
An Approach to Extract RBAC Models from BPEL4WS Processes

Jan Mendling, Mark Strembeck, Gerald Stermsek, and Gustaf Neumann
Department of Information Systems, New Media Lab

Vienna University of Economics and BA, Austria
e-mail: firstname.lastname@wu-wien.ac.at

Abstract

The Business Process Execution Language for Web Ser-
vices (BPEL) has become the defacto standard for Web Ser-
vice composition. Yet, it does not address security aspects.
This paper is concerned with access control for BPEL based
processes. We present an approach to integrate Role-Based
Access Control (RBAC) and BPEL on the meta-model level.
Moreover, we show that such an integration can be used
to automate steps of the role engineering process. In par-
ticular, we extract RBAC models from BPEL processes and
present an XSLT converter that transforms BPEL code to
the XML import format of the xoRBAC software component.

1. Introduction

Web Services define interfaces for software components
that can be accessed via standard Internet protocols. In a
Web Service scenario, software components publish their
interfaces as a document conforming to the Web Service
Description Language (WSDL, see [6]). WSDL interfaces
define so-called port types as a named set of abstract opera-
tions and the abstract messages. An operation in this context
is described by the atomic message exchange supported by
a service. Typically, Web Services are invoked through mes-
sages using the Simple Object Access Protocol (SOAP, see
[11]) which can be used in conjunction with Internet pro-
tocols like HTTP or SMTP. Since Web Services are state-
less in nature, complementary specifications have been de-
fined to provide business process related state control. The
Business Process Execution Language for Web Services
(BPEL4WS or BPEL) [1] is such a specification that is ap-
plicable for both external choreography and internal com-
position of business processes. A process engine provides
the runtime environment for Web Service composition.

Several security requirements of web-based busi-
ness processes can be addressed via access control mea-
sures. Simplified, access control deals with the definition
and enforcement of access control policies. Such poli-

cies define which subject is allowed to perform which oper-
ations on which objects. Thus, a simple access control pol-
icy rule breaks down to a 〈subject, operation, object〉
triple. An access request is granted iff the correspond-
ing subject owns a permission for the requested operation.
Role-based Access Control (RBAC) introduces roles as an
additional abstraction layer to decouple subjects and per-
missions [9]. In essence, RBAC roles are a collection of
permissions. In RBAC and in the area of workflow mod-
eling roles are also used as an abstract concept for del-
egation (e.g. [19, 23]) or the assignment of obligations
(e.g. [22]). Roles are often closely related to work pro-
files or job descriptions of an organization (see [14]), and
RBAC directly supports the assignment of permissions
based on the need-to-know principle. Although BPEL con-
siders security issues to be important (cf. [1]), it leaves all
security aspects to the implementation of a BPEL compli-
ant process engine. Accordingly, no security aspects are
standardized through BPEL.

 RBAC
BPEL

WSDL, UDDI

Cryptographic

Security

Services
Reliable Messaging

Transactions

Coordination

SOAP Messaging

Figure 1. RBAC and the Web Services stack

This paper presents an approach towards the integration
of BPEL and RBAC on the meta-model level. Figure 1 in-
dicates that access control measures (e.g. via RBAC) can
be sensibly applied on different abstraction levels (actually
down to the operating system level). However, in this pa-
per we focus on the relation of RBAC and BPEL only.

The remainder of the paper is structured as follows. In
Section 2 we introduce BPEL and give an example to moti-
vate its integration with RBAC. Section 3 gives an overview
of RBAC and Section 4 introduces a mapping between

BPEL and RBAC on the meta-model level. Furthermore, we
show how the mapping helps to automate some steps of the
role engineering process introduced in [14]. In Section 5 an
XSLT transformation script is used to extract RBAC mod-
els from BPEL processes. Section 6 gives an overview of
related work, and Section 7 concludes the paper.

2. An Introduction to BPEL

BPEL is an XML-based language for the composition
of executable business processes based on Web Services. In
this section, we use an example to introduce its basic lan-
guage concepts. A complete specification of BPEL can be
found in [1]. Figure 2 shows a “schedule exam” process of-
fered to university lecturers. After a teacher has initiated an
exam, the enrollment is opened by the university adminis-
tration. According to the number of enrolled students, an
adequate room is scheduled. Subsequently, the list of stu-
dents, the room number, and the time of the exam are sent
to the teacher. Finally, the teacher conducts the exam and re-
turns a list of the grades to the university administration.

The right column of Figure 2 shows an excerpt of BPEL
code to specify this process. In BPEL conversational re-
lationships between two parties are called partnerLinks.
A partnerLink serves as an abstraction for interrelated
BPEL roles representing internal (myRole) and external
parties (partnerRole) in a message exchange. So-called
partnerLinkTypes are BPEL extensions used in WSDL
documents that define the port types of each BPEL role in-
volved in a conversation. In Figure 2, lines 1–6 show that a
port type is not explicitly defined in the BPEL process defi-
nition. It has to be retrieved from a partnerLinkType called
“Exam” and the port type attached to its “Exam Service”

Schedule Exam

Wait "Enrollment Start"

Invoke "Open Enrollment"

Invoke "Student List"

Receive "Student List"

Receive "Send Results"

Receive "Room Reservation"

Wait "Enrollment Deadline"

Invoke "Confirm Exam"

University

Administration

Teacher

Invoke "Room Reservation"

Receive "Schedule Exam"

Invoke "Book Results"

Receive "Open Enrollment"

Invoke "Schedule Exam"

Receive "Students List"

Reply "Students List"

Reply "Room Reservation"

Receive "Room Reservation"

Invoke "Send Results"

Receive "Confirm Exam"

Receive "Book Results"

 BPEL

<process name="Schedule Exam" ...>

 <partnerLinks>

 <partnerLink name="Exam"

 partnerLinkType="uni:ExamLT"

 myRole="Exam Service"

 partnerRole="Teacher"/>

 ...

 </partnerLinks>

 <partners>

 <partner name=“Academic Staff“>

 <partnerLink name=“Teacher“/>

 <partnerLink name=“Author“/>

 </partner>

 </partners>

 <variables>

 <variable name="Schedule"

messageType="uni:ScheduleM"/>

 ...

 </variables>

 <sequence>

 <receive partnerLink="Exam"

 portType="uni:ExamProcess"

 operation="scheduleExam"

 variable="Schedule"

createInstance=“yes“/>

 ...

 <reply partnerLink=“Exam“

portType=“tch:Exam“

operation=“sendResults“

variable=“ResultList“/>

 ...

 <invoke partnerLink=“Admin“

portType=“adm:results“

operation=“bookResults“

inputVariable=“ResultList“/>

 ...

 </sequence>

</process>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Reply "Send Results"
Receive "Send Results"

Figure 2. A BPEL example process.

role. A Partner element (lines 9–11) can be used to group
multiple partnerLinks. For example, consider another pro-
cess for gathering information about publications of a fac-
ulty which involves a role called “Author”. A partner ele-
ment called “Academic Staff” could be used to group the
parnterLinkTypes that include the roles “Teacher” and
“Author”. Using partner definitions provides for an in-
direct mechanism to group partnerRole elements. The
message types used in a BPEL process are described via
variables. A variable is identified by a unique name and
is associated with a message type. Variables store received
messages and hold messages to be sent to other parties. In
lines 15–16 of Figure 2 a “Schedule” variable is declared.
In order to route a message to the correct process instance, a
BPEL process includes the definition of correlation sets (not
shown in Figure 2). A correlation set describes parts of
messages which are unique for a process instance. Aliases
to these message parts are called properties.

A BPEL process describes the execution order of Web
Service operations via basic and structured activities. A ba-
sic activity is either a message exchange between Web Ser-
vices or a local operation of a BPEL engine. The exam-
ple illustrates a receive activity in lines 19–23. In general,
receive blocks the process until a matching message ar-
rives. A reply activity represents a synchronous response to
a preceding receive activity (see lines 24–27). Invocations
of remote Web Service operations are modeled as invoke

activities. Lines 28–31 illustrate an asynchronous one-way
invocation, i.e. only an input variable, but no output vari-
able is declared. Synchronous request/response interaction
can be expressed by including an additional output variable
to store the synchronously sent response message.

The control flow logic of a BPEL process is defined
through structured activities: flow for parallel execution;
sequence for sequential execution; switch for branching
related to a calculated value; while for loops; compensate
for compensation actions; and pick. The pick activity is
a structured activity similar to receive. It defines branch-
ing semantics in response to a timer event or to a mes-
sage receipt. Synchronous invoke with an output variable,
receive, and pick define access channels for external mes-
sages that are sent to a BPEL process engine. Therefore,
they play an important role for BPEL related access con-
trol measures. Figure 3 summarizes the BPEL concepts via
a simplified meta-model.

There are some aspects of business processes explicitly
mentioned to be outside the scope of BPEL, e.g.:

• Coordinated Transactions: Coordination of multiple
parties in a business transaction is also regarded as
being orthogonal to BPEL. BPEL recommends WS-
Transaction [5] to be used in order to coordinate mul-
tiple participants in a distributed transaction.

refers to

refers to
 refers to

process
 * *

partner role

activity

receive, reply, invoke, pick

partner link

1

*

1

*

partner

*
 1

*

1

correlation

set

*

1

message
* *
 *
 1

port type
operation

1

*

contains

includes
has

groups

includes
refers to

has

*
 1

Figure 3. Exerpt from the BPEL meta-model

• Cryptographic Security Services: The BPEL specifi-
cation recommends to implement WS-Security [2] in
order to grant reliable messaging. WS-Security pro-
vides a framework to ensure that messages have not
been modified or forged, and to detect duplicate or ex-
pired messages.

• Access Control: Conceptually, a BPEL process is open
to everybody who is able to support the relevant part-
ner link types. In many web-based business scenarios,
however, it is necessary to implement a more restric-
tive access control policy.

If we consider cryptographic security services as digi-
tal signatures, security tokens, and encryption to be avail-
able; there is still a need to define an access control pol-
icy allowing only certain subjects to act according to a spe-
cific role. In our example (see Figure 2), this aspect is im-
portant in any situation where an external message is routed
to a process instance: First, when a Web Service acting as
a teacher initiates the process; and second, when the grade
list is send to the exam process. Thus, Web Service com-
positions have security requirements beyond cryptographic
security services. Moreover, a permission assigned to a cer-
tain subject/role may depend on specific context informa-
tion (see also [15]), e.g. specific instance data of a process.
To put it in terms of the above example, the permission for
a teacher T to send a grade list back to the process may de-
pend upon whether T instantiated that exam process and not
whether he is known to be a teacher.

3. Role-Based Access Control

Role Based Access Control (RBAC) [9] provides a flex-
ible approach to model access control policies. Permissions
are assigned to roles, and roles are assigned to subjects (cf.
Figure 4). Roles can be modeled to reflect the work pro-
files of subjects in an organization (see [14]), and in con-
nection with business processes, roles are equipped with all
permissions that a corresponding role owner needs to com-
plete her respective tasks (see [14]). Furthermore, roles tend
to change significantly slower than the assignment of sub-
jects to these roles. Thus, the administration of access rights
is one of the central strengths of RBAC. A role hierarchy is

constrains
 assigned to

consists of

permission
 role

subject

context

constraint

context

condition

context

attribute

*

1

1..
* *

1..
*

*

*
 *

1..
*

* *

*

*
 *

operation
 object

*

1

hierarchy

assigned to
consists of
 used in

consists of

Figure 4. A simple RBAC meta-model

a directed acyclic graph that defines inheritance relations
between RBAC roles. A senior-role is a role that inherits
permissions from one or more junior roles. For example, a
senior manager role could be modeled as a senior-role to a
junior manager role.

Together with various extensions RBAC evolved into a
defacto standard for access control in software-based sys-
tems. Context constraints (see [15]) are an RBAC extension
to model and enforce context-dependent access control poli-
cies. In this connection, context attributes represent proper-
ties of the environment whose values may change dynam-
ically (like time or process state), or which vary for differ-
ent instances of a certain entity (like location or ownership).
A context condition is a predicate that compares the current
value of a context attribute with at least one other value,
e.g. a constant or another context attribute. A context con-
straint consists of one or more context conditions. It evalu-
ates to true iff all its context conditions hold.

4. Mapping of BPEL to RBAC Elements

In Figure 5, dotted lines indicate mappings from BPEL
meta-model elements to respective RBAC elements. RBAC
Roles can be derived from roles and partners in BPEL. A
BPEL partnerRole relates to a set of Web Service opera-
tions that are carried out during a business process. A BPEL
partner is a container of multiple BPEL partnerRole ele-
ments which is used to define the capabilities required from
a business partner. They represent a meaningful grouping
of roles like the “Academic Staff” partner in Section 2 that
groups the “Teacher” and the “Author” role. In RBAC, a
BPEL partner then maps to a senior-role while the respec-
tive partnerRole represents a junior-role from which per-
missions are inherited. In the example, an “Academic Staff”
senior-role would be created that inherits permissions from
its junior-roles “Teacher” and “Author”.

Permissions are generated for activities that define a
channel for an external party to send messages to a BPEL
process instance. Therefore, especially receive, pick, and
synchronous invoke need to be considered. Outgoing mes-
sages sent by the BPEL engine to external parties via asyn-
chronous invoke and reply can be neglected (from the
perspective of the sending BPEL engine) - assuming the

RBAC

BPEL

refers to

refers to
 refers to

process
 * *

partner role

activity

receive, synchr. invoke, pick

partner link

1

*

1

*

partner

*
 1

*

1

correlation

set

*

1

message
* *
 *
 1

port type
operation

1

*

contains

includes
has

groups

includes
refers to

has

*
 1

constrains
 assigned to

consists of

permission
 role

subject

context

constraint

context

condition

context

attribute

*

1

1..
* *

1..
*

*

*
 *

1..
*

* *

*

*
 *

operation
 object

*

1

hierarchy

assigned to
consists of
 used in

consists of

Figure 5. Mappings between BPEL and RBAC

BPEL engine works correctly and BPEL process descrip-
tions have been verified before deployment. Port types can
be regarded as objects in RBAC terms. Actually, port types
are rather interfaces than objects. However, this mapping
abstracts from the implementation behind the interface, and
therefore maps port types to objects in RBAC permissions.
A discussion on Web Services and distributed objects can
be found in [21]. Operations of BPEL activities can be
mapped to RBAC operations. Accordingly, an RBAC per-
mission - an 〈operation, object〉 pair - is generated from a
BPEL 〈operation, porttype〉 pair. Via its partner link at-
tribute a BPEL operation is associated with a partner role.
This relationship can be mapped to a permission-to-role as-
signment in RBAC. Subjects are not modeled in BPEL, and
thus cannot be extracted from BPEL processes. BPEL prop-
erties are conceptually related to context attributes (see Sec-
tion 3). A property represents a reference to an XPath [8]
expression where attributes identifying a process instance
can be found. For example, a social security number or an
invoice number are natural candidates for such properties.

[14] presents the scenario-driven role engineering pro-
cess. The scenario concept is of central significance for this
approach. In essence, a scenario is an action and event se-
quence, and BPEL processes can be seen as formalized sce-
nario descriptions; accordingly, they are well-suited to serve
as input to the role engineering process. In order to perform
a given scenario, a subject must possess access rights for all
operations associated with that scenario. A role can be seen
as a container for this collection of permissions. An adap-
tion of the role-engineering approach for BPEL process de-
scriptions includes the following top-level activities:

1. Extract Roles and Permissions: Roles and permissions
can be extracted from a BPEL process definition. Sec-
tion 5 presents the implementation of an extraction

program based on XSLT [7]. XSLT is well suited for
the transformation of XML-encoded BPEL process
models into an XML format that can be read/imported
by an RBAC implementation.

2. Define Preliminary Role-Hierachy: Then, the prelimi-
nary role hierarchy is defined. On this stage other per-
missions derived from scenarios which are not avail-
able as BPEL processes can be added. Furthermore,
for each work profile respective roles are created. This
may lead to redundancies which are marked for later
review. For further details, see [14].

3. Define RBAC Model: Finally, the RBAC model is de-
fined. In this step, redundant roles are removed from
the preliminary role hierarchy. If necessary, constraints
like e.g. Process Instance Ownership are identified and
defined. After the constraint catalog has been com-
pleted, respective roles can be created and added to the
role hierarchy. For details, see [14].

5. Extraction of RBAC Elements from BPEL

We developed an XSLT transformation script that au-
tomates the first step of the role engineering process de-
scribed in Section 4. This script extracts information from
a BPEL process and stores it in an XML format that can
be read by the xoRBAC component. xoRBAC provides an
RBAC-service that enables the definition and enforcement
of RBAC policies including context constraints [13, 15].
Basically the script implements three types of mappings that
derive RBAC elements from BPEL processes (cf. Figure 6):

• PortType-Operation Pairs to RBAC Permissions: In
Section 2, we mentioned that receive, pick, and syn-
chronous invoke with an output variable are the BPEL
activities that allow for the receipt of external mes-
sages. Since these activities are the only activities to
provide channels for incoming messages, the corre-
sponding 〈portType, operation〉 pairs map to permis-
sions (see also Section 4).

• BPEL Partner Roles to RBAC Roles: A partnerRole

identifies an external party in BPEL. For each
partnerRole an RBAC role is generated. If a BPEL
role R is associated with a partner, a senior-role re-
lationship with this partner has to be created for R.
Furthermore, for each activity that implies an incom-
ing message from R a permission is added.

• BPEL Partner to Senior-Roles: A partner in BPEL
groups partner links. For example, Section 2 men-
tioned an “Academic Staff” partner that was used
to group “Teacher” and “Author” roles. Partner links
include the respective partnerRole attribute to iden-
tify the external party in a conversation. This defines

<process ...>

...

<partnerLinks>

<partnerLink name="seller" partnerLinkType="as:sellerAuctionHouseLT" partnerRole="seller"/>

<partnerLink name="buyer" partnerLinkType="as:buyerAuctionHouseLT" partnerRole="buyer"/>

</partnerLinks>

<partner name="SellerBuyer" xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

<partnerLink name="buyer"/>

<partnerLink name="seller"/>

</partner>

...

<receive

 partnerLink="seller"

 portType="as:sellerPT"

 operation="provide"

 createInstance="yes"/>

...

</process>

...

<xsl:for-each select="//*[name()='partner' or name()='partnerLink'][@partnerRole]/@name">

<xsl:element name="ROLE">

<xsl:attribute name="rdf:ID">#<xsl:value-of select="../@partnerRole"/></xsl:attribute>

<xsl:element name="rm:roleName"><xsl:value-of select="../@partnerRole"/></xsl:element>

<xsl:for-each

select="//*[name()='partner'][./*[name()='partnerLink']][//*[@name=current()]]/@name">

<xsl:element name="rm:seniorRole">

<xsl:attribute name="rdf:resource">#<xsl:value-of select="."/></xsl:attribute>

</xsl:element>

</xsl:for-each>

<xsl:for-each select="//*[name()='pick' or (name()='invoke' and @outputContainer) or

(name()='invoke' and @outputVariable) or name()='receive']

[@partner=current() or @partnerLink=current()]">

<xsl:element name="rm:permission">

<xsl:attribute name="rdf:resource">#

<xsl:value-of select="concat(./@portType,'_',./@operation)"/></xsl:attribute>

</xsl:element>

</xsl:for-each>

</xsl:element>

</xsl:for-each>

...

B

P

E

L

X

S

L

T

...

<!--
PortType Operation Pairs to RBAC Permissions
 -->

<PERMISSION rdf:ID="#as:sellerPT_provide">

<rm:permName xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#">as:sellerPT_provide</rm:permName>

<rm:operation xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#">provide</rm:operation>

<rm:object xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#">as:sellerPT</rm:object>

</PERMISSION>

<!–BPEL Partner to Senior Roles -->

<ROLE rdf:ID="#buyer">

<rm:roleName xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#">buyer</rm:roleName>

<rm:seniorRole xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#" rdf:resource="#SellerBuyer"/>

<rm:permission xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#" rdf:resource="#as:buyerPT_provide"/>

</ROLE>

<!–BPEL Partner Roles to RBAC Roles -->

<ROLE rdf:ID="#SellerBuyer">

<rm:roleName xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#">SellerBuyer</rm:roleName>

<rm:juniorRole xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#" rdf:resource="#buyer"/>

<rm:juniorRole xmlns:rm="http://www.xotcl.org/xorbac/rdf-schema#" rdf:resource="#seller"/>

</ROLE>

...

x
o

R

B

A

C

Figure 6. BPEL-to-RBAC XSLT script.

an indirect hierarchical relationship between partners
and partner roles. A partner is mapped to an RBAC
role with junior-role relationships to each indirectly
(via a partnerLinkType) associated partnerRole. The
RBAC roles derived from BPEL partner elements do
not have directly assigned permissions, because a part-
ner element in BPEL is only used for grouping.

While the XSLT script above produces an XML docu-
ment that can be imported by the xoRBAC component, the
approach is general in nature and can be applied to any other
RBAC component accordingly.

6. Related Work

Our approach for the integration of BPEL and RBAC
on the meta-model level is related to organizational mod-
eling in workflow systems, e.g. as presented by Rosemann
and Zur Mühlen [16], and in [22] Yu and Schmid present a
framework for workflow modeling which includes permis-
sions that can be assigned to roles. In the context of work-
flow modeling, roles are frequently discussed from a re-

source perspective: i.e. work items are routed to available
resources that are modeled as roles. Moreover, delegation
of tasks between subjects and/or roles is an important issue.
Van der Aalst et al. [19] present an organizational model
for a workflow system based on the eXchangeable Rout-
ing Language (XRL) [20]. Their model is capable to ex-
press inheritance and delegation hierarchies of roles. Our
paper complements such workflow-routing oriented work.

If messages are exchanged via the Internet, security is-
sues need a stronger emphasis compared to Workflow sce-
narios deployed on a trusted local network. Skogsrud et al.
[17] present Trust-Serv which extends the Self-Serv plat-
form [3] with a trust negotiation framework. In particular,
they use credentials to perform access control measures, and
identify RBAC as a topic for their future research.

RBAC and its use in a business process context is another
area of work related to our paper. Various contributions con-
cerning access control in collaborative environments exist,
especially for groupware and workflow systems. For exam-
ple, Thomas and Sandhu introduced TBAC [18], a family of
models that support the specification of active security mod-
els. In TBAC permissions are dynamically (de)activated ac-
cording to the current task/process-state. In [12], an ap-
proach for access control in inter-organizational workflows
is suggested, and in [4], Bertino et al. describe a well-
elaborated language and algorithms to express and enforce
constraints which ensure that all tasks within a workflow are
performed by predefined users/roles. Neumann and Strem-
beck presented a scenario-driven role engineering process
[14]. It uses scenarios to extract permissions and to de-
fine tasks and work profiles. Subsequently, work profiles are
used to derive RBAC roles. In our paper, we suggest an ap-
proach to automate certain steps of the role engineering pro-
cess for scenarios that are defined as BPEL processes.

Security aspects of web services have been addressed by
specifications complementary to BPEL, e.g. Web Service
Security [2]. Other proposals like the Extensible Access
Control Markup Language (XACML) [10] may also be ap-
plied in a Web Service context. The eXtensible Access Con-
trol Markup Language (XACML) [10] is a standard adopted
by the Organization for the Advancement of Structured In-
formation Standards (OASIS) and provides an XML-based
language for the definition of access control policies. Nev-
ertheless, XACML especially focuses on the definition of
the policy language and the corresponding XML schemata.
It does not address engineering aspects like elicitation or
maintenance of access control policies.

7. Conclusion and Future Work

In this paper we presented an approach for the integra-
tion of BPEL and RBAC on the meta-model level. Our work
is motivated by two main facets. First, BPEL does not ad-

dress access control measures although access control is an
important and integral aspect of business processes. Second,
role engineering is a time-consuming task and can be made
more efficient through an integration with business process
modeling. We use the mappings between RBAC and BPEL
to automate steps of the scenario-driven role engineering
process presented in [14]. In particular, we described a re-
spective XSLT script which transforms BPEL process de-
scriptions to RBAC models in an XML format that can be
imported by the xoRBAC software component [13, 15]

With our approach we aim to enhance the security fea-
tures of Business Process Management Systems that oper-
ate via Web Services. Moreover, our approach provides for
more efficient role engineering as it automates steps of the
scenario-driven role engineering process. Finally, as RBAC
and process models are highly interrelated, automation in
role engineering also facilitates consistency between the de-
ployed business processes and corresponding RBAC poli-
cies. In our future work we implement an RBAC-aware
BPEL engine that reflects the findings of this paper. In par-
ticular, the implementation will build on an integrated meta-
model of BPEL and RBAC. Another interesting aspect for
future work is the continued integration of role engineer-
ing activities with BPEL-based processes.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, Version 1.1. Specification, BEA
Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Sys-
tems, 2003.

[2] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-
Baker, J. Klein, B. LaMacchia, P. Leach, J. Manferdellie,
H. Maruyama, A. Nadalin, N. Nagaratnam, H. Prafullchan-
dra, J. Shewchuk, and D. Simon. Web Services Security.
Specification, IBM Corp., Mircosoft Corp., VeriSign, Inc.,
2002.

[3] B. Benatallah, Q. Sheng, and M. Dumas. The self-serv envi-
ronment for web services composition. IEEE Internet Com-
puting, 7(1):40–48, January/February 2003.

[4] E. Bertino, E. Ferrari, and V. Atluri. The Specification
and Enforcement of Authorization Constraints in Workflow
Management Systems. ACM Transactions on Information
and System Security (TISSEC), 2(1), February 1999.

[5] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein,
T. Storey, and S. Thatte. Web Service Transaction. Speci-
fication, BEA Systems, IBM Corp., Microsoft Corp., 2002.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Service Description Language (WSDL) 1.1.
Note, W3C, March 2001.

[7] J. Clark. XSL Transformations (XSLT) Version 1.0. Recom-
mendation, W3C, November 1999.

[8] J. Clark and S. DeRose. XML Path Language (XPath) Ver-
sion 1.0. Recommendation, W3C, November 1999.

[9] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, and R. Chan-
dramouli. Proposed NIST Standard for Role-Based Access
Control. ACM Transactions on Information and Systems Se-
curity, 4(3), 2001.

[10] S. Godik and T. Moses, eds. eXtensible Access Control
Markup Language (XACML). Specification, OASIS, 2003.

[11] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen. SOAP Version 1.2 Part 1 and Part 2. Recom-
mendation, W3C, June 2003.

[12] M. Kang, J. Park, and J. Froscher. Access Control Mech-
anisms for Inter-Organizational Workflow. In Proc. of the
ACM Symposium on Access Control Models and Technolo-
gies (SACMAT), 2001.

[13] G. Neumann and M. Strembeck. Design and Implementation
of a Flexible RBAC-Service in an Object-Oriented Scripting
Language. In Proc. of the 8th ACM Conference on Computer
and Communications Security (CCS), 2001.

[14] G. Neumann and M. Strembeck. A Scenario-driveen Role
Engineering Process for Functional RBAC Roles. In Proc.
of the 7th ACM Symposium on Access Control Models and
Technologies (SACMAT), 2002.

[15] G. Neumann and M. Strembeck. An Approach to Engineer
and Enforce Context Constraints in an RBAC Environment.
In Proc. of the 8th ACM Symposium on Access Control Mod-
els and Technologies (SACMAT), 2003.

[16] M. Rosemann and M. zur Mühlen. Evaluation of workflow
management systems - a meta model approach. In K. Siau,
Y. Wand, and J. Parsons, editors, Proc. of the 2nd EMMSAD
Workshop, Barcelona, Spain, 1997.

[17] H. Skogsrud, B. Benatallah, and F. Casati. Model-driven
trust negotiation for web services. IEEE Internet Comput-
ing, 7(6):45–52, November/December 2003.

[18] R. Thomas and R. Sandhu. Task-based authorization con-
trols (TBAC): A family of models for active and enterprise-
oriented authorization management. In Proc. of the IFIP
WG11.3 Conference on Database Security, August 1997.

[19] W. M. P. v.d. Aalst, A. Kumar, and H. M. W. Verbeek. Or-
ganizational modeling in UML and XML in the context of
workflow systems. In Proc. of the ACM Symposium on Ap-
plied Computing (SAC), pages 603–608, 2003.

[20] H. Verbeek, A. Hirnschall, and W. van der Aalst.
XRL/Flower: Supporting Interorganizational Workflows us-
ing XRL/Petri-net Technology. In Web Services, E-Business,
and the Semantic Web, CAiSE 2002 International Workshop
(WES 2002), LNCS 2512, pages 93–108, 2002.

[21] W. Vogels. Web Services are not Distributed Object. IEEE
Internet Computing, pages 59–66, Nov/Dec 2003.

[22] L. Yu and B. Schmid. A conceptual framework for agent ori-
ented and role based workflow modeling. In Proceedings
of the CaiSE Workshop on Agent Oriented Information Sys-
tems (AOIS99), 1999.

[23] L. Zhang, G. Ahn, and B. Chu. A Rule-Based Framework for
Role-Based Delegation and Revocation. ACM Transactions
on Information and System Security (TISSEC), 6(3), August
2003.

