like time, date, or session-data for example), or
which varies for different instances of the same abstract
entity (e.g. location, ownership, birthday, or national-
ity). Thus, context attributes are a means to make
(exogenous) context information explicit. On the pro-
gramming level each context attribute CA represents
a variable that is associated with a domainCA which
determines the type and range of values this attribute
may take (e.g. date, real, integer, string).

• A context function is a mechanism to obtain the cur-
rent value of a specific context attribute (i.e. to ex-
plicitly capture context information). For example, a
function date() could be defined to return the current
date. Of course a context function can also receive
one or more input parameters. For example, a func-
tion age(subject) may take the subject name out of the
〈subject, operation, object〉 triple to acquire the age of
the subject which initiated the current access request,
e.g. the age can be read from some database.

• A context condition is a predicate (a Boolean func-
tion) that compares the current value of a context
attribute either with a predefined constant, or an-
other context attribute of the same domain. The
corresponding comparison operator must be an oper-
ator that is defined for the respective domain. All
variables must be ground before evaluation. There-
fore each context attribute is replaced with a constant
value by using the according context function prior
to the evaluation of the respective condition. Exam-
ples for context conditions can be cond1 : date() ≤
”2003/01/01”, cond2 : date() == birthday(subject),
or cond3 : age(subject) > 21.

• A context constraint is a clause containing one or more
context conditions. It is satisfied iff all its context
conditions hold. Otherwise it returns false.

Context constraints are used to define conditional per-
missions. With respect to the terms defined above a condi-
tional permission is a permission that is associated with one
or more context constraints, and grants access if and only



if (iff) each corresponding context constraint evaluates to
“true”. Therefore conditional permissions grant an access
operation iff the actual values of the context attributes cap-
tured from the environment fulfill the attached context con-
straints. The relation between context constraints and per-
missions is a many-to-many relation (see Figure 1). Thereby
a number of permissions can be associated with the same
context constraint if necessary.

% Definition of the access control function
check_access(Subject,Operation,Object) :-
   assigned_role(Subject,Role),
   has_permission(Role,Operation,Object),
   check_context_constraint(Subject,Operation,Object).

% Permission checking for roles and role hierarchies
has_permission(Role,Operation,Object) :- 
   assigned_permission(Role,Operation,Object),
   permission(Operation,Object).
has_permission(Role,Operation,Object) :- 
   super_role(Role,Super),
   has_permission(Super,Operation,Object).

% Evaluation of context constraints
check_context_constraint(Subject,Operation,Object) :-
   associated_cc(Operation,Object,CC),
   not violated(CC,Subject,Operation,Object).

Figure 2: Excerpt from a Datalog specification

Figure 2 shows an excerpt from a (stratified) Datalog spec-
ification [4] for role-based access control decisions in the
presence of context constraints. The check access predi-
cate examines if an access request identified by the classical
〈subject, operation, object〉 triple can be granted or must be
denied. The assigned role and has permission predicates
detect the roles and permissions the subject possesses. The
check context constraint predicate determines the con-
text constraints associated with a specific permission (an
〈operation, object〉 pair), and subsequently checks that none
of these constraints is violated.

Endogenous constraints, as separation of duties con-
straints, or cardinalities for example, can often be derived
from the business rules of a particular organization, e.g. con-
straints like: the roles “accounting clerk” and “controller”
must be statically mutual exclusive, or the minimum user
cardinality for the role “controller” is one. In contrast to
that it is, in our experiences, more complicated to specify
exogenous (context) constraints. In Section 3 we therefore
propose an engineering process for context constraints.

3. ELICITATION AND SPECIFICATION
OF CONTEXT CONSTRAINTS

Context is an elusive concept which has many different
meanings to different people and communities. A defini-
tion for the meaning of context found in Merriam-Webster’s
Collegiate Dictionary is: “(1) the parts of a discourse that
surround a word or passage and can throw light on its mean-
ing (2) the interrelated conditions in which something exists
or occurs.”

In the area of ubiquitous and pervasive computing context
is defined as: “. . . any information that can be used to char-
acterize the situations of an entity. An entity is a person,
place, or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves.” (cf. [13]).

In other words: context in general may consist of almost
every available information that describes a specific situa-
tion. That is, context on the one hand consists of relatively
static environment characteristics like, a person’s national-
ity, affiliation to an organization, or the salary of a certain
employee. On the other hand context also includes dynamic
and often changing attributes like time, the location of a
person or a device (physical and logical), proximity of other
devices or proximity of a specific human being, history in-
formation stored in a log-file or database, the current CPU
or network load, memory consumption of a specific device
and so on.

With respect to access control one has to ask first which
parts of these unmanageable quantities of context informa-
tion are relevant for a specific authorization decision, and
how the corresponding information may be elicited and de-
fined on the modeling level. In this section we therefore sug-
gest a process for the elicitation and specification of context
constraints. This process is based on goal-oriented require-
ments engineering techniques (see [3, 36]), and is designed as
an extension to the scenario-driven role engineering process
for RBAC roles presented in [26]. Prior to describing the
engineering of context constraints in detail, we give some
background information concerning the scenario-driven role
engineering process.

In the scenario-driven role engineering process usage sce-
narios of an information system are used to derive permis-
sions and to define tasks. In general a scenario describes an
action and event sequence, for example to register a new pa-
tient in a hospital information system. Thus each scenario
consists of several steps, and a subject performing a scenario
must own all permissions that are needed to complete the
different steps of this scenario. In turn a task consists of one
or more scenarios, and tasks are combined to form work pro-
files. A work profile comprises all tasks that a certain type
of subject is allowed to perform. In a hospital environment
different work profiles for physicians, nurses, and clerks are
needed for instance. In the role engineering process work
profiles are then used together with the permission cata-
log and the constraint catalog to define a concrete RBAC
model. However, the scenario-driven approach presented in
[26] only provides general guidance for the sub-process of
defining (exogenous) constraints. This fact and our aim to
specify and enforce context constraints in an RBAC envi-
ronment led us to the definition of the process extension
proposed in this section.

3.1 Description of the Engineering Process
Figure 3 depicts an activity diagram for the engineering

(sub-)process. Like the role engineering process as a whole,
the engineering of context constraints is in essence a require-
ments engineering process. To elicit context constraints we
especially use goals which are a familiar concept in the area
of requirements engineering (see e.g. [3, 36]). Furthermore,
goals are well-suited to be applied in combination with sce-
narios in order to elicit and define requirements, and to drive
a requirements engineering process (see e.g. [22, 31]). In
general, a goal is an objective that the system under con-
sideration should or must achieve. Goals can be defined
on different levels of abstraction, ranging from high-level
business goals to low-level technical concerns. Furthermore,
goals may be used to represent functional as well as non-
functional aspects, like performance for instance. An obsta-



cle is an undesired condition which obstructs the fulfillment
of one or more goals. Thus, obstacles can be seen as the
opposite of goals. In the area of requirements engineering
obstacles are a valuable means to define more complete and
more realistic requirements (see e.g. [37]).

* [for each scenario]

[for each step]*

Fetch current
scenario model

Verify goal model

[goal model incomplete]

Compose
context constraints

[goal modeling completed]Derive context
attributes

Derive context
conditions

Assign 
context constraints

[constraint modeling completed]

[constraint model incomplete]

1

2 3 4

567

8

Identify step-goals 
and obstacles

Identify scenario-goals 
and obstacles

Figure 3: A process for the elicitation and specifica-

tion of context constraints

Scenarios and the scenario model serve as the basis for the
scenario-driven role engineering process [26]. The first step
of the constraint engineering sub-process shown in Figure 3
is thus to fetch the current scenario model. The succeeding
activities are now described in more detail:

• Identify scenario-goals and obstacles: In this activity
the goal(s) and obstacle(s) associated with each sce-
nario are identified and explicitly modeled by filling
out a small goal-template (obstacle-template), which
consists of attributes like name, sub-goal-of, super-
goal-of, and associated-with-scenario.

• Identify step-goals and obstacles: For each step within
a scenario the associated goal(s) and obstacle(s) are
identified and attached to the goal model. Each step-
goal is a natural sub-goal of the corresponding scenario
goal(s).

• Verify goal model : Here the goal model produced in
the preceding steps is verified and further elaborated.
This activity is essential for the purpose of defining
stable goals which reflect the (security) demands on
the system under consideration. To accomplish this
task security engineers rely on the assistance of do-
main experts, for example, a bond dealer, an executive
officer, and a clerk for a banking information system.
The activities two to four are repeated until the goal
model is completed (see Figure 3), i.e. until the secu-
rity engineers and domain experts define the model as
adequate.

• Derive context attributes: Each goal (and obstacle)
is examined to derive the context attributes that are
needed to describe/fulfill this particular goal (e.g. day-
time, a user’s nationality, or the IP address of the host
computer a specific service is requested from). Each
context attribute is given a descriptive name, and ex-
plicitly stored together with a link to the goal(s) or

obstacle(s) it has been derived from. Though it is
often possible to straightforwardly derive context at-
tributes and context conditions from goals (obstacles)
in a single step, we model each as an own sub-activity
to ensure that it is not omitted. In the further course
of the process context attributes are used to decide
if the access control service that should be applied is
able to enforce context conditions based on a partic-
ular context attribute, e.g. time information, or the
access history of a particular subject (see Section 4).

• Derive context conditions: The goals and obstacles are
now used to specify context conditions. Each goal and
obstacle is a potential source of an access control rele-
vant context condition and is thus analyzed individu-
ally. Since obstacles describe what should not happen,
they are particularly useful in the derivation of context
conditions. At this stage of the process (which is still
focused on requirements engineering) we make no de-
mands on the way context conditions are specified. For
example they can be defined as short sentences like
“the IP address of the requesting computing device
must have the value x”, or “the request can only be
granted if the requesting subject has already finished
the processing of document b”. However, the exam-
ples above can also be defined in a much shorter form
like “IP address = x”, and “access-history = document
b” for instance. Each context condition is then stored
together with a link to the originating goal/obstacle
and scenario. Moreover each context condition is clas-
sified if it can be enforced by the corresponding access
control service or not, i.e. if it can be mapped to the
functions offered by a concrete access control service
(see Section 4). In our experiences good reasons exist
to model context conditions (and context constraints)
even if they can not (yet) be enforced on a technical
level. The aim to specify and maintain a comprehen-
sive, and preferably complete, access control policy for
an information system is perhaps the most important
reason. Such a “complete” policy provides a valuable
source of information for the corresponding security
engineers. For example, it is then possible to identify
which subset of an organization’s access control policy
can (already) be enforced by the runtime system, and
which security goals can not be achieved yet. These
data can be applied to thoroughly configure the re-
spective access control service, and to avoid security
breaches that could result from unavailable informa-
tion. Furthermore, a “complete” description of an ac-
cess control policy on the requirements level can drive
the technical evolution of access control services to
close the gap between an abstract (complete) access
control policy and its enforceable subset.

• Compose context constraints: In this activity previ-
ously defined context conditions are composed to form
context constraints. Each context constraint com-
prises one or more context conditions. A context con-
straint that consists of two or more context condi-
tions thereby defines that all of the included context
conditions must hold simultaneously in order to fulfill
this particular constraint. The context constraints are
stored in a constraint catalog.



• Assign context constraints: Each constraint can
be traced back to the context condition(s),
goal(s)/obstacle(s), and scenario(s) it originates
from. Since we derive permissions from scenarios and
compose work profiles of tasks/scenarios (cf. [26]), we
can identify the permission(s) a context constraint
could sensibly be assigned to in a straightforward
manner. The activities seven and eight are repeated
until the constraint model is completed (see Figure
3), i.e. until the security engineers define the model as
adequate.

3.2 A small Example
In this section we give an example for the engineering

of context constraints as described in the previous section.
Since a detailed case study would fill its own paper we chose
a simplified example that, however, provides additional in-
sights into the process, and allows for an intuitive under-
standing of the corresponding activities.

Figure 4 shows a scenario for online examinations, de-
picted as message sequence chart. For example, online ex-
aminations are sensible for tests where students have to
show their ability to use certain software tools (e.g. a pro-
gramming language compiler, or a CASE tool), or for tests
that should be analyzed (semi)automatically in a subsequent
step.

In our example a student first sends a “fetch” request for
an exam document together with her matriculation number
to the exam-server (for the sake of simplicity we assume
that a proper authentication procedure already took place,
e.g. by using a Kerberos based mechanism). The exam-
server then generates an individualized scrambling of the
exercises to counteract cheating, or cooperation attempts of
students (we presume, that all students take the exam within
an invigilated PC pool). Afterwards the exam document is
dispatched to the client. Following the student edits the
exam document, and finally dispatches the completed exam
document back to the server.

Fetch Exam Document(Matriculation#)

Generate Exam 
Scrambling (Mat.#)

Student
(Client-Computer)

Dispatch Exam Document(Matriculation#)

Edit Exam 
Document(Mat.#)

Exam-Server

Dispatch Completed Exam Document(Mat.#)

Figure 4: A simple scenario for online examinations

By applying the permission derivation procedure de-
scribed in [26] we can identify the following student per-
missions as 〈operation, object〉 pairs: 〈fetch exam〉, 〈edit
exam〉, 〈dispatch exam〉. In other words: a student (resp.
the student role) needs to be equipped with these permis-
sions in order to successfully perform the scenario shown in
Figure 4.

Subsequently we conduct the engineering process for the
elicitation and definition of context constraints as described
in Section 3.1. This results in the following (condensed and
simplified) goals and obstacles (we use a leading G for goals
and a leading Ob for obstacles):

G1 Enable online examinations.

G1.1 Provide an individual scrambling for each stu-
dent.

G1.2 Ensure that students can edit their individual
exam only.

G1.3 Ensure that students can fetch and dispatch their
individual exam documents.

G1.4 Ensure that only specifically registered PCs can
be used to access the exam-server.

G1.5 Ensure that student access to the exam-server is
limited to a specific date and a specific time in-
terval.

Ob1.1 Student X can read or write the exam document
of student Y.

Ob1.2 The exam-server can be accessed from an unreg-
istered client PC.

Ob1.3 Student X is able to access the exam-server prior
to, or after, the specified date and time interval.

According to the process shown in Figure 3 we now derive
the context attributes and context conditions from the above
goals and obstacles (see Figure 5).

Context Attributes

Context Conditions

4) exam_time_interval

5) client_IP_address

6) registered_IP_address

1) todays_date

2) examination_date

3) current_time

1) todays_date = examination_date

2) current_time in exam_time_interval

3) client_IP_address is-a registered_IP_address

7) matriculation_number

8) exam_document_number

4) matriculation_number = exam_document_number

Figure 5: Context attributes and conditions

Subsequently the context conditions are used to compose
context constraints which are then assigned to permissions
(see Figure 3). According to the above goals and obstacles
we compose three context constraints, and assign them to
the permissions derived from the scenario depicted in Figure
4. For the sake of simplicity the context constraints are
written as a list of conditions (cf. Figure 5) surrounded by
curly brackets:

• 〈fetch exam〉 {Cond1, Cond2, Cond3}

• 〈edit exam〉 {Cond2, Cond3, Cond4}

• 〈dispatch exam〉 {Cond1, Cond3, Cond4}

Note that in the most simple case each context constraint
consists of exactly one context condition. Context con-
straints composed of more than one condition are used to
explicitly express the coherence and need for simultaneous
validity of several conditions when performing a certain op-
eration i.e. when using a specific permission.



The role and constraint engineering processes result in a
concrete RBAC model. The elements of this RBAC model
are roles and role-hierarchies, permissions, and (context)
constraints (see also [26]). The xoRBAC component [25] pro-
vides an RBAC service that (among other things) supports
role-hierarchies, static separation of duties, and cardinality
constraints for both roles and permissions. Nevertheless, in
order to actually enforce RBAC policies which make use of
context constraints on a technical level, a respective RBAC
service must provide means to map modeling level context
constraints on concrete implementation structures. Section
4 and Section 5 describe how we extended the xoRBAC com-
ponent to enable the definition and enforcement of context
constraints.

4. XORBAC: CONCEPTUAL STRUCTURE
Figure 6 depicts the conceptual structure of the xoRBAC

component, which is an extension of the structure presented
in [25]. xoRBAC is associated with a metadata service that
records logging and audit information, and enables the se-
rialization and recreation of xoRBAC runtime instances by
using XML encoded RDF models as serialization format.
Moreover the xoRBAC component can be bound to arbi-
trary authentication services (such as Kerberos, or a service
based on X.509 certificates for example) and does not de-
mand on a particular authentication mechanism, it simply
requires that a means exists to authenticate subjects within
the system (for further details see [25]).
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Role Hierarchy Management

Subjects

Subject
Management
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Assignment Unit

Perm./Role Assignment User/Role Assignment
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B
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Dynamic Constraint 
Management
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Environment Mapping

Figure 6: xoRBAC: conceptual structure

The xoRBAC component comprises static and dynamic
constraint management as individual sub-systems (see Fig-
ure 6). The dynamic constraint management sub-system is
the most significant increment to [25] with respect to this pa-
per. It comprises the environment mapping which captures
context information via sensors, and the constraint evalua-
tion which checks if the collected values match the context
constraints associated with a certain conditional permission.
Context constraints can be defined for “ordinary” access
permissions as well as for administrative permissions such
as assignment or revocation operations for example.

Fundamentally the environment mapping component
comprises the sensor library of the xoRBAC access control
service (see Figure 7). It manages all sensors connected to
xoRBAC. Therefore every sensor must be registered in the
sensor library before it can be used within xoRBAC. Each
sensor provides one or more context functions.

A context function is a mechanism to obtain actual val-
ues for specific context attributes (i.e. to explicitly capture
context information). In other words: context functions are
used to filter environment information and to make the cur-
rent value of a relevant attribute available, so that it can be
used by xoRBAC. Therefore each context attribute that can
be provided by a respective context function can be used to
define xoRBAC context conditions (cf. Figure 7).

Environment Mapping / Sensor Library

.    .    .    .    .

 .  .  .  .  .
Context

Condition 1

Context
Condition 2

WeekdayTimeDate GPS-Location. . . . .

 . . .

IP-Address

Context Conditions

true/false true/false true/false

Context Constraint

IP-Address(localhost) == 66.218.71.86

true/false

aSensor bSensor xSensor

Context Functions

Date() <= 2003-01-01

Context
Condition n

Figure 7: From sensors to context constraints

In general, the return value of an xoRBAC context func-
tion may be either a string or a numerical value. Moreover,
a context function may return a single value (e.g. the current
weekday, daytime, or IP-address), or a vector/list of values
(e.g. a list of all users currently logged into the local host, all
employees working in a specific project, or all hardware de-
vices within a certain radius). The sensor library of xoRBAC

can be extended with arbitrary new sensors, respectively
their corresponding software interface. This means that (in
principle) xoRBAC can be connected to physical as well as
logical sensors to sense context attributes (see Section 5.5).

The constraint evaluation component checks if the topical
sensor values match the corresponding context constraints,
and returns either true or false depending on the result
of the evaluation. In this sense context constraints provide
sensor fusion, i.e. they combine and interrelate the measure-
ments of several sensors.

Thus in xoRBAC sensors and context conditions repre-
sent two different layers. A sensor (resp. the corresponding
context functions) only captures “raw” context information
from the environment and makes the respective context at-
tribute available as string or numerical value. In turn, con-
text conditions use the actual values of context attributes
to check predefined conditions, and to decide if the corre-
sponding access can be granted.

Figure 8 shows the definition process of concrete xoRBAC

context conditions as activity diagram. For each modeling
level context condition (see Section 3.1) it is examined if the
corresponding (abstract) context attribute(s) can be cap-
tured by an actual context function of an xoRBAC sensor.
If so, a respective concrete context condition is specified (see
Section 5.3). If, however, no appropriate context function is
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Figure 8: Definition of concrete context conditions

available, one can either implement a new context function
or a new sensor in order to enforce the corresponding mod-
eling level condition, or the corresponding modeling level
condition is marked as “not yet enforceable”. In our expe-
riences good reasons exist to model context conditions (and
context constraints) even if they can not (yet) be enforced
on a technical level (cf. Section 3.1).

5. XORBAC: IMPLEMENTATION
The xoRBAC access control component is implemented

with XOTcl (eXtended Object Tcl) [27]. XOTcl is a general
purpose object-oriented programming language that can be
dynamically loaded into every Tcl compatible environment
and is embeddable in C programs. As a Tcl extension, all
Tcl commands [29] are directly accessible in XOTcl. XOTcl
preserves the flexibility of Tcl and adds new language con-
structs to provide a highly flexible OO programming envi-
ronment.

In the implementation of xoRBAC we especially used
the dynamic object aggregation feature and the per-object-
mixin language construct of XOTcl. Dynamic object aggre-
gation enables the dynamic aggregation and disaggregation
of objects at runtime. A per-object mixin (POM) is a class
which is inserted at the beginning of the precedence order
for a particular object. In other words, POMs are inserted in
front of the precedence order induced by the class-hierarchy
from which the object was instantiated. Thus POMs are
a means to extend every single object with additional be-
havior or capabilities dynamically at runtime (see [25, 27]).
However, as already mentioned, the design and abstract ar-
chitecture of xoRBAC presented in this paper can of course
be implemented using other programming languages as well.

Some important features of xoRBAC are: definition of
arbitrary role-hierarchies (permission-inheritance), user-role
review, user-permission review, permission-role review, def-
inition of static separation of duties constraints, and defini-
tion of maximum and minimum cardinalities (for details see
[25]). In this section we describe an extension of xoRBAC

that enables the definition and enforcement of context con-
straints on permissions (see also Section 2 and Section 4).

5.1 Static Design-time Structures
Figure 9 depicts the essential design level class rela-

tions within the xoRBAC component. Several design pat-
terns (see [16]) are used in the implementation of xoRBAC.

For example, the RightsManager class serves as Facade
for the xoRBAC component, i.e. it hides xoRBAC inter-
nal structures from other components that use the xoRBAC

component. Thus every external component uses the
xoRBAC component through a well-defined API offered by
the RightsManager class. At runtime an Audit object can
be registered for the RightsManager object according to
the Observer pattern. The user-role assignment and the
permission-role assignment relations are implemented using
the Decorator pattern (for more details see [25]).
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Figure 9: xoRBAC component: class relations

As shown in Figure 9 the xoRBAC component basically
consists of eight classes. The classes Sensor, Condition, and
ContextConstraint form the Context Unit of xoRBAC. The
context unit extends xoRBAC with functions that allow for
the specification and enforcement of context constraints as
described in Section 4.

The ContextConstraint class is defined as a meta-class,
which means that its instances are regular classes (for fur-
ther information on XOTcl meta-classes see also [27]). Thus,
for each conceptual context constraint that was defined dur-
ing the engineering process (see Section 3) a respective
ContextConstraint instance is created. At runtime each
of these instances checks exactly one (modeling level) con-
text constraint. Further on, each actual ContextConstraint
checks one or more Condition objects. And each Condition

object uses either one or two Sensor objects to implement
a specific modeling level context condition.

5.2 Dynamic Runtime Structures
In xoRBAC new sensors, conditions and context con-

straints (i.e. instances of the Sensor, Condition, and
ContextConstraint classes) can be dynamically defined. In
other words: the sensor-library and the pool of context con-
ditions and constraints can be dynamically extended.

Figure 10 depicts a RightsManager object at runtime, it
shows the dynamic object aggregation of Subject, Role,
Permission, ContextConstraint, and Condition instances,
and their encapsulation within a respective namespace. In
xoRBAC POMs are used to assign roles to subjects and
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Figure 10: A RightsManager object at runtime

permissions to roles [25]. In the same way xoRBAC uses
POMs to associate permissions with context constraints.
The ContextConstraints are associated with Permission

objects according to the Decorator pattern (see Figure
9). The use of POMs allows to dynamically (de)register
ContextConstraints for Permission objects at arbitrary
times.

ContextConstraint instproc notViolated {subj op obj} {
  [self] instvar conditions
  foreach condition $conditions {
    if {![$condition isSatisfied $subj $op $obj]} {
      return 0
    }
  }
  return 1
}

Figure 11: ContextConstraint notViolated method

For each ContextConstraint the notViolated method
checks if all Condition objects that are registered for
this particular constraint are satisfied (see Figure 11).
Figure 12 depicts two context constraints constraint1

and constraint2 which are registered as POMs for
permission1. Through the next-path each method call to
permission1 is at first directed to its POMs constraint1

and constraint2 prior to invoking the respective method
in permission1. This feature is called method combination
or method chaining [27] and is a well-known approach to
handle dynamic class structures.

In particular Figure 12 shows a simple example of a next-
path resulting from a call of the notViolated method on
permission1. The notViolated call to permission1 is
passed along the next-path to its POMs constraint1 and
constraint2 and finally back to permission1. Regarding
the notViolated method, the permissions and context con-
straints of xoRBAC form a chain of responsibility (see [16]).
This means: a notViolated call is passed along the next-
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per-object-mixin

permission1constraint2

 next 

 next  next 

notViolated checkAccessnotViolated
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Figure 12: Next-path for the call of notViolated

path until a context constraint is violated and denies the
request by returning 0 (false). However, if all context con-
straints return 1 (true) the call is finally passed back to
permission1 which then grants the corresponding access re-
quest.
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Figure 13: notViolated MSC for the return of true

Figure 13 shows a message sequence chart (MSC) of a
notViolated call for the return of true. Section 5.4 pro-
vides a detailed description for access control decisions with
conditional permissions in xoRBAC.

5.3 Specification of Context Constraints
Each Condition object implements one particular con-

text condition (see Section 2). In essence, a Condition

object consists of a left operand, an operator, and a right
operand (for binary operators). The left operand is always
represented by a particular context function which captures
the current value of a specific context attribute. The right
operand can be either a constant value, or an other context
function. The operator is used to compare the left and right
operands. This means, a Condition object either compares
the results of two context functions, or the result of a con-
text function and a constant value. For this purpose the
isSatisfied method is called (see Figure 14).

Since each context condition represents a predicate, a con-



Condition instproc isSatisfied {subj op obj} {
  [self] instvar predicate_script
  if {[info exists predicate_script]} {
    return [eval $predicate_script]
  } else {
    return 0
  }  
}

Figure 14: The Condition isSatisfied method

crete Condition object returns either true or false as result
of an isSatisfied call (see also Section 2). In particular
the isSatisfied method checks the predicate script of a
specific Condition object. This predicate script is stored in
the predicate script instance variable of the Condition

object. Each predicate script represents a piece of XOTcl
source code which is automatically generated from the left
operand, operator, and right operand instance variables of
a Condition (see Figure 15). After the predicate script of
a Condition object is generated, it can be evaluated for
arbitrary times to check the corresponding context condi-
tion. Nevertheless, if an operand or operator instance vari-
able of a Condition object is modified, the corresponding
predicate script is adapted accordingly, of course.

Condition Object

Right Operand

Left Operand

Comparison
Operator operator

Predicate_Script

set left  [$Sensortype1 new -volatile]
set right [$Sensortype2 new -volatile]
If {[$left  $contextFunction1 $parameterlist1] 
    $operator
    [$right $contextFunction2 $parameterlist2]} {
      return 1 
    } else {
      return 0
    }
}

Sensortype1 contextFunction1 parameterlist1

Sensortype2 contextFunction2 parameterlist2

Figure 15: Generation of a predicate script

When a predicate script is evaluated at runtime (the
[eval $predicate script] call in Figure 14) it first instan-
tiates the Sensor objects needed to check the corresponding
condition (the [$Sensortype -new volatile] calls in Fig-
ure 15). Thus, in xoRBAC every Condition object employs
its own volatile Sensor objects to capture a consistent snap-
shot of the relevant context attributes (cf. Section 4). Next,
the two context functions are executed (all variables must
be ground before evaluation - see Section 2), and the re-
spective results are compared using the corresponding com-
parison operator. If the right operand is a constant value
the corresponding predicate script is even more simple. In
this case only one Sensor object needs to be instantiated,
and the result of the respective context function is compared
with the corresponding constant value. A predicate script
always delivers either a return value of 1 (true), or 0 (false).

Figure 16 shows a simple example of an actual (auto-
matically generated) predicate script. This script uses the
GenericXPathSensor and the LocalhostSensor of xoRBAC

(see Section 5.5). The xPathTextNodeQuery method is used

set gxps [GenericXPathSensor new -volatile]
set lhs  [LocalhostSensor new -volatile]
if {[$gxps xPathTextNodeQuery exam.xml //exam//date] 
    == 
    [$lhs clock %Y%m%d]} {
    return 1 
  } else {
    return 0 
}

Figure 16: Example of a predicate script

to read the examination date from the exam.xml document.
The clock method is applied to read the current date in a
YYYY MM DD format (parameters/format string %Y%m%d).
If and only if both of these values are equal (comparison op-
erator ==) the corresponding context condition is satisfied
(return value 1). In order to actually compare two (date)
values in a predicate script these values need to be format-
ted identically. This, however, can be achieved straightfor-
wardly by adapting the corresponding format string passed
to a specific context function (e.g. from %Y%m%d to %d%m%Y in
the example above, to change from a YYYY MM DD format
to a DD MM YYYY format).

set lhs  [LocalhostSensor new -volatile]
if {[$lhs eth0IPAddress] == "66.218.71.86"} {
    return 1 
  } else {
    return 0 
}

Figure 17: Script with a constant as right operand

Figure 17 depicts an example of a predicate script with a
constant value as right operand. Here the eth0IPAddress

context function reads the IP address which is bound to the
eth0 interface of the corresponding local-host. The predi-
cate script returns 1 (true) iff this IP address is equal to
“66.218.71.86”, and 0 (false) otherwise.

To conveniently manage xoRBAC, we developed a graph-
ical tool that allows for the administration of xoRBAC run-
time instances. Moreover, this tool provides support for the
scenario-driven role engineering process, and the constraint
engineering process presented in Section 3.1. Besides, it
controls a number of internal integrity rules, for example
the administration tool only allows for the definition of con-
text conditions that either compare two string-values or two
numerical values. Furthermore, it is possible to allow only
specific comparison operators for a particular context at-
tribute type. For example it could be defined that an IP
address may only be compared with an other value through
a == operator but not through one the >, <,≥,≤ operators.
xoRBAC can also be controlled “directly” via its API.

5.4 Access Control Decisions
The access control function of xoRBAC is implemented

by the checkAccess method. This method requires the tra-
ditional access control triple 〈subject, operation, object〉 as
input attributes. Thereby xoRBAC provides a clear inter-
face to other components that use xoRBAC as their access
control service.

In xoRBAC permissions are always positive, i.e. a permis-
sion always grants a certain access right and does not deny
it. The processing of “ordinary” access requests is explicitly
described in [25]. Therefore the focus in this section is on ac-



cess control decisions with conditional permissions. Figure
18 depicts a message sequence chart of an action and event
sequence which occurs if an access request is granted by a
context constraint. Here constraint1 is an instance of the
ContextConstraint class, conditionA and conditionB are
instances of the Condition class, and sensorX and sensorY

are actual Sensor objects (see Figure 9).
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Figure 18: Evaluation of a context constraint

Initially constraint1 receives a notViolated call (see
Figure 13 and Figure 18). Next, constraint1 calls
the isSatisfied method of all Condition objects asso-
ciated with constraint1 (see also Figure 11). At first
the isSatisfied method of conditionA is called. Then
conditionA evaluates its predicate script to decide if this
particular context condition is fulfilled or not (see also
Figure 15). During evaluation of the predicate script
conditionA draws a snapshot of the relevant context at-
tributes by using the two (volatile) sensor objects sensorX

and sensorY (note that the call of contextFunction in
Figure 18 serves as a placeholder for any call of an ac-
tual context function - cf. Section 5.3 and Section 5.5).
After conditionA has drawn a snapshot of the relevant
context attributes it compares the obtained values by ap-
plying the corresponding comparison operator (cf. Section
5.3), and returns either true or false according to the
result of this comparison. In Figure 18 the isSatisfied

method of conditionA returns true. The same procedure
is repeated for conditionB. The isSatisfied method of
conditionB also results in a return value of true. Since
all context conditions associated with constraint1 are sat-
isfied, constraint1 finally returns true as result of the
notViolated call.

Note that the notViolated method of a
ContextConstraint returns true iff each Condition

object that is associated with this ContextConstraint

is satisfied. Moreover, for a call of notViolated the
corresponding Permission object is always the last object
within the next-path and thus the last object within the
chain of responsibility (cf. Section 5.2). This means: if

no ContextConstraint previously denies the requested
access by returning false the notViolated call is finally
passed back to the respective Permission object which
then returns true to indicate that the corresponding access
request can be granted (cf. Figure 13).

5.5 Sensor Library
We differentiate sensors in two coarse-grained categories:

physical sensors (i.e. pieces of hardware) which capture in-
formation on a host’s physical environment (e.g. current
GPS location, temperature, noise-level, light, or proxim-
ity of an other device), and logical sensors which consist
only of software components and are used to gather infor-
mation that can be extracted from system internal sources
(e.g. the IP-address of a certain device, information stored
in databases or log-files, the status of other applications or
services, CPU ID, CPU state, network load, etc.).

In principle both sensor types can be used to capture ac-
cess control relevant context information. However, for the
time being, we concentrate especially on the use of logical
sensors in xoRBAC. The use of logical sensors is sensible
for the purpose of access control, since relevant access con-
trol related information is often stored using software-based
services. For example, information like birthday, nation-
ality, ownership, or physician to patient relations, can be
gathered from specific databases or documents, as birth cer-
tificates, contracts, passports, or patient records. Therefore
(for the time being) it is convenient to read such informa-
tion directly from the respective electronic sources by using
logical sensors, e.g. through a context function that exe-
cutes a certain database query, or a context function that
reads a specific information from XML documents. Like-
wise, most system internal attributes can be conveniently
captured through logical sensors that query the status of a
certain software service, or look for specific log-file entries
for example.

In general a context attribute that can be captured by a
context function can be used as an operand for the specifi-
cation of xoRBAC context constraints (see Section 4). The
different sensors and their context functions thus provide the
“operand-vocabulary” of the xoRBAC component. All sen-
sors described in this section are logical sensors. Any sensor
in xoRBAC can be extended with additional functions, and
new sensors can be defined and registered at runtime. Sub-
sequently we briefly describe the sensors which are currently
available from the xoRBAC sensor library.

• The Localhost Sensor provides functions that capture
context information directly from the device xoRBAC

is running on (the “local host”). Currently the
LocalhostSensor class exports the following context
functions:

– the clock context function uses the standard C
library function clock and can provide several
time-related attributes. For example the cur-
rent local time in 12 or 24-hour format, the cur-
rent local date, the full weekday name (Monday,
Tuesday, etc.), or the full month name (January,
February, etc.).

– the loggedOnUsers context function returns a
redundance-free list of all users who are currently
logged on (i.e. who have an active session on the
local host).



– the eth0IPAddress context function returns the
IP-address that is bound to the eth0 interface of
the local host.

• The Database Sensor is a generic database sensor that
uses SQL commands to query relational databases.
Currently the sensor can connect to MySQL and Post-
greSQL databases. In order to query domain specific
context information from a database, like physician-
to-patient relations, or project membership for in-
stance, one needs in-depth knowledge of the under-
lying database schema of course. However, this is true
for any approach that reads context information from
databases using SQL commands (see e.g. [17, 18]).

• The XPath Sensor uses an XPath C-library to access
arbitrary XML documents. XPath [10] is a sophis-
ticated compact query syntax developed by the W3
Consortium to easily extract information from XML
documents in a automated manner. XPath operates
on the logical tree structure of XML documents. It al-
lows to query a single node or a group of nodes at once.
The XPath sensor can be used to query arbitrary XML
documents independent of the DTD or XML Schema
definition for a particular document. This feature,
however, stems from the abilities offered by XPath [10],
respectively the corresponding XPath implementation.

• The Flatfile Sensor uses regular expressions to allow
the retrieval of information from text-based files, e.g.
access histories stored in log-files.

The xoRBAC component can be reused for applications
on Unix or Windows with a C or Tcl linkage (see also [25]).
However, some sensors may access platform-specific system
functions, for example to read the local-host’s IP address.
Therefore we install different sensor libraries depending on
the platform xoRBAC is used on. Nevertheless the sensor
interfaces are (of course) platform independent. This means
that two sensors which provide the same function on differ-
ent platforms offer the same interface but access different
implementations. A sensor’s interface thus hides the imple-
mentation details from the xoRBAC component. Thereby
the platform xoRBAC is used on is not relevant when ac-
cessing sensor functions.

All sensors of xoRBAC are currently passive sensors. That
means that the corresponding context functions do not per-
manently provide xoRBAC with topical context attribute
values but are selectively polled to provide a “snapshot” of
the context attributes that are needed for a particular au-
thorization decision.

6. RELATED WORK
This section is not intended to give an exhaustive survey

of all existing approaches to include context information in
authorization decisions. Nevertheless we think it provides a
good overview of relevant related contributions.

Adam et al. introduce a sophisticated authorization model
that was specifically designed to meet access control require-
ments of digital libraries [1]. In particular their model allows
for the consideration of additional user and object attributes
aside from unique identifiers. Here, so called credentials rep-
resent attributes that describe certain characteristics and

qualifications of users, like age, salary, nationality, or cur-
rent project involvement for example. Likewise, attributes
describing the content of digital library objects are stored
(e.g. taxation, civil law, information system research), and
digital library objects are divided in different segments, like
authors, abstract, sections, bibliography. These information
are then used to define fine grained access control policies.
That enables the definition of access rights on individual
objects (based on their IDs), or on specific parts of a set of
objects (like the abstract and author information of all re-
search papers), or on all objects that comprise certain con-
tents, e.g. all objects concerning import taxes. Similarly
users may acquire permissions explicitly (through their ID),
or implicitly through their characteristics/credentials, e.g.
all users with a specific age or nationality.

In [28] Nitsche et al. give a high-level description of a
system extension they implemented to consider context in-
formation for authorization decisions in medical workflows.
Their workflow system is based on a central database which
contains patient records as well as information concerning
the actual state of medical workflows. Nitsche et al. use
the process descriptions, and state information available
through the central database to decide whether a partic-
ular user may perform a certain action with regard to the
actual process-state.

Beside the example above there are various contributions
concerning access control in collaborative environments esp.
for groupware and workflow systems. For example Thomas
and Sandhu introduced TBAC [35], a family of models that
support the specification of active security models where
permissions are actively (de)activated according to the cur-
rent task/process-state. In [23] an approach for access con-
trol in inter-organizational workflows is suggested, and in [9]
Bertino et al. present a well-elaborated language and algo-
rithms to express and enforce constraints to ensure that all
tasks within a workflow are performed only by predefined
users/roles. A more general language that allows for the
specification of different access control policies which can
coexist in the same system is presented in [21]. One similar-
ity of all of these approaches is that they allow to use some
context information, e.g. the execution history of individu-
als/roles, or the current process-state, to make assignment,
activation, or authorization decisions.

In [17] Georgiadis et al. introduce the Context-based Team
Access Control model (C-TMAC) as an extension of the
TMAC approach presented by Thomas [34]. Here a team is
defined as a group of users acting in different roles with the
objective of corporately completing a certain task. Thus
in C-TMAC the team concept is used to associate users
with contexts, like roles are used to associate users with
permissions. Georgiadis et al. give a formal description of
C-TMAC and provide an example how their model can be
implemented with dynamic SQL statements. They give an
example from the health care domain where they use three
types of context information: the patient name/ID, the lo-
cation/area a team works in, and the actual time an access
operation takes place. The problem of information sharing
and security in dynamic coalitions (see [11, 30]) is related
to C-TMAC. A (dynamic) coalition consists of two or more
different organizations (resp. their employees) that tempo-
rary work together to achieve a common goal. Coalitions
can be formed dynamically, and each coalition member may
share a number of information resources with other coalition



members. However, each party must be able to individually
tailor the access rules for their own content according to the
status of other coalition members.

In [38] Wang presents an approach to realize context and
role-based access control for a hypermedia environment. He
uses three different role categories: roles that represent the
job position of a user like “software engineer”, team roles
to express team membership, and personal roles that are
assigned to individuals, but may, in exceptional cases, be
assigned to other persons in order to transfer individual job
responsibilities. On the other hand, hypermedia objects are
organized using so called wrappers. Wrappers serve as con-
tainers for several hypermedia objects. Every wrapper rep-
resents a particular system/process state and objects may
be moved into another wrapper to represent a changing pro-
cess state. Access control lists can be defined for wrappers
as well as for individual objects within a wrapper. In this
approach roles are therefore used to reflect structures that
remain relatively stable during a project, while ACLs are
used to depict dynamically changing access rights on cer-
tain objects. Context information is only implicitly included
through the notion of team membership, and process states
represented by the wrapper a certain object is actually in.

Edjlali et al. present a history-based access control mech-
anism called Deeds [14]. They propose to utilize the ac-
cess history of (mobile) Java programs as context infor-
mation, to protect a host computer from potentially inse-
cure/dangerous operation sequences. For example, a mobile
Java program may not do both, open a specific file for read-
ing and open a socket for writing. Each security relevant op-
eration (called a security-event in Deeds) is associated with
a handler that maintains an event-history for this operation
and decides whether a particular request may be granted
according to certain, user defined, constraints.

Jaeger et al. [20] introduce a system architecture for the
control of downloaded executable content. The underlying
model was built to support both, system and application
specific access control policies. Simplified: administrators
are able to define system wide mandatory access control
policies, while individual users may perform additional dis-
cretionary access controls for specific sub-domains. The pro-
posed architecture consists of several services that, among
other things, authenticate the content provider and the
downloaded executable content. Then the downloaded con-
tent is assigned to a so called protection domain to enforce
its respective permissions. As context information Jaeger et
al. particularly use the identity of the content provider and
the content itself, the identity of the downloading principal,
and the actual state of the associated application.

In [6] Barkley et al. suggest a model to consider relation-
ships between real-world entities during RBAC access deci-
sions. They propose to apply the resource access decision
facility (RAD) defined by the Object Management Group
(OMG) to combine the access decisions of two (or more)
access control services. In specific they combine an RBAC
service and a service that evaluates the relationships be-
tween real-world subjects and/or objects. An example from
the health care domain is used to describe the approach.
If a physician tries to access a certain patient record, the
RBAC service decides whether the access can be granted
according to the physician’s roles/permissions. In addition,
a so called dynamic attribute service decides if the access
can be granted according to the relationship between the

physician and the patient, i.e. if the physician is the attend-
ing physician of this particular patient. Both decisions are
sent to a so called decision combinator which assembles a
final decision by applying a certain combination policy.

Role templates as proposed by Giuri and Iglio [18] can be
used to consider certain types of context information when
defining roles and permissions. In particular, roles and per-
missions are parameterized to gain more flexibility compared
to treating them as fixed entities. For example, instead of
defining an own role-hierarchy for different projects, a single
generic hierarchy may be defined. When assigning a cer-
tain user to a specific project-role the name of the concrete
project or department the user works in is used as a param-
eter for the assignment operation. Hence, according to the
concrete parameter value, a user may only access resources
that are allocated to her/his project or department.

Covington et al. describe an approach that uses two dif-
ferent kinds of roles to assign rights to users, and to in-
clude context information in an intelligent/aware home en-
vironment [12]. They suggest to use classical RBAC roles
to provide subjects with permissions. Besides, they intro-
duce the notion of environment roles that are automatically
(de)activated by the aware home to depict the actual envi-
ronmental context. Environment roles are bound to envi-
ronment conditions that can be captured by the (hardware)
sensors within the aware home, like time, room tempera-
ture, or location of a user. Environment roles are activated
according to these conditions and are used together with
subject roles to reach an authorization decision.

The TRBAC model presented by Bertino et al. [8] al-
lows for the periodic (de)activation of roles, and for the
definition of temporal dependencies among the events that
(de)activate roles. They use so called role triggers to de-
fine temporal dependencies between activation events. Role
triggers and periodic activations may be associated with a
priority to resolve possible conflicts that could result from
simultaneous (de)activation requests. Thus, time in general,
and time intervals between activation events in specific, are
used as context information in TRBAC. Bertino et al. de-
scribe a specification language for TRBAC and provide a
mathematical proof that the correct use of their language
guarantees the absence of ambiguities and inconsistencies.

In [41] Yao et al. describe the support of active security
in the OASIS role-based access control architecture. In OA-
SIS role activation is governed by rules that are specified
in logic. The corresponding rules may also specify certain
preconditions that must be fulfilled in order to activate a
particular role. These conditions are bound to events which
cause that a role is deactivated as soon as a condition be-
comes false. Likewise, rules specifying access to objects or
services can be bound to conditions/attributes that need to
be evaluated each time a rule is applied. The time of day,
or a user’s membership in a certain group are examples for
such environmental attributes. In [5] Bacon et al. present an
approach to express OASIS policy rules as pseudo-natural
language statements that can be translated into first-order
logic with side conditions.

7. CONCLUSION AND FUTURE WORK
This paper introduced a framework for a special kind of

RBAC constraints, namely context constraints, which are
defined as dynamic exogenous authorization constraints. We
specified the required terminology and provided a definition



for context constraints. We defined an elicitation process to
derive context constraints during role engineering, and de-
scribed an implementation that extends an existing RBAC
system to enable the enforcement of context constraints.

The presented process for the elicitation and specification
of context constraints is based on goal-oriented requirements
engineering techniques. This process is designed as an ex-
tension to the scenario-driven role engineering process for
RBAC roles [26]. The overall process provides guidance for
security engineers and allows for the specification of concrete
RBAC models including context constraints. Moreover, we
implemented a graphical tool that supports the role engi-
neering process in general, and the specification of context
constraints in particular. In order to actually enforce the
context constraints that are defined on the modeling level,
we extended the design and implementation of the xoRBAC

component. Thereby xoRBAC provides a flexible RBAC
service that preserves the advantages of role-based access
control and additionally offers functions for the definition
and enforcement of fine-grained context-dependent access
control policies. In particular it allows for the definition of
conditional permissions.

While it is possible to define (in principle) any kind of
context constraint on the modeling level, the enforcement of
such constraints is clearly limited to the functionality which
is provided by a concrete RBAC service. Currently xoRBAC

provides context functions for: time and date information,
IP addresses, information on user sessions provided by the
operating system, and information stored in flat-files, XML
files, or MySQL or PostgreSQL databases. Nevertheless,
the xoRBAC sensor-library can be extended with additional
sensors, and each context attribute that can be captured
by an xoRBAC sensor/context function can be used in the
definition of context constraints.

Our graphical role engineering and administration tool is
implemented with Tcl/Tk and can thus be directly applied
on different platforms including Unix and Windows. The
xoRBAC component can be reused for applications on Unix
or Windows with a C or Tcl linkage (see also [25]). Never-
theless, while some sensors may access platform-specific sys-
tem functions we install different sensor libraries depending
on the platform xoRBAC is used on. However, the sensor
interfaces are (of course) platform independent.

The abstract design of xoRBAC is generic and can be used
to extend arbitrary (traditional) RBAC services with con-
text constraints. Our reference implementation of xoRBAC

presented in this paper can be flexibly extended with rea-
sonable efforts, and thereby allows for the consideration of
previously “unknown” context information. Approaches for
context-dependent access control could be implemented in
many other ways as the one suggested in this paper, of course
(see Section 6). However, in our opinion the approach pre-
sented in this paper has yet a good potential to investigate
the consideration and significance of context information in
access control.

Novel applications using pervasive computing techniques,
and the vision of ubiquitous internet access, e.g. in cars or
planes, yet give only a rough idea of the upcoming related
security issues. Thus, we hope to increase the knowledge and
understanding of context with respect to access control, to
enable the enforcement of tailored context-dependent access
control policies. This is, however, a wide open ground and
is likely to provide research questions for many years.

In our experiences, context constraints, as defined in this
paper, are intuitively understandable and are a suitable
means to model dynamic context-dependent constraints.
Furthermore, they allow for the dynamic evolution of access
control policies, and the alignment to changing environment
conditions as they frequently occur in interactive networked
environments. Although context constraints can be mod-
eled and used straightforwardly they (potentially) give an
enormous rise to complexity of access control policies. On
the other hand they add much flexibility and expressiveness,
and allow for the definition of fine-grained access control
policies as they are often needed in real world applications.
So far we especially gained experiences with xoRBAC in the
domain of web-based collaborative applications. However,
we are conducting more case studies to further improve the
role engineering process, and to investigate the applicability
of context constraints in different application domains. We
are especially interested in the enforcement of RBAC poli-
cies that include context constraints in an ad hoc computing
environment.

The xoRBAC component is publicly available from
http://www.xotcl.org.
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