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Abstract A key idea of feature orientation is to decompose a software product line
along the features it provides. Feature decomposition is orthogonal to object-oriented
decomposition—it crosscuts the underlying package and class structure. It has been argued
often that feature decomposition improves system structure by reducing coupling and by
increasing cohesion. However, recent empirical findings suggest that this is not necessar-
ily the case. In this exploratory, observational study, we investigate the decompositions of
28 feature-oriented software product lines into classes, features, and feature-specific class
fragments. The product lines under investigation are implemented using the feature-oriented
programming language Fuji. In particular, we quantify and compare the internal attributes
import coupling and cohesion of the different product-line decompositions in a systematic,
reproducible manner. For this purpose, we adopt three established software measures (e.g.,
coupling between units, CBU; internal-ratio unit dependency, IUD) as well as standard
concentration statistics (e.g., Gini coefficient). In our study, we found that feature decom-
position can be associated with higher levels of structural coupling in a product line than a
decomposition into classes. Although coupling can be concentrated in very few features in
most feature decompositions, there are not necessarily hot-spot features in all product lines.
Interestingly, feature cohesion is not necessarily higher than class cohesion, whereas fea-
tures are more equal in serving dependencies internally than classes of a product line. Our
empirical study raises critical questions about alleged advantages of feature decomposition.
At the same time, we demonstrate how our measurement approach of coupling and cohe-
sion has potential to support static and dynamic analyses of software product lines (i.e., type
checking and feature-interaction detection) by facilitating product sampling.
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1 Introduction

A software product line is a family of software products derived from a shared code base,
ideally in a widely automated manner. Each product is described in terms of a valid config-
uration of the product line’s domain model (e.g., a feature model; Czarnecki and Eisenecker
2000). In a feature-oriented product line, the implementation assets implement features as
cohesive units of functionality (Apel and Kästner 2009). A feature addresses a specific func-
tional domain requirement, represents a design decision in the domain implementation, and
often establishes a configuration option when deriving a product. Feature-oriented program-
ming using AHEAD (Batory et al. 2004), Fuji1 (Apel et al. 2012), and FeatureHouse (Apel
et al. 2013b) aims at decomposing the code base into dedicated and tractable feature
units that include all feature-specific code. Compared to alternative feature-implementation
techniques (e.g., plug-ins, pattern-based designs, and code preprocessing), feature-oriented
programming establishes an explicit and clean mapping (ideally, one to one) between the
features in the domain model and the corresponding code.

In feature-oriented product lines, several structural decompositions co-exist, typically
an object-oriented decomposition into classes and a feature-oriented decomposition into
feature units. The extent to which a product line and its decompositions are accessible to
developers (e.g., as chunks of cognitive processing; Lilienthal 2009) is affected by the level
of mutual, functional dependencies between decomposition units (coupling) as well as their
internal dependency structure (cohesion). Coupling and cohesion determine whether soft-
ware developers can study decomposition units (features, classes) one at a time, for example,
to make design and implementation decisions local to a decomposition unit (Kiczales and
Mezini 2005; Lilienthal 2009; Kästner et al. 2011). The attributes of coupling and cohesion,
in turn, reflect a number of intentions towards the structuring of a decomposition: First,
decomposition units should have separated and unique (non-duplicated) functional respon-
sibilities. Second, potential error-propagation paths between and within decomposition
units should be reduced to a minimum and locatable unambiguously (Taube-Schock et al.
2011). Third, the level of structural fragmentation of a decomposition should be controlled.
Fragmentation denotes the total number of decomposition units in relation to the sizes of
decomposition units. Micro-modularization may yield a large number of decomposition
units, each too small to facilitate any useful reasoning (Kästner et al. 2011).

Earlier, and in a convenience view, feature decomposition was thought of as leading to
more modularly structured—that is, highly cohesive and loosely coupled—decomposition
units (Kästner et al. 2011). However, more recent empirical findings suggest that feature
decomposition does not necessarily achieve this objective (Apel and Beyer 2011; Kästner
et al. 2011). Nevertheless, each alternative decomposition can be critical for different devel-
oper roles (e.g., domain or application developers) and for different engineering tasks
(e.g., code reviews, feature promotion, and feature-specific refactorings). This adds to the
conjectures about developers requiring tailorable and aggregating views on crosscutting
object-oriented and feature-oriented decompositions (Kästner et al. 2011). Unfortunately,
to this date, there is little empirical evidence on how alternative decompositions compare to

1http://fosd.net/fuji/, last accessed: 01.07.2014.
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each other in terms of their internal attributes (fragmentation, coupling, cohesion). Address-
ing this issue will influence the development of language-based and tool-based approaches
for feature-oriented product lines.

So far, research on component-oriented architectures (Bouwers et al. 2011), as well as
on object-oriented (Sarkar et al. 2008) and feature-oriented programming (Apel and Beyer
2011) has investigated only one decomposition dimension in isolation (e.g., the decompo-
sition into feature units) and only certain internal attributes: Bouwers et al. (2011) set out to
quantify fragmentation while ignoring cohesion and coupling. Apel and Beyer (2011) inves-
tigated feature cohesion without incorporating coupling and fragmentation. Furthermore,
earlier data sets (Apel and Beyer 2011) extracted from product-line code bases were based
on the context-free syntax of feature implementations (introductions; e.g., method and field
declarations), rather than incorporating also context-sensitive data (references; e.g., method
calls, field accesses). While feature orientation is still in its infancy, it is a promising line of
research (Apel et al. 2013a)—the time is ripe to back foundational research in this area with
further empirical data.

Therefore, we set up an empirical investigation using software measurement on the inter-
nal attributes of 28 feature-oriented product lines, that is, their decompositions into classes,
features, and feature-specific class fragments. The investigated product lines are imple-
mented using Fuji, a Java language extension for feature-oriented programming (Apel et al.
2012). The selected product lines differ by target domains, by code size, by structural code
complexity (i.e. number of introductions, decomposition units, and references between these
units), and by structural feature-model complexity (e.g., number of leaf features and of
optional features; Berger and Guo 2013).

We quantify internal attributes, such as decomposition size, import coupling, cohe-
sion, and unit sizes, using software measures suggested by prior work on product
lines to describe the different decompositions of a product line in a systematic, repro-
ducible, and comparable manner (Montagud et al. 2012). Overall, we make the following
contributions:

– We review and apply established software measures: Coupling between units (CBU)
expresses the number of decomposition units (classes, features, feature-specific class
fragments) that induce a dependency to a given decomposition unit. Internal-ratio
unit dependency (IUD) captures the internal connectedness of a decomposition unit
as the ratio actual references running between program elements owned by a given
decomposition unit and its size. External-ratio unit dependency (EUD) captures the
self-sufficiency of a decomposition unit as the ratio of references running between
program elements of a decomposition unit and the unit’s total, including external,
references.

– To answer two research questions derived from product-line literature, we aggregate
the direct, per-unit measurements using concentration statistics at the level of decom-
positions and of product lines. The Gini statistic (Vasilescu et al. 2011) signals how
concentrated a quantity of interest (e.g., per-unit coupling) is in different subsets of
decomposition units.

– We demonstrate how coupling and cohesion measurement using the above measure
constructs can optimize product sampling for static and dynamic analysis techniques for
product lines (i.e., variability-aware type checking and feature-interaction detection).

In a nutshell, we found that (1) feature decomposition can result in more densely coupled
code structures than object-oriented decomposition. In addition, (2) feature decomposition
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is more heterogeneous regarding the distribution of coupling over the individual feature
implementations than object-oriented decomposition. Across the 28 product lines, both
highly and loosely coupled feature implementations can take dominant shares in the over-
all coupling. At the same time, (3) feature decomposition can result in more self-contained
units of functionality than object-oriented decomposition. However, this does not imply
that syntax elements of feature implementations are internally more interconnected than in
object-oriented decomposition. Finally, (4) we demonstrate how the adopted indicator mea-
sures for coupling and cohesion can be used to devise sampling techniques for product-line
type checking and feature-interaction detection.

Based on our study, we discuss the implications and perspectives of our measurement
methodology and experimental findings for future work on static and dynamic analysis of
product lines. We back our discussion by two feasibility studies on type-checking product
lines and feature-interaction detection.

Overall, our study is meant to contribute to a better understanding of the nature and merits
of feature orientation. While feature orientation is still a comparatively novel software-
development paradigm, it embodies a key insight of the practice of product-line engineering
in the past: Features must be explicit (modular, if possible) in design and code, across the
whole life cycle of a product line and the corresponding software products (Apel et al.
2013a). In this sense, our study provides insights that are meant to facilitate, motivate, and
guide industrial adoption.

All data sets as well as the statistical tooling for reproducing our results are available as
supplements to a detailed technical report (Sobernig et al. 2014).

2 Three Decompositions, Many Differences?

Typically, the code base of a feature-oriented product line is decomposed along two major
dimensions: code units and feature units. In Fig. 1, we exemplify this for the canonical
graph product line (GPL). GPL is a product line of graph libraries allowing a developer
for tailoring data structures representing different graph types (weighted, directed) and for
choosing from common graph traversal strategies. GPL was developed by Lopez-Herrejon
and Batory (2001) as a standard problem suitable for evaluating and for comparing product-
line techniques.

On the one hand, the code base can be structured into code units according to the
decomposition mechanisms offered by the programming language. Consider, for example, a
hierarchical object-oriented decomposition using Java, involving packages, nested classes,
methods, and the containment relationships between them. GPL has a number of classes
according to this decomposition, for example, Graph, Edge, and Strength. On the
other hand, feature units, which embody the feature implementations in the code base, give
rise to a second decomposition which is orthogonal to the object-oriented one. The feature
decomposition can be hierarchical as well. GPL consists of three feature units: Base pro-
vides means to represent basic graphs, Weighted adds weights to edges, and Measures
enables the computation of numeric graph characteristics (e.g., the strength measure sums
the weights of the edges incident to a node). A third decomposition results from the inter-
section of the first two decompositions: code units (e.g., classes in the GPL) are divided into
code-unit fragments (a.k.a. roles; Smaragdakis and Batory 2002) defining the structure and
behavior of code units specific to single features. The set of code-unit fragments that belong
to a single feature and that are scattered over multiple code units form a feature unit (a.k.a.
collaborations; Smaragdakis and Batory 2002).
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Fig. 1 The three decompositions of the graph product line into code units, feature units, and code-unit
fragments. Each decomposition provides an alternative view on the product line to the developer. Code units,
feature units, and code-unit fragments contain program elements (e.g., fields and methods) that may depend
on other program elements

Different roles and tasks in product-line engineering benefit from different or all decom-
positions. A domain developer who maintains a given reusable product-line asset must
frequently locate feature units on which the feature unit under review depends. In code
reviews, domain architects and domain developers frequently evaluate the mapping between
features and feature implementations by navigating through the code base following fea-
ture traces provided by, e.g., code annotations and feature-aware code editors (Kästner
et al. 2012). From the viewpoint of an application developer, a view on the object-oriented
decomposition representing the derived product is eligible to facilitate object-oriented
development tasks (e.g., framework integration of the product into a final object-oriented
system). To promote features from products to the product line (as done in the extrac-
tive approach; Clements and Krueger 2002), domain architects and application developers
must locate feature-specific code in the object-oriented decomposition of the code base
to refactor them into existing and new feature units (Apel et al. 2013a). Finally, appli-
cation developers use all decompositions for reporting problems or defects experienced
with a reused asset to the responsible domain developer. A feature decomposition is help-
ful to establish whether the defect is located in a particular feature unit or its neighbor
units.
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The different decompositions of a feature-oriented product line can completely overlap
or crosscut each other (Apel et al. 2008). Consider two different decomposition alignments
of the GPL in Fig. 1. Feature unit Measures and code unit Strength contain the exact
same set of program elements and the elements’ dependencies. These elements form the
code-unit fragment of Strength that is specific to feature Measures. There is a com-
plete structural overlap of the three decomposition units, while each unit is part of a distinct
decomposition. Consequently, the structural attributes, such as unit coupling and cohesion
of the code-unit fragment, the code unit, and the feature unit, are strongly associated or
even the same. In contrast, feature unit Weighted and code unit Edge crosscut each other.
While code unitEdge, in total, comprises two code-unit fragments, feature unit Weighted
contains only the one fragment specific to this feature. As a result, the feature unit and the
code unit have distinct coupling and cohesion properties. This structural heterogeneity of
decompositions cannot only arise for coupling and cohesion, but for any structural attributes,
such as the fragmentation. Regarding unit sizes, one decomposition might show a relatively
small number of decomposition units with imbalanced unit sizes (Fig. 2b), while the other
counts a medium number of units of more balanced sizes (Fig. 2c).

3 Comparative Research Design

By means of an exploratory study, we want to gain insights into how unit sizes, fragmen-
tation, coupling, and cohesion of the three different decompositions compare to each other.
In particular, we want to answer the following two research questions:

Research question #1: How do coupling structures of a feature-oriented product line
differ between its decompositions into classes, features, and feature-specific class
fragments?

Several studies hint at unequal distributions of coupling over the decomposition units
in object-oriented designs (Taube-Schock et al. 2011). They suggest that object-oriented
decompositions are dominated by a comparatively large number of lowly coupled decom-
position units, with only a few highly coupled decompositions units. These latter, however,
appear coupled over-proportionally, at extremes.

a b c

Fig. 2 Different fragmentations of product-line decompositions: a large decomposition size, non-uniform
unit sizes; b small decomposition size, non-uniform and concentrated unit sizes; c medium decomposition
size, balanced unit sizes
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Similar observations have been reported for feature decompositions, though at the level
of single features rather than entire product lines and for different notions of coupling
(export vs. import coupling). Apel and Beyer (2011) introduce the notion of provider and
customer features to discuss different roles in the dependency structure of a product line.
Provider features offer data and behavior to customer features (export coupling). Customer
features attach to provider features as part of the feature implementation (import coupling),
but do not provide anything to other features. Likewise, Siegmund et al. (2012) report on
hot-spot features, which are export-coupled with a comparatively large number of features.

Establishing whether all or some alternative decompositions of feature-oriented prod-
uct lines show a characteristic tendency towards the presence of provider and hot-spot
units would have several benefits. For example, product-line testing strategies could pri-
oritize such decomposition units by running test cases on configurations guaranteed to
include them, or by defining coverage criteria accordingly. Or, when building sampling-
based prediction models for non-functional properties (Siegmund et al. 2012), a confirmed
assumption of highly coupled feature units could be used to stratify the sampling of con-
figurations, based on sub-populations that either include or exclude these decomposition
units.

Research question #2: Do features as decomposition units form cohesive units of
functionality? How do they compare with classes and class fragments in terms of
cohesion?

Cohesion is the degree to which program elements of a decomposition unit (class, class
fragment, and feature) depend on each other, for example, to operate on a shared set of
data structures (e.g., communicational binding) or to perform a single function (functional
binding). Apel and Beyer (2011) found that features predominantly depend on elements
internal rather than external to them, and that features appear to be less cohesive than other,
possibly smaller decomposition units. According to Apel and Beyer (2011), this follows
from smaller features to be more cohesive than larger features. In addition, the feature units
measured in their study depend only on comparatively few elements of the same feature.
Therefore, the authors concluded that a refactoring into smaller, allegedly more cohesive
units (e.g., code-unit fragments) should be considered. Still, it remains to be investigated
whether there is a systematic relation between unit sizes and unit cohesion, and whether
decompositions of smaller unit sizes turn out to be more cohesive, to establish such and
similar guidelines.

3.1 Representing Decompositions

We model each of the three product-line decompositions as a dependency graph: DG =
(U,D). The nodes U denote decomposition units (viz., classes, class fragments, and fea-
tures). The edges D represent usage dependencies between these decomposition units (e.g.,
one feature uses a method introduced by another feature).

We use two code excerpts taken from GPL (Fig. 3) to illustrate the models for different
decompositions. The features Base and Weighted contain 12 uniquely identifiable pro-
gram elements, such as type, method, and field definitions. In Fig. 3, every such element
is described by a comment line indicating an element’s identifier. The identifier consists of
the enclosing feature, the element kind, and the fully qualified element name. For example,
the field in Line 5 of feature Base is identified as (Base, field, Graph.edges).

We call such uniquely identifiable program element an introduction, because it is
incorporated by the corresponding feature into the code base of a product line at feature-
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Fig. 3 Excerpts of the implementations of the features Base and Weighted

composition time. Introductions are basic building blocks for decomposition units. Usage
dependencies between introductions define dependencies between decomposition units built
of these introductions. Henceforth, we refer to such a usage dependency between two intro-
ductions as a reference. Note that there can be multiple distinct references between two
introductions.

The dependency graph resulting from the introductions and their references found in the
two code excerpts in Fig. 3 is illustrated in Fig. 4a. The twelve introductions are repre-
sented as the graph’s nodes. The introductions are grouped according to the owning Java
type, depicted as dashed rectangles (e.g., Graph). The references between the introductions
are shown as edges. For example, the edge pointing from the field declaration (Base,
field, Graph.edges) to the type declaration (Base, type, Edge) in Fig. 4a is
recorded because this field has the type defined by Edge (we say the field uses the type;
see Line 5 of Base in Fig. 3).

This dependency graph at the introduction level is the starting point for modeling the
three decompositions we are interested in. Depending on the decomposition criterion, the
introductions are grouped into distinct decomposition units: code units (Fig. 4b), feature
units (Fig. 4c), and code-unit fragments (Fig. 4d).

In Fig. 4b, the grouping criterion is the Java type ownership of introductions. All intro-
ductions defined by a given Java type (e.g., an interface or a class) are grouped into one
decomposition unit (Graph, Node, Edge, and Weight). This results in the code-unit
decomposition or class decomposition. Note that nested classes and nested interfaces are
considered decomposition units separate from their parent classes. As for the second decom-
position, the grouping criterion applied to obtain the dependency graph in Fig. 4c is feature
ownership of introductions. Hence, all introductions belonging to one feature are grouped
into a feature unit. This results in the feature-unit decomposition or, for brevity, feature
decomposition. The third decomposition combines the previous two decomposition criteria
and builds groups of introductions according to both their type and their feature ownership.
This is the code-unit fragment decomposition or, simply, class-fragment decomposition
(Fig. 4d). When moving up between two decomposition levels (e.g., from single intro-
ductions to class fragments or from class to feature groupings), multiple equally directed
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a b

c d

Fig. 4 Dependency graphs resulting from different decompositions of GPL; U: set of decomposition units
in graph; D: set of dependencies; CU: set of code units (classes); CUF: set of code-unit (class) fragments;
FU: set of feature units (feature modules)

references between two decomposition units (e.g., introductions, classes) are recorded as
one reference between the corresponding units at the upper decomposition level (class
fragments, features).

3.2 Subject Product Lines

Our aim was to collect feature-oriented product lines implemented using the feature-
oriented programming language Fuji (Apel et al. 2012), a Java language extension providing

Author's personal copy



Empir Software Eng

Table 1 Overview of the data sets extracted for each product line

ID SLOC | I | | R | | CU | | CUF | | FU |

1 AHEAD 24 316 6 175 38 556 517 1 055 59

2 BCJak2Java 17 521 4 466 17 562 502 611 15

3 Jak2Java 18 035 4 590 18 847 505 643 16

4 Jampack 19 299 4 974 21 216 501 733 21

5 JREName 16 595 4 315 15 971 498 576 17

6 Mixin 17 765 4 576 18 626 500 632 17

7 MMatrix 17 639 4 484 16 620 504 608 13

8 UnMixin 17 049 4 347 15 822 500 582 12

9 AJStats 13 226 1 232 5 895 13 49 20

10 Bali2Jak 7 539 1 369 3 972 135 158 11

11 Bali2JavaCC 8 082 1 420 4 151 138 164 11

12 Bali2Layer 7 835 1 420 3 912 137 159 12

13 Bali 9 939 1 600 5 321 141 183 18

14 BaliComposer 6 791 1 253 3 594 128 152 10

15 BerkeleyDB* 45 000 9 379 53 035 408 892 99

16 EPL* 111 46 83 5 15 12

17 GameOfLife* 1 461 267 624 37 55 15

18 GPL* 1 930 461 2 892 16 57 20

19 GUIDSL 10 084 2 144 7 556 144 287 26

20 MobileMedia8* 4 189 982 3 026 60 170 47

21 Notepad 891 153 369 8 22 10

22 PKJab* 3 373 689 1 738 51 68 8

23 Prevayler* 5 268 1 275 2 398 158 170 6

24 Raroscope 316 79 125 3 12 5

25 Sudoku 1 422 281 1 001 26 51 7

26 TankWar* 4 845 757 3 208 22 88 30

27 Violet* 7 151 1 033 2 535 67 157 88

28 ZipMe 3 446 717 1 711 32 46 13

SLOC: # source lines of code; |I|: # introductions; |R|: # references; |CU|: # classes/interfaces; |CUF|: # class
fragments; |FU|: # Fuji feature modules; *: feature model available

feature orientation. Our primary source was the repository1 of 28 Fuji-based product lines
set up by the Fuji language maintainers, but developed also by others.

The product-line code bases differ in terms of source lines of code (SLOC2). While the
smaller-sized code bases contain a few hundred to less than 2 000 SLOC, the medium- to
larger-sized ones account for more than 6 000 to about 20 000 SLOC. The most extensive
code base (BerkeleyDB) is of 45 000 SLOC.

Although the product lines are mostly of medium size and used in academic contexts,
they have been developed by different developers for different purposes, and they differ in
various aspects, such as the target domain. For a relatively young paradigm, such as feature

2http://www.dwheeler.com/sloccount/, last accessed: June 26, 2014.
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orientation, this is the best one can hope for. We refer the reader to Section 5 for a discussion
on how the selection of subjects threatens external validity.

By instrumenting Fuji’s internal syntax representations, we collected the introductions
and the references for each product line. We obtained sets between 9 379 (BerkeleyDB)
and 46 introductions (EPL) as well as sets between 53 035 (BerkeleyDB) and 83 references
(EPL). From the introduction sets, we computed the populations of code units (3 to 517
classes), of code-unit fragments (12 to 1 055 class fragments), and feature units (5 to 59 Fuji
feature modules). The descriptive data are summarized in Table 1.

For our study, we selected specific subsets of the total references to construct the depen-
dency graphs depending on the internal attribute measured. As for structural coupling, we
included method-call and constructor-call references, which reflect the common strategy of
developers to find dependent decomposition units and program elements by navigating the
control flow of a program (Bouwers et al. 2011). Coupling measurement also included field
accesses as critical kinds of coupling (Briand et al. 1999). For measuring structural cohe-
sion, we excluded any references (method calls and field accesses) originating from within
constructor bodies, because they risk introducing a systematic bias (e.g., through initializing
most or all fields; Briand et al. 1998).

The references were obtained from Fuji‘s family-based internal syntax representation of
each product line. In a family-based strategy, the code base of a product line is analyzed
as a whole by composing all feature units in the syntax representation and by amending
the syntax representation to contain the corresponding variability information (Kolesnikov
et al. 2013b). We then included this variability information when building the dependency
graphs. At the time of performing the measurement, the Fuji repository provided feature
models for nine product lines (marked by ‘*’ in Table 1). From these models, we extracted
presence conditions. A presence condition indicates whether, for all valid configurations,
two features are always, sometimes, or never present together. Then, we excluded all ref-
erences running between two feature units which are not (never) included in any valid
configuration.

Fig. 5 Relationships between research questions, internal attributes of a product-line decomposition,
indicator measures, and derived measures
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3.3 Internal Attributes and Per-Unit Indicator Measures

As motivated in Section 2, we want to compare three decompositions of the 28 product
lines regarding their decomposition sizes, the sizes of their decomposition units (class frag-
ments, classes, feature modules), their structural coupling, and their structural cohesion (see
Fig. 5). For these four internal attributes, we use five indicator measures: units per product
line, coupling between units (CBU), external-ratio unit dependency (EUD), internal-ratio
unit dependency (IUD), and introductions (program elements) per unit. The measure con-
structs are defined in terms of the underlying dependency graphs of the decompositions (see
Section 3.1). These direct measure instantiations are then aggregated for each product line
using derived measures (see Fig. 5).

Structural Coupling (Briand et al. 1999; Stevens et al. 1999) Coupling between decompo-
sition units refers to the strength of association induced by structural references between
two or more units. By taking design and implementation decisions that reduce (minimize)
or increase the number of inter-unit references, coupling is said to be lowered or heightened,
respectively. Structural coupling is measured by establishing the coupling between units in
the dependency graph of a decomposition (see also Section 3.1): The coupling between units
(CBU) measure collects the number of decomposition units that have direct dependencies
to a given decomposition unit. This construct is defined as the number of decomposition
units (a.k.a. couples) used by a given decomposition unit u ∈ U in terms of structural refer-
ences provided by these couple units to u (i.e., import coupling). In the dependency graph,
CBU(u) corresponds to the absolute out-degree of u.

Structural Cohesion (Briand et al. 1998; Stevens et al. 1999) Cohesion of decomposition
units denotes the association strength between the program elements of a decomposition
unit, established by intra-unit references. Assuming that a unit binds the program elements
needed to fulfill a given function (code unit) or to implement a given feature (feature unit),
an increasing (decreasing) number of intra-unit references indicates an improving (dete-
riorating) cohesion. We measure structural cohesion using internal-ratio unit dependency
(IUD; Apel and Beyer 2011) which quantifies how interconnected the program elements of
a decomposition unit are in terms of mutual import dependencies. This measure stands for
the ratio of established (actual) references of a decomposition unit to the number of refer-
ences that could potentially occur between all program elements of a decomposition unit.
Self-references of an element are included.

To directly relate structural coupling and cohesion of a decomposition to each other in
terms of references, we additionally compute the external-ratio unit dependency (EUD;
Apel and Beyer 2011). The EUD measure captures to what extent a decomposition unit is
self-contained in terms of two values: On the one hand, the number of import dependencies
established internally between program elements contained by the decomposition is calcu-
lated. On the other hand, the external import dependencies between program elements of
the decomposition unit and program elements of coupled decomposition units are counted.
From these, the ratio of the number of actual references internal to a decomposition unit to
the total (i.e., internal and external) number of actual references is computed.

Size To measure the decomposition size, we count the number of decomposition units
observed in a given decomposition, that is, the number of class fragments, classes, and
feature modules. The unit size of a decomposition unit is quantified by the number of intro-
ductions (program elements) of a decomposition unit. These two indicator measures allow
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us to analyze the fragmentation of a product-line decomposition in terms of its scattered-
ness over decomposition units and the distinctiveness of the individual decomposition units.
These two internal attributes and measurement points provide the analysis context for the
two research questions on structural coupling and structural cohesion, respectively.

3.4 Aggregating Measures

From applying the five per-unit measures defined in Section 3.3 for each of the three
decompositions, we obtain 15 direct measurements per decomposition unit and per product
line. Given the number of decomposition units per product line (e.g., 1 051 class fragments
for AHEAD), there are too many data points to permit a comparison of 28 product lines.
Therefore, we apply data aggregation (Vasilescu et al. 2011) using concentration statistics.
Concentration denotes how equal or how unequal values of a given measure (e.g., CBU) are
distributed over the units of a decomposition (Vasilescu et al. 2011; Bouwers et al. 2011).
This allows us to make statements such as “40 % of the import coupling of a product line
is due to the bottom 60 % of decomposition units”. This way, we can also address some of
our motivating questions, for example, on the relative importance of certain decomposition
units for coupling.

As a concentration statistic, we adopt the established Lorenz inequality (Kakwani 1980;
Vasilescu et al. 2011). In our case, it relates the cumulative proportion of decomposition
units in a product line ordered by ascending attribute value (e.g., from a low to a high CBU
value) and the cumulative attribute value (e.g., cumulative sum of CBU values) measured for
fractions of decomposition units. To summarize the Lorenz concentration between product
lines, the Gini statistic G indicates the concentration degree.

Fig. 6 Concentration degree and concentration symmetry of the per-class coupling (CBU per class, solid
curve) and of the per-feature coupling (CBU per feature module, dashed curve) in PKJab; G,G’: Gini
coefficient
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Visually, the Lorenz relationship can be depicted as a convex curve in a unit square
ABCD, as shown in Fig. 6. On the x-axis, the cumulative proportion of decomposition units
(or percentile p) not exceeding a specific attribute value x is plotted. On the y-axis, the
corresponding cumulative share in the total sum of attribute values is printed. Each point of
the Lorenz curve depicts a concentration. In Fig. 6, the Lorenz curve drawn using a solid
line represents the concentration of CBU values in the class decomposition of the PKJab
product line (as an example). At x = 0.75, the curve indicates that the bottom 75 % of
classes are responsible for approx. 25 % of the summed CBU values. The inverse statement
is equally valid: the top 25 % of classes have 75 % of the cumulative CBU sum.

The straight line of equality AC represents a reference at which each cumulative fraction
of decomposition units (e.g., 60 % of classes in PKJab) is assigned a same-valued fraction
in the cumulative attribute value (e.g., 60 % of the cumulative CBU values). In such a dis-
tribution, each decomposition unit has the same attribute value. A fully equal distribution
would coincide with this line of equality. Conversely, any unequal distribution forms a con-
vex curve under the line of equality. This is the case for both the per-class and per-feature
CBU distributions plotted in Fig. 6.

Gini Coefficient (G; Vasilescu et al. 2011) This ratio represents the degree of distributional
inequality (concentration) of an attribute among the decomposition units of a product line.
The ratio takes a value between 0 and 1, with G = 0 denoting perfect equality: each unit
fraction n% having a same-sized n% share in the cumulative attribute values, as found on
the line of equality. This extreme implies that each decomposition unit has the same attribute
value; for example, all classes having the same CBU value. Conversely, G = 1 denotes
perfect inequality, with only one decomposition unit accounting for 100 % of the cumulative
attribute value. This would signal a product line in which one class is responsible for all
the import coupling in the product line. With G=0.3618, coupling as measured by CBU is
more equally distributed among the feature units of the PKJab product line than among its
classes (G=0.6553; see Fig. 6).

4 Study Results

Our analysis rests on two data sets. The first describes the underlying code bases of the
product lines (see Section 3.2). The second data set represents the measurements obtained
from applying the indicator and aggregation measures (see Sections 3.3 and 3.4). In Sec-
tion 4.1, we characterize the 28 product lines based on the first data set (see also Table 1).
This provides the context for a discussion of our observations based on the measurement
data in Section 4.2.

4.1 Descriptive Analysis

Comparing the 28 product lines within the data set, most product lines are small in terms
of SLOC, references, and introductions as well as decomposition units (classes, class frag-
ments, and feature modules), as indicated by the density peaks at the left end of the x-axes
on the diagonal of Fig. 7. From plotting and correlating the basic variables (e.g., references,
introductions, SLOC) against each other, we learn the following from the scatter plots in the
lower segment of Fig. 7:

Introductions and references are positively and quasi-linearly associated (r=0.969). The
more introductions in a product-line code base, the more references are recorded. This also
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Fig. 7 Pairwise scatter plots (lower segment), Pearson correlation coefficients (upper segment), and density
distributions (diagonal) for the 28 product lines; SLOC: source lines of code; CU: code units (classes);
CUF: code-unit fragments (class fragments); FU: feature units; R: references, I: introductions

reflects the fact that there are only small shares of unreferenced (dead) introductions in all
product lines. In 9 out of the 28 product lines, we find approximately 10–11 % of the total
introductions that do not participate in any reference (viz., usage dependency between two
introductions). The remaining 20 product lines exhibit much smaller shares. Note that, for
measuring the internal attributes of decomposition size and unit size, dead introductions are
considered. The coupling and cohesion measurement, however, explicitly excludes them by
building on the observed references only.

The different sets of decomposition units appear related differently. On the one hand, the
numbers of classes and class fragments are strongly and positively associated (r = 0.939).
This results from the fact that class-fragment decompositions are directly dependent on
the class decomposition in terms of the class count. Hence, product lines decomposed into
a large (small) set of classes are also decomposed into a large (small) set of fragments.
Moreover, this is an indicator for most feature modules being scattered over a majority of
classes, resulting in an increase of per-feature class fragments depending on the number of
classes present in a product-line code base. In contrast, the overall class counts and feature-
unit counts are not associated. There are both product lines with comparatively many (few)
feature modules and with few (many) classes (r=0.156).

From the data sets on introductions and on references specific to each of the 28 prod-
uct lines, we construct three dependency graphs per product line. Each dependency graph
represents one decomposition of the product line: code units (CU), feature units (FU), and
code-unit fragments (CUF; see Section 3.1). The node sizes (viz., the order) of the result-
ing dependency graphs correspond to the number of units in each of the decompositions
(see Table 1). These decomposition sizes are plotted for the 28 product lines, for every
decomposition, along the x-axes in Fig. 8. The number of edges connecting the decomposi-
tion units varies depending on the number of references between units and the aggregation

Author's personal copy



Empir Software Eng

Fig. 8 Decomposition size (x-axis) and connectedness (y-axis) for the 28 product lines

of introductions (as source and target points of a reference) into decomposition units (see
Section 3.1).

The resulting dependency graphs exhibit different degrees of connectedness (density),
that is, the ratio of actually observed to the number of potential edges in the dependency
graphs. The scatter plots in Fig. 8 contrast the connectedness (on the y-axes) to the decom-
position size (on the x-axes). Generally, one might suspect that the more (fewer) units a
product line is divided into, the more (fewer) units can become interconnected by refer-
ences, potentially. The above observation that introductions and references are positively
associated therefore suggests that larger decompositions (having many introductions) are
more interconnected (having more references between units) than smaller ones.

This intuition is not supported, however. We find that decompositions (CU, CUF, and FU)
containing comparatively small number of decomposition units are generally more densely
connected than larger decompositions. This is indicated by the left-to-right, downward-
sloping connectedness (y-axes) with increasing decomposition sizes (x-axes) in Fig. 8.
Despite being the smallest decompositions, feature decompositions are more densely con-
nected than decompositions based on classes and class fragments (see the rightmost scatter
plot in Fig. 8). A major share in feature decompositions (17/28) have densities above 0.25
(i.e., more than 25 % of their potential references are realized). The majorities of the class
and class-fragment decompositions account for less than 0.1.

4.2 Observations

Exploring the measurement data beyond the descriptive statistics on each structural
attribute, we made five observations (O.1–O.5). We base these observations on boxplot and
concentration statistics. The full detail on the statistical analyses, the underlying measure-
ment data, and instructions on how to obtain and to reproduce our analyses are reported
in Sobernig et al. (2014). Below, we iterate over each observation in isolation. In Section 4.3,
we relate the observations to each other.

O.1—Feature decompositions contain fewer uncoupled and fewer extremely high
import-coupled feature units than class- and class-fragment decompositions.

Typical CBU levels observed for the three decompositions of the 28 product lines fall
into ranges of median CBU values of 2–4 for the median 60 %±14.7 classes, 1–9 for the
median 65 %±16.2 class fragments, and 2–18 for the median 95 %±8.7 features. These
typical CBU levels can be read as, for example, each of the median 60 %±14.7 classes
relying on fields or methods introduced by between two and four other classes.
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Fig. 9 Each stacked barplot relates the number of uncoupled units (CBU = 0, isolates), the number of over-
proportionally coupled units (upper z-score outliers > 3.5), and the medium-coupled units as percentage
shares (y-axes) per product line (x-axes). See Table 1 for the product-line identifiers (1–28). The stacked
bars are ordered by the decreasing share of medium-coupled units per product line from left (high share) to
right (low share). On top of each stacked bar, the absolute number of over-proportionally coupled units per
product line is printed

CBU is distributed very differently between classes as well as between class fragments,
on the one hand, and features, on the other hand. In both the class and class-fragment
decompositions, there is a considerable number of uncoupled decomposition units (a.k.a.
isolates). Approximately a median of 36 %±8.93 of the classes (see Fig. 9a) and a median
of 34 %±13.8 of the class fragments (see Fig. 9b) are not import-coupled at all. In the fea-
ture decompositions, we did not find a single uncoupled feature in 15 out of the 28 product
lines. In the remaining 13, there is only a minority share of uncoupled features (on avg. 5 %,
with a maximum of 33.3 %; see Fig. 9c).

Feature decompositions contain features of over-proportionally high CBU values (out-
liers). In numbers, 10 product lines contain between 1 and 9 over-proportionally coupled
feature units (see Fig. 9c). However, more outliers can be observed for classes and class

3We report the variance in terms of the median absolute deviation from the median (MADM) using the ±
notation along with the median value.
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fragments (see Fig. 9a and b). This is in sharp contrast to observing that 18 feature decom-
positions do not have any import-coupling (CBU) outliers at all (see Fig. 9c). The class and
the class-fragment decompositions report comparably small numbers of over-proportionally
import-coupled classes (median 3.5±3.7 classes per product line) and class fragments
(median 4±4.5 class fragments), respectively.

These differences in the number of isolates and the numbers of upper outliers help
explain the observation on the differences in terms of connectedness (see Section 4.1),
because isolates and outliers indicate the number of realized edges (i.e., extracted references
between program elements) in the dependency graphs.

O.2—The numbers of feature units providing a required reference target to a given
feature unit (CBU) are more equally distributed between feature units than between
classes and between class fragments.

In their feature decompositions, the product lines—having a median Gini coefficient of
0.36±0.17—are less concentrated in their CBU distribution than in the other two decompo-
sitions. This is indicated by the FU curve in Fig. 10a clearly running left from the two other
curves. The class and class-fragment decompositions show a strong and similar concentra-
tion pattern in their CBU distributions, as indicated by their co-running curves in Fig. 10a.
All decompositions into classes and class fragments have concentration levels of more than
0.4 (median 0.69±0.06) and 0.5 (median 0.7±0.08), respectively.

When comparing the feature and class decompositions of each product line, the above
observation between decompositions across all product lines is supported. CBU levels per
unit are less concentrated (less equal) in the feature decomposition than in the class decom-
position of a product line (GFU < GCU ): In 26 out of 28 product lines, the CBU levels per

a

b

Fig. 10 a Three cumulative distribution curves (CDF), each representing one decomposition (CU: solid
curve, CUF: dotted curve, FU: dashed curve). Each distribution curve relates a cumulated share of the 28
product lines (per decomposition, ordered by increasing CBU concentration) and a maximum CBU concen-
tration value (G, Gini coeff.) observed for a given subset of product lines. See Sobernig et al. (2014) for the
corresponding data set. b PKJab: Aggregated CBU shares hold by same-sized groups (quintiles) of decom-
position units, ordered by increasing CBU; see the corresponding Lorenz curves in Fig. 6, Section 3.4; G:
Gini coefficient; SE(G): Jackknife estimate of Gini standard error; S: Lorenz Asymmetry Coefficient. Please
refer to Sobernig et al. (2014) for definitions of SE(G) and S
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class are more unequally concentrated in the class decomposition than the CBU levels per
feature unit. PKJab (as one out of the 26 product lines) exemplifies this difference between
its two decompositions (see Fig. 10b). In the class decomposition of PKJab, the top 20 %
group of most import-coupled units accounts for approx. 63 %, the bottom 40 % for less than
1 % of the total per-unit coupling (approximated by summing the per-unit CBU values). In
the feature decomposition, however, the lower 4/5 of (lowly import-coupled) features take
a comparatively greater share of 47 %, similar to the top 20 % features (53 %).

O.3—Feature units are internally less connected units than classes. Generally, the
internal connectedness of all decomposition-unit kinds is limited.

An incohesive decomposition unit does not have a single internal reference realized
(IUD = 0). To these decomposition units, all dependencies are provided externally. Feature
decompositions give rise to fewer incohesive units (median 13 %±20.2) than class (median
38 %±6.6) and class-fragment decompositions (median 43 %±8.3).

As for over-proportionally cohesive units,4 there are only very few units of over-pro-
portionally high IUD in class decompositions (1 or 2 at most, with BerkeleyDB being
an exception having 7 outliers) and feature decompositions (median 7 %±10.6). Class-
fragment decompositions, conversely, exhibit large portions of over-proportionally high
IUD values (median 13.1 %±18.5).

Between the extremes of incohesive and of overly cohesive units, we find median
IUD levels of 0.03–0.07 for classes (maxima of up to 0.16), of 0.002–0.06 for class
fragments (max. of 0.11), and of below the 1 % mark to 0.06 for features (max. of
0.17). These IUD levels apply to the median 61 %±6.2 of the classes, the median
40 %±22.3 of the class fragments, and the median 80 %±28.2 of the feature units,
respectively.

O.4—The per-unit cohesion in class and feature decompositions settles at medium
levels of concentration. In class-fragment decompositions, IUD levels are distributed
most unequally.

The IUD concentration levels found for class fragments are the most pronounced
among the three alternative decompositions, having Gini coefficients between 0.5 and
0.82 for all product lines. The IUD concentration among class fragments in 26 prod-
uct lines exceeds the concentration among their classes (by a median difference in Gini
coefficients by 0.12±0.04), in 21 product lines the concentration among the features
(median Gini delta of 0.16±0.11). This is explained by the presence of compara-
tively high numbers of both incohesive class fragments and over-proportionally cohe-
sive class fragments leading to an unbalanced distribution of IUD levels over class
fragments.

The IUD distributions of class and feature decompositions are less concentrated, at IUD
levels comparable to each other (median Gini coefficients of 0.52±0.12 and 0.53±0.2,
respectively), than those of class-fragment decompositions (see above). A direct comparison
of class and feature decompositions of each product line leaves a mixed picture, how-
ever: 10 product lines have more concentrated IUD distributions over features than classes
(median Gini difference of 0.14±0.08), for 12 product lines it is the inverse (0.08±0.05).
In the remainder of 6 product lines, IUD concentrations among features and classes are
similar.

4We apply a standard technique of outlier identification: modified z-scores (Iglewicz and Hoaglin 1993).
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O.5—Features have comparatively higher shares in internal than external references.
The extent to which a feature unit is self-contained (EUD) is more equally distributed
among feature units than among classes or class fragments.

In 24 out of 28 feature decompositions, more than 50 % of the references run within
feature units (median 72 %±6.2 of total references). Similarly, class decompositions also
exhibit a considerable share of internal references, though at a slightly lower level (median
57 %±9.4). Class-fragment decompositions have more externally than internally running
references (median 43 %±11.4).

For the less-concentrated 75 % of the decompositions, feature decompositions have
a more equal distribution of EUD levels (Gini coefficients ranging from 0.13 to 0.766).
Class decompositions follow second (0.26–0.72), and class-fragment decompositions are
the most concentrated ones (0.37–0.82). For the upper 25 % of the most concentrated
decompositions, concentration converges to similar Gini levels.

4.3 Discussion

Research question #1: How do coupling structures of a feature-oriented software
product line differ between its decompositions into classes, features, and feature-
specific class fragments?

A cross-reading of our observations on coupling (CBU; see O.1 and O.2 in Table 2) tells
us that (1) feature orientation is not necessarily associated with a more loosely coupled
decomposition. Rather, the inverse holds: Feature modules are organized in more dense cou-
pling structures than classes and class fragments. This adds to the similar finding on feature
cohesion by Apel and Beyer (2011). To be precise, there appears to be an inverse association

Table 2 Summary of key observations on the three decompositions reported in Section 4.2

Decomposition kind

Measure CU FU CUF Attribute

CBU O.1 low CBU density, medium/high CBU density, low CBU density, RQ#1:

low midrange CBU, few high midrange CBU, very medium midrange CBU, Structural

outliers, many isolates few outliers, few isolates very few outliers, few coupling

O.2 mixed, medium/high uniform, low/medium isolates mixed,

CBU concentration CBU concentration medium/high

CBU concentration

EUD O.5 medium EUD medium/high low EUD level;

level; mixed, medium EUD level; mixed, mixed, medium/high

EUD concentration low/medium EUD concentration

EUD concentration

IUD O.3 low midrange IUD, very low midrange IUD, low midrange RQ#2:

very few outliers, very few outliers, IUD, many outliers, Structural

many incohesives few incohesives many incohesives cohesion

O.4 mixed, medium mixed, medium uniform, medium/high

IUD concentration IUD concentration IUD concentration
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between decomposition size (i.e., the number of classes, class fragments, or feature mod-
ules) and the degree of import coupling (O.1; see Fig. 8). Regardless of the decomposition
kind (CU, CUF, or FU), a product line decomposed into fewer units shows a comparatively
higher level of import coupling than larger decompositions. Hence, the coupling structures
of the three decompositions are similar to each other. More decomposition units in a product
line do not necessarily correlate with higher import coupling between these units.

This leads to another important insight which tells us that (2) the coupling complexity of
the class and class-fragment decompositions appear to scale better with increasing decom-
position sizes. As for the coupling drivers, in class and class-fragment decompositions, the
overall coupledness observed in dependence of the decomposition size is more related to the
presence of coupling-free units (see O.1). For classes and class fragments, Fig. 11 illustrates
this strong positive and quasi-linear association between decomposition size and uncoupled
decomposition units (CBU = 0). The more units in a decomposition, the more are uncou-
pled. As a result, large class and class-fragment decompositions do not necessarily pair with
dense coupling structures.

Feature decompositions are more interconnected, reaching up to and beyond 50 % of the
potential coupling relationships actually realized, already for smaller-sized feature decom-
positions (of up to 25 feature modules). In feature decompositions, however, the observed
association between decomposition size and non-coupled units is missing: (3) An increased
total number of feature modules is not associated with an increased number of coupling-free
feature modules. Rather, the larger a feature decomposition is in terms of feature modules,
the more is the measured coupledness associated with feature modules of a small import-
coupling degree: Most feature modules in these large feature decompositions tend towards
a range between 2 and 6 coupled units per feature module. This holds even for the largest
product lines in our sample (BerkeleyDB, Violet, AHEAD, and MobileMedia8). More gen-
erally, for most product lines, a major share in units of either decomposition does not exceed
the CBU value of 5 or 6 (see O.1).

Furthermore, we found that (4) per-unit coupling (CBU) in class and class-fragment
decompositions follows right-skewed distributions, for all product lines (O.2). This holds
also for some feature decompositions (see AHEAD in Fig. 12a). In such a right, or posi-
tively, skewed distribution, the largest number of decomposition units takes a comparatively
small CBU value. For AHEAD, most feature modules take a CBU value of less than
20 (see Fig. 12a). At the same time, there is a small number of extreme outliers hav-
ing an over-proportional CBU. In AHEAD, for example, there is one feature module
(BaliJavaParser) that is import-coupled to 56 out of 59 feature modules in this product
line. These outliers represent candidate provider or hot-spot features.

Fig. 11 Decomposition size (x-axis) and the number of units without any import coupling (y-axis; CBU =
0) for the 28 product lines
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Fig. 12 Distributions of CBU for feature modules (histogram and estimated density plot)

However, (5) feature decompositions are described by both right- and left-skewed cou-
pling distributions. The Bali product line in Fig. 12b is such an example. In this product
line, a medium to large number of comparatively high-coupled feature modules can be
found. This is in line with the related observation that feature modules appear to be more
import-coupled than classes and class fragments (O.1). Furthermore, most feature modules
take a more equal share in import coupling than typical classes and class fragments (O.2).
This means that there are not necessarily extreme outliers of either high or low coupling.
The dominance of highly-coupled feature modules and the lack of outliers requires us to re-
assess some working assumptions on provider and hot-spot features, originally established
for non-functional properties (Siegmund et al. 2012), when it comes to the code structure
of product lines. For example, product-sampling strategies based on the general assump-
tion of hot spots should be only applied when the product line is tested positively for their
existence. More generally, we must conclude that related empirical findings on coupling in
object orientation (Taube-Schock et al. 2011) cannot be easily applied to coupling in feature
orientation.

Research question #2: Do features as decomposition units form cohesive units of
functionality? How do they compare with classes and class fragments in terms of
cohesion?

Apel and Beyer (2011) found that feature modules depend mostly on their own elements,
rather than on elements of other features. We can confirm this observation based on our ref-
erence data. Feature units tend to be self-contained in terms of self-provided dependencies,
in particular, when compared to classes and class fragments (O.5). In addition, we show that
feature modules appear to be more similar in terms of their self-reliance than classes and
class fragments: Between classes and between class fragments, we find more varying levels
of self-containment (O.5).

While Apel and Beyer (2011) report on product lines taking values in the entire spec-
trum of internal connectedness (i.e., number of observed to possible internal references) of
feature modules (IUD), based on our reference data, we find that there is a generally low
degree of internal connectedness regardless of the kind of decomposition. The maximum
IUD value reported is 0.86 (MobileMedia8; classes), with most other product lines reporting
maximal IUD values below 0.25 (especially for features and class fragments). Note that the
different observations are not necessarily conflicting. Our observations are based on actual,
type-level reference data, while Apel and Beyer (2011) used dependency graphs derived
from data on program elements introduced by feature implementations. In addition, we
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learn that the constituent elements of classes and feature modules are comparatively more
connected than elements of class fragments (O.3). Note, however, that feature modules are
not necessarily more densely connected, internally. While settling at low levels, generally,
the internal connectedness is more equal between feature modules and between classes than
between class fragments (O.4).

5 Threats to Validity

Construct Validity The definitions of the measures (CBU, IUD, EUD) deviate from their
originating research designs. A major particularity of our setup are deviating notions of
dependency: The references, on which the measure instantiations are computed, include all
the variation of a product line, that is, they reflect all possible configurations. Measurements
based on product-line references are different from measurements on the references found
in a single product. The latter is the originating usage context of CBU. However, as we
compare projects at the product-line level only, distortions from different reference kinds
(product line vs. product) are excluded. Another difference stems from different sources
of creating the underlying dependency graphs: The IUD and EUD measures of Apel and
Beyer (2011) have been devised and applied to dependencies built from introduction data.
As a result, the computed dependencies could not indicate any direction of dependency
(source vs. target). In contrast, our references correspond to references as established and
maintained by the Fuji/Java type system, including direction. As we apply the direction-
aware IUD and EUD measures uniformly on each code base, all measurements would be
similarly affected voiding any confounding effects in our comparative analysis.

A further threat to validity is the assumption of direct dependencies. In our analysis,
a dependency is established between two elements iff there is a direct reference (e.g.,
a direct method call) between the two. Transitive references between two elements do
not give rise to an indirect dependency. This notion of direct dependency, while intu-
itive and backed by literature on software measures (Briand et al. 1999), is linked to the
unit size. In decomposition units large in element numbers (feature modules), cohesion
measurement based on direct dependencies may understate the cohesiveness of a unit. Con-
versely, cohesiveness of smaller units may be overstated. As this assumption is uniformly
applied in our comparative analysis, it can limit, if at all, only the generalizability of our
observations.

Finally, we consider only unique references between program elements. To include
multiple, recurring references, edge-weighted dependency graphs would be required as rep-
resentation. However, any weighting risks introducing an ambiguous qualification, depend-
ing on the weighting strategy. Empirical evidence on appropriate weighting strategies
(e.g., reference frequencies, unique source/target pairs) and on their representation condi-
tion is missing. Furthermore, we build upon indicator measures defined for unweighted
dependency graphs (Apel and Beyer 2011; see also Section 3.3).

Using a family-based syntax representation to extract references (Kolesnikov et al.
2013b), on the one hand, we abstract from the heterogeneity in structural feature-model
complexity of product lines (e.g., the number of leaf features and of optional features).
On the other hand, a family-based strategy risks recording references which can never
realize in any valid configuration of a product line. To reduce this risk, we incorpo-
rated presence conditions derived from the feature models of the product lines to exclude
any unrealizable references (see Section 3.2). However, at the time of performing the
study, validated feature models were only available for 9 of the 28 product lines (see also
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Table 1). For the remainder of 19 product lines, the number of collected references may
therefore be overstated.

Internal Validity Our analysis design and procedure could have caused our observations
not to follow directly from the data collected (i.e., the code bases implementing the prod-
uct lines and processed to obtain the reference data). To begin with, data pre-processing,
statistical analysis, and visualization are performed by approximately 3000 lines of R code.
To control this threat, critical steps, such as parsing reference data as provided by Fuji into
R data sets, building data subsets (e.g., by filtering based on presence conditions), and the
implementation of measure constructs (e.g., CBU, IUD), while developed by one author,
have been reviewed by a second author.

To avoid bias introduced by heterogeneous code bases written in different feature-
oriented programming languages, we deliberately limited ourselves to the product lines
available from the Fuji repository. Furthermore, the product lines in this repository
have been developed in various contexts, by different developers (e.g., to exclude learn-
ing effects), and for different application domains. To assess the internal attributes
(e.g., cohesion, coupling), we always devised several—mostly two—measure constructs.
This way, we mitigate the risk of single measures being influenced by an unknown variable.
For aggregating the direct measurements for each product line, we employed established
statistical techniques (Vasilescu et al. 2011).

External Validity As to be expected for this kind of study, the selection of 28 subject
product-lines threatens external validity. This is because, first, our analysis design remains
exploratory by nature: We interpreted quantitative observations in the light of conjectures
on different decompositions of feature-oriented product lines found in the current state of
literature. As usual for an exploratory study, these interpretations remain to be tested and
confirmed in a controlled setting. Second, our analysis is based on a single and coherent
sample of product lines to increase internal validity. To mitigate the threats to external valid-
ity, we made sure that the product lines stem from distinct domains (e.g., gaming, DBMS,
model authoring), and have not been developed for the purpose of this study. While the sam-
ple does not allow for transferring our observations to product lines developed in alternative
implementation techniques (code pre-processors, plug-in frameworks), it overlaps widely
with samples used in earlier studies on feature-oriented product lines (Apel and Beyer 2011;
Siegmund et al. 2011; Apel et al. 2013b). With our study, we provide an important prereq-
uisite to perform meta-studies generalizing over the individual study findings in follow-up
work. In addition, our analysis design (including the statistical tooling) is repeatable for
other product-line code bases.

Finally, we would like to comment on the role of feature orientation in the practice of
product-line engineering, which threatens external validity. Clearly, feature orientation is a
comparatively novel development paradigm, which did not see broad industrial adoption,
so far. Certainly, this is partly due to its novelty (companies must adopt to a new way of
thinking and new tools), but also due to the lack of evidence and understanding of the
paradigm in action. This is exactly were our study comes into play: It provides insights into
the nature of feature orientation, shall guide further developments in the area, and ultimately
facilitate and guide industrial adoption. So, the study is not meant to provide results that are
immediately transferable to product lines that are developed right now in industry. In this
sense, the extent to which we can transfer our results to current industrial product lines is
clearly limited, but still, the overarching goal of better understanding the merits of feature
modularity has been reached.
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6 Perspectives

Our approach of analyzing different product-line decompositions using concentration statis-
tics and the corresponding empirical results have immediate and profound implications on
research areas relying on static and dynamic program analyses of feature-oriented product
lines: variability-aware type checking (Apel et al. 2010; Kästner et al. 2012; Kolesnikov
et al. 2013b) and detection of non-functional feature interactions (Siegmund et al. 2013).

6.1 Static Program Analysis: Product-Line Type Checking

Type-checking and other static program analysis techniques for feature-oriented product
lines, and for variable programs in general, are challenging because a whole family of
programs must be analyzed. This increases the effort substantially and requires intelligent
techniques to acquire type-checking results in reasonable time (Apel et al. 2010; Kästner
et al. 2012; Kolesnikov et al. 2013b). Approaches to this variability challenge involve
checking every possible program variant (product), incorporating variability to examine all
program variants at once (Thüm et al. 2014), and applying product sampling.

Sampling aims at systematically selecting a subset of variants of a feature-oriented
product line for analysis according to a sampling criterion. Such a sampling consid-
ered advantageous because it overcomes computation barriers inherent to product-based
approaches and because it allows for reusing existing, variability-unaware analysis tool-
ing. However, the choice of a sampling strategy (especially, a sampling criterion) presents
a challenge on its own: Oster proposed a method based on pairwise sampling (Oster
et al. 2010). The approach finds a minimal set of configurations, in which all pairwise
combinations of features are present. However, software defects can involve up to 14 fea-
tures (Garvin and Cohen 2011). Thus, checking only feature pairs may not be sufficient.
The appropriate way of grouping (sampling) code units according to indicator measures
(e.g., coupling measures) of internal attributes (e.g., structural coupling) is a field of active
research on its own (Shatnawi et al. 2010; Ferreira et al. 2012). Any sampling strategy must
be evaluated regarding its efficiency and its effectiveness in terms of the number of errors
found in relation to the invested detection effort (Apel et al. 2013d).

Measuring structural coupling based on CBU concentration provides an alternative sam-
pling criterion, yielding variant samples beyond feature pairs. By grouping code units
according to their structural coupling as indicated by CBU, one can select a portion of
decomposition units likely to be responsible for type-checking defects. This assumption
is backed by strong evidence that structural coupling is a suitable indicator for defect
probability (Emam et al. 2001; D’Ambros et al. 2010).

We ran the Fuji type checker (Kolesnikov et al. 2013b) for 13 product lines of the 28 Fuji
product lines (see Section 3.2) — the ones providing a corresponding feature model. Actual
type-checking errors were reported for 7 product lines (see Table 3). We then extracted the
decomposition units (classes and Fuji feature modules) involved in the reported type-check
errors from the available type-checking trace data. The retrieved decomposition units of
each product line (classes, features, and class fragments) are then ranked according to their
CBU values (i.e., their CBU rank in ascending order). Then, this sorted list of decomposition
units were split into several, approximately equally sized groups based on purely statistical
grouping using quintiles. Thus, the first group contains the bottom 20 % units having the
lowest CBU and the fifth group contains the top 20 % units of highest CBU.

For each product line and for each decomposition kind, Table 3 shows the 5 resulting
groups of CBU-ranked decomposition units and their corresponding error counts. We find
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Table 3 Results of a feasibility study on the potentials of sample-based type-checking. For each product line
and each decomposition type (feature, class fragment, class), the table presents five groups of decomposition
units and their corresponding error counts. Each data row represents a group containing approx. 20 % of the
decomposition units, ranked by increasing CBU

Decomposition unit Group Subject product line (type-checking error count)

BerkeleyDB EPL GPL GUIDSL Prevayler Sudoku Violet

Feature

Bottom 20 % 3 16 17 0 0 0 30

20–40 % 6 4 0 2 4 0 4

40–60 % 14 1 0 0 10 2 4

60–80 % 2 4 22 151 0 11 87

Top 20 % 176 38 2 1 1 4 0

Class fragment

Bottom 20 % 3 8 0 5 0 0 8

20–40 % 6 2 4 5 0 2 14

40–60 % 13 10 17 15 0 3 76

60–80 % 50 5 10 56 0 1 27

Top 20 % 129 38 10 73 15 11 0

Class

Bottom 20 % 0 2 0 5 0 1 12

20–40 % 0 0 0 5 0 0 0

40–60 % 0 9 0 0 0 2 16

60–80 % 12 14 21 74 3 2 48

Top 20 % 189 38 20 70 12 12 49

that the top-40 % of the most coupled classes are responsible for considerable portions of
type-checking errors, ranging from 78 % (Violet) to even 100 % (BerkeleyDB, GPL, Pre-
vayler). If most errors in these product lines were concentrated in highly coupled classes,
then a sampling of this portion of classes would facilitate type-checking tasks consider-
ably. Note that this observation—while promising—is only tentative and requires further
investigation (see Section 8).

6.2 Dynamic Program Analysis: Feature-Interaction Detection

Dynamic program analysis requires to actually execute the program to examine it. An
important area in this domain is the detection of non-functional feature interactions. Detect-
ing feature interactions that influence external attributes, such as time/space efficiency
and energy consumption, is of paramount importance, as they can lead to generating non-
optimal program variants, violations against quality-of-service requirements, unsatisfactory
user experience, and so forth (Siegmund et al. 2012).

Feature-interaction detection is tremendously costly in the product-line context because
we can run only one program variant at a time, and there may be exponentially many of
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a b

Fig. 13 Plotting the static measurement of internal-unit dependency (IUD; x-axis) per feature versus the
dynamic measurement of interaction participations (y-axis); r: Pearson correlation coefficient; rho: Spearman
rank correlation coefficient

them (Apel et al. 2013a). Furthermore, unlike static program analysis, it is particularly dif-
ficult to make a dynamic program analysis aware of variability. The reason is that one needs
a running, operative program, which in turn represents only a single valid configuration of
the product line. There are ambitions to execute the whole family of programs simultane-
ously (Siegmund et al. 2013; Nguyen et al. 2014), it yet has to be shown whether this is
possible for different product-line implementation techniques. Therefore, product sampling
is, at the current state of the art, the only practical solution to enable dynamic program
analysis for product lines. The testing community developed several sampling approaches
under the umbrella of combinatorial testing using covering arrays which can be employed
in the product-line context to test t-way feature interactions using a minimal number of
tests (Yilmaz et al. 2006). Given that software defects can involve up to 14 features (Garvin
and Cohen 2011), combinatorial testing can nevertheless result in a huge number of required
tests.

To drive a sampling strategy, finding and validating indicators for possible feature inter-
actions derived from static program analyses are critical (Apel et al. 2013c). We performed
a feasibility study to explore whether a prior analysis of structural cohesion (IUD) has
potential to predict performance feature interactions by integrating data sets generated inde-
pendently from two different studies. On the one hand, in previous work, we collected data
on external performance feature interactions in terms of method execution timings for the
product lines AJStats and ZipMe (Siegmund et al. 2013). Using a variant simulator (Apel
et al. 2011), we traced method executions between the originating (calling) feature of the
method call and the (called) feature introducing the method implementation. This way, we
counted for each feature how often it participates in performance-critical method calls and
what quantity of execution time it consumed. On the other hand, from our main study in
this paper, we took the corresponding cohesion (IUD) measurements for these two product
lines (see Section 4).

To explore whether the two quantities (feature interactions, IUD/EUD) show an asso-
ciation, we applied a correlation analysis using the Pearson (r) and the Spearman rank
correlation (rho) coefficients (see Fig. 13a for AJStats and Fig. 13b for ZipMe). Each data
point represents a single feature of the respective product line. The higher along the y-axis,
the more often the corresponding feature has participated in an performance-critical inter-
action. The more positioned to the right, along the x-axis, the higher the cohesion of the
feature.
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We observe that a feature participating in many performance interactions (method calls)
is of a comparatively weak cohesion. Conversely, features of high IUD do not contribute
substantial interaction counts. This observation becomes manifest as a strong negative asso-
ciation between feature-interaction counts and IUD per feature. As a tentative result, we can
make the conjecture that cohesive units (as measured by IUD) might be omitted when draw-
ing a variant sample, therefore substantially narrowing down the search space in a sampling
strategy.

7 Related Work

Throughout the paper we already discussed related work on quantifying the internal
attributes of different system decompositions using component orientation (Bouwers et al.
2011), object orientation (Sarkar et al. 2008), and feature orientation (Apel and Beyer 2011).

To this date, research on quality attributes of product lines has already seen some
development. Montagud et al. (2012) identified 97 different process-, resource-, and
structure-related quality attributes of product lines that have been investigated by published
research. These include both quality attributes characteristic to product lines (e.g., variabil-
ity, reusability) and more generic ones (reliability, time/space efficiency). It is noteworthy
that none of the research papers screened by Montagud et al. (2012) provides a systematic
comparison of different product-line decompositions regarding internal attributes, as deliv-
ered in this paper. In the following, we concentrate on related work that emphasizes the
internal attributes of structural coupling and structural cohesion.

7.1 Software Measures for Software Product Lines

In a systematically sampled corpus of 35 research papers, Montagud et al. (2012) found
165 distinct software measures applied on product lines. 144 out of these (i.e., 87 %) quan-
tify internal attributes of various product-line artifacts, such as the code assets and the
variability model. In the following, we iterate over a selection of research contributions
with emphasis on measurement constructs on code assets and specific to three key imple-
mentation techniques for feature-oriented product lines: feature-oriented programming
(FOP), aspect-oriented programming (AOP), and annotation-based or preprocessor-based
techniques (ANN); see Table 4 for an overview.

In a longitudinal study on a commercial product line in the telecommunications sector,
Ajila and Dumitrescu (2007) collected data quarterly on the product-line size, the product
size, and the code-churn size in terms of LOC over a period of several years and several
release cycles. In addition, they recorded the number of modules, each implementing a fea-
ture. The data entered an analysis of quarterly growth rates in the product-line size, among
others. We do not consider LOC-based constructs in our research design because they do not
qualify as an indicator measure for structural coupling and structural cohesion. However,
we included SLOC counts to document the sizes of the 28 Fuji product lines.

In earlier work, Sobernig (2010) explored means to quantify dependency structures
between feature units based on code-level dependencies. The approach puts forth the
abstraction of feature interaction networks and the computation of network-statistical mea-
sures over those dependency networks. Measure constructs are scattering (node degree),
scatteredness (density), and scattering concentration (degree concentration). When analyz-
ing the overall coupling structure in the three decompositions, we resorted to a density-based
analysis in Section 4.1.
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Liebig et al. (2010) applied several code-level measure constructs on conditional compi-
lation directives (#ifdefs). Among others, they describe scattering (SD) and tangling (TD)
of features in expressions of conditional compilation directives. In addition, measure con-
structs for the scoping of compilation directives (GRAN) and for their nesting (ND) are
provided. In their study, Liebig et al. (2010) concentrated on #ifdef-based programs. By
contrast, we require measures capable of capturing conditions of FOP-based product lines.
The constructs proposed by Liebig et al. (2010) have more recently been adopted in a study
by Berger and Guo (2013) to correlate measurements on variability-model size and on code
size. The proposed variability-model measures (e.g., number of top and leaf features) are
orthogonal to our code-level measures and the study design by Berger and Guo (2013) is an
important point of future extension for our work.

Apel and Beyer (2011) employed the visual-clustering tool FeatureVisu to decompose
dependency graphs and a mapping between feature and program elements of a product line
into a clustered graph, according to interdependencies between features. Based on the clus-
tered graph, they conducted measurements using internal-ratio feature dependency (IFD),
external-ratio feature dependency (EFD), as well as distance-based variants of the former
two constructs. The clustering and measurement approach was applied to data sets of 40
product lines, including the 28 product lines investigated in this paper. Apel and Beyer
(2011) arrived at important observations that motivated our study, namely that a feature-
oriented decomposition alone does not guarantee improved feature cohesion, and that
feature implementations take different roles, which yield different dependency structures.
In our work, we extend the reach of the FeatureVisu study by including a novel data
set on the product lines (type-system references rather than feature-code mappings), by
adding a view on structural coupling (CBU), and by drawing a connection to product-line
analysis.

There is an extensive body of research aiming at investigating internal attributes (and
beyond) of aspect-oriented code bases, including product lines (see, e.g., Burrows et al.
2010). A key difference to our work is that we investigate the code bases including the
variation for entire product lines (rather than single products). In addition, our observations
relate to code bases implemented using feature-oriented programming techniques (Fuji),
which target predominantely heterogeneous and statically crosscutting product-line designs
(Lopez-Herrejon and Apel 2007; Apel et al. 2008).

Figueiredo et al. (2008) contrast two variability implementation techniques (AOP,
syntax preprocessor) by looking at the further development of two product lines: a vari-
ant of the MobileMedia product line and a gaming product line called BestLap. In
their study, the authors collected data—among others—about the implementation struc-
ture and feature dependencies over several release cycles. Each release cycle represents
an implementation of a specific functional scenario (feature addition). The compari-
son between AOP and syntax preprocessing leads the authors to the conclusion that
the former is preferable when it comes to implementing alternative or optional fea-
tures, and that the latter has advantages when adding or removing mandatory features.
They measured concern diffusion over components (CDO), the concern diffusion over oper-
ations (CDC, including advices), and concern diffusion over lines of code (CDLOC), thus
extending the measure suite proposed by previous work (see also below; Sant’Anna et al.
2003). Feature dependencies are derived from the feature-code data in terms of feature
interlacing (component or operation sharing between two features) and feature overlapping
(co-ownership of components or operations between two features). This compares with the
measure constructs proposed by Sobernig (2010).
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Lopez-Herrejon and Apel (2007) present a measure suite aiming at quantifying aspect-
oriented program structures (e.g., feature and aspect counts, aspect-code fractions in terms
of LOC) and feature crosscutting. For the latter, the authors propose four different measure
constructs. The feature crosscutting degree (FCD) counts the number of classes that are
tangled by a feature-implementing aspect (aspects, ITDs). The advice crosscutting degree
(ACD) limits this tangling count on advices only. The homogeneity quotient differentiates
how much of the tangling is caused by advices or by ITDs. The program homogeneity
quotient (PHQ) aggregates the latter for all the features into a global indicator. The measures
are employed on four AspectJ product lines, two of which are also featured in our study:
AHEAD and Prevayler.

Another strand of research (Wong et al. 2000; Sant’Anna et al. 2003; Eaddy et al.
2008) on quantifying separation and composition of concerns relates to techniques of vir-
tually separating concerns in feature-oriented software development (Kästner et al. 2012)
and annotation-based or preprocessor-based implementation techniques of product lines.
The key difference to our measure suite is that their measure constructs relate features and
code units to evaluate, for example, activities in concern or feature location (Robillard and
Murphy 2007). Besides, the proposed measures are only local to the given measurement
units.

Wong et al. (2000) present a suite of three measures and their measure interactions to
indicate the closeness between functional, but higher-level concerns (such as features) and
code units. This includes the indicator measures for disparity between concerns and code
units, dedication of a code unit to a given concern (concern cohesion), and the concentration
of a concern in a given set of code units (concern coupling). These are primary examples of
measures based on absolute attributes, namely code slices.

The approach of concern diffusion measures, proposed by Sant’Anna et al. (2003), counts
code units that are required to implement a concern. Concern diffusion measures reflect the
number of operations (i.e., the concern diffusion over operations CDO) and components
(i.e., the concern diffusion over components CDC) required to implement a given concern.
Comparatively higher (lower) concern diffusion counts are read as indicators for a low
(high) cohesion.

Eaddy et al. (2007, 2008) present two refinements over the closeness measures of Wong
et al. (2000). On the one hand, the authors suggest variance-based aggregates of concen-
tration for a given concern as the degree of scattering (DoS). Similarly, the variance of
dedications for all program components is discussed as the degree of focus (DoF; or its inver-
sion, the degree of tangling; DoT). These measure instruments are devised as frequency and
dispersion statistics based on code-unit links to concerns. The DoS is defined as the straight-
forward bias-corrected sample variance of the contributions (expressed in SLoC) by all code
units to a given concern. The degree of focus (DoF) is calculated as the bias-corrected sam-
ple variance of the dedicated contributions (in SLoC) of a code unit over a given set of
concerns. These local measures are only suitable for characterising a feature in isolation.

Montagud et al. (2012) remark critically that measure constructs are seldomly reused
throughout the literature corpus and the different empirical research designs. Consequently,
the comparability of research findings is limited and the empirical validation of measures
remains an issue. We advance the field by reusing product-line code bases and measures
already considered in earlier studies (Apel and Beyer 2011; Siegmund et al. 2011; Bouwers
et al. 2011; Apel et al. 2013b). Reporting our indicative observations on potentials for static
and dynamic analyses of product lines (see Section 6) are a first step towards empirically
validating the CBU and the IUD measures with respect to external attributes.

Author's personal copy



Empir Software Eng

7.2 Tailed Distributions in Empirical Software Data

Empirical research on software engineering has been showing strong interest in how
empirical quantities generated from code bases (e.g., hierarchical and non-hierarchical rela-
tionships between classes) are structured (Taube-Schock et al. 2011; Louridas et al. 2008;
Potanin et al. 2005; Marchesi et al. 2004; Wheeldon and Counsell 2003). This way, we have
learnt that many empirical software quantities do not conveniently cluster around typical
values (e.g., the mean value) and do not follow straightforward distributional shapes (i.e.,
a Gaussian distribution). It is more common to find quantities that place a critical number
of observations so far from any typical value that reporting this typical value and derived
statistics (e.g., means, standard deviations) stops fulfilling the representation condition and
becomes misleading. Power-law distributions have attracted particular attention over the
last two decades (Clauset et al. 2009; Louridas et al. 2008). Beyond power laws, many dis-
tributional shapes having heavy tails of some sort—which indicate important fractions of
observations taking over-proportionally large portions of the measured entity—have been
found (see below). On the one hand, complex distributions bring a host of challenges for
any empirical software researcher, beginning with creating appropriate research designs,
establishing measurement plans, applying reporting guidelines, and extending to process-
ing measurement results using appropriate (often unconventional) statistical techniques
(Vasilescu et al. 2011). On the other hand, when mastered successfully, observations derived
from such heavy-tailed distributions are some of the most interesting ones for software
engineering research (Louridas et al. 2008).

Taube-Schock et al. (2011) selected 97 software systems written in Java provided by
the Qualitas corpus, including Tomcat, PicoContainer, and Weka. Note that the Qualitas
corpus, at the time of this writing, did not contain any feature-oriented code bases. Taube-
Schock et al. (2011) extracted data on between-class and within-class dependencies from
these systems and processed the link data into degree distributions. Using doubly logarith-
mic histogram plots as statistical “smoke tests”, the authors verified whether the 97 data
sets follow some power-law distribution by estimating the scale parameter. For the between-
class dependencies, their measurement plan revealed small fractions of classes being highly
coupled at a generally low level of coupledness in the dependency structures. Our findings
support these results because we find similar distribution structures for the class decom-
positions of the 28 feature-oriented product lines. Taube-Schock et al. (2011) discuss the
role of preferential attachment in object-oriented programming and software reuse in the
face of these dependency structures, without any empirical backing of these claims, how-
ever. For the same reason, we cannot draw any conclusions about processes leading to the
concentrated class decompositions in product lines.

Louridas et al. (2008) investigated the distribution structures of inter-dependencies
(fan/in, fan/out) between diverse building blocks of 17 software systems (e.g., Java classes
in J2SE SDK, Perl CPAN packages, Pascal modules underlying TEX). The data set col-
lection was processed to test whether the data distributions obeyed some power-law
distributions (using histogram plots on doubly logarithmic scales only) and to estimate
the key parameters (i.e., the scaling parameter) of such a fitting power-law distribution.
While the power-law hypothesis did not hold for all data sets, the authors found distri-
butions with long, heavy tails in every case. They discuss implications on software reuse
(e.g., observed preferences towards already highly reused artefacts), software testing (e.g.,
test prioritisation), and software optimisation (e.g., move-to-front re-orderings according to
popularity and access patterns). While covering a large array of different systems, feature-
oriented product lines are not included in their data collection. An indicative finding of
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our study (Section 6.1) is that focusing on the top dependent classes may cover critical
portions of variability-specific type-checking errors. This finding provides first empirical
evidence for feature-oriented product lines on the authors’ conjecture of potentials in test
prioritization.

8 Conclusion

Feature orientation offers an additional dimension of decomposition. Decomposing a
system along its provided features typically crosscuts the underlying object-oriented decom-
position, which has implications for fundamental structural properties such as cohesion and
coupling. In literature, feature decomposition is supposed to improve the modular structure
in terms of increasing cohesion and decreasing coupling, but little is known on whether this
is actually the case in feature-oriented systems.

We conducted an empirical study on 28 feature-oriented product lines to compare
feature-oriented and object-oriented decomposition with regard to structural attributes, such
as decomposition size, import coupling, cohesion, and unit sizes. Our study is based on a
comprehensive data set—which is an improvement over previous studies—based on actual,
structural references obtained from a product-line type system. Our observations add to the
critical debate on modularity and feature orientation (Kästner et al. 2011):

1. Feature units can form highly coupled code structures.
2. Degrees of per-unit coupling are unequally distributed among the feature units of prod-

uct lines. However, there are not necessarily hot-spot features, which has implications
for product-line analysis (Siegmund et al. 2013; Thüm et al. 2014).

3. Feature units do not always represent the most cohesive units of functionality when
compared to classes and class fragments, although this is one of the key goals of feature
orientation.

Against the background of these observations, we discussed implications on static
and dynamic analyses of product lines. For this purpose, we conducted two feasi-
bility studies on type-checking product lines and on detecting non-functional feature
interactions. Our studies show that there are associations between important product-
line characteristics (i.e., type errors, performance interactions incurred by inter-feature
method calls) and measurements obtained from applying measure constructs used in
our study (e.g., CBU, IUD). This opens new research directions, and we formulated
strong hypotheses on the predictive power of individual measures to be empirically
confirmed.

In further work, we will systematically integrate the findings of this study with ear-
lier empirical evidence in terms of a meta-study. We will also explore empirical research
designs integrating our findings to improve prediction systems of non-functional proper-
ties (Kolesnikov et al. 2013a).

In the long run, feature orientation as a paradigm of thinking about and guiding soft-
ware development will see broader industrial adoption, as we firmly believe. This is because
it took up on key lessons learned in the practice of product-line engineering: Features
must be explicit (modular, if possible) in design and code, across the whole life cycle of
a product line and the corresponding software products. The results of our study provide
valuable insights into the nature and merits of feature orientation, to pave the way for
and to guide industrial adoption—be it in the form of tools like Fuji or alternative ways
(Apel et al. 2013a).
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