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Abstract

When developing domain-specific modeling languages (DSMLs), software engineers have to make a number of important
design decisions on the DSML itself, or on the software-development process that is applied to develop the DSML. Thus,
making well-informed design decisions is a critical factor in developing DSMLs. To support this decision-making process, the
model-driven development community has started to collect established design practices in terms of patterns, guidelines,
story-telling, and procedural models. However, most of these documentation practices do not capture the details necessary to
reuse the rationale behind these decisions in other DSML projects. In this paper, we report on a three-year research effort to
compile and to empirically validate a catalog of structured decision descriptions (decision records) for UML-based DSMLs. This
catalog is based on design decisions extracted from 90 DSML projects. These projects were identified—among others—via an
extensive systematic literature review (SLR) for the years 2005–2012. Based on more than 8,000 candidate publications, we
finally selected 84 publications for extracting design-decision data. The extracted data were evaluated quantitatively using a
frequent-item-set analysis to obtain characteristic combinations of design decisions and qualitatively to document recurring
documentation issues for UML-based DSMLs. We revised the collected decision records based on this evidence and made the
decision-record catalog for developing UML-based DSMLs publicly available. Furthermore, our study offers insights into UML
usage (e.g. diagram types) and into the adoption of UML extension techniques (e.g. metamodel extensions, profiles).
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1. Introduction

In model-driven development (MDD), a domain-specific
modeling language (DSML) is a specialized modeling lan-
guage tailored for graphical modeling tasks in a particular
application domain, e.g. for business domains such as health-
care and banking, or technical domains such as access control
and system backup [1, 2, 3, 4]. MDD uses models at differ-
ent abstraction levels as central development artifacts. Ex-
ecutable models are then derived from higher-level models
through model transformations [5, 6, 7]. By raising the ab-
straction level in the software-development process, DSMLs
aim at increasing the productivity of developers and at re-
ducing maintenance costs [8, 2, 9].

Developing DSMLs based on the Unified Modeling Lan-
guage (UML [10]) and/or on the Meta Object Facility (MOF
[11]) has become a popular option in the MDD context [12,
13, 14, 15, 16]. This is because the UML/MOF infrastruc-
ture provides built-in implementation techniques for DSMLs,
which allow for reusing and for extending the UML di-
rectly. As another advantage, the UML can leverage industry-
grade tool support (e.g. Sparx Systems Enterprise Architect,
IBM Rational Software Architect, Eclipse Model Development
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Tools). UML has been subjected to scientific evaluations of
its semantic foundations (see, e.g., [17, 18, 19]) and comes
with standardized modeling extensions (see, e.g., [20, 21]).
Moreover, the UML benefits from the systematic and contin-
uous maintenance through the Object Management Group
(OMG). Thereby, the UML and the MOF provide a rich DSML
development toolkit for DSML design and implementation.

As in most software-development activities, experiences
and lessons learned from developing DSMLs based on
MOF/UML in a disciplined manner are particularly valu-
able, yet barely documented [22, 4]. Design-decision making
in and on DSML development usually includes design deci-
sions on language-model definition, constraint specification,
concrete-syntax design, and platform integration [22]. Each
of these concerns potentially involves multiple, interrelated
design decisions.

Critical details of design decisions are rarely documented
explicitly—a fact also referred to as the capture problem of
design-rationale documentation [23, 24]. Decision details in-
clude different solutions considered before arriving at a final
design decision (i.e. decision options), the decision-makers’
positive and negative assessments of the considered options
given a set of requirements on the DSML’s design (decision
drivers), and the positive and negative effects on subsequent
design-decision making observed when having adopted one
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or several options (decision consequences).
An important barrier to documenting design rationale in

necessary detail, in DSML development and in software de-
velopment in more general, is the considerable overhead that
results from creating and maintaining design-rationale docu-
mentation. Other problems explored in the research on doc-
umenting design-rationale include the intrusiveness of docu-
mentation techniques, lack of incentives, and cognitive barri-
ers in software-design processes (see, e.g., [24, 25, 26]). As a
consequence, new DSML development projects cannot profit
from experiences gained in prior DSML projects. Moreover,
without such a body of knowledge on DSML development
and evolution, existing DSMLs can become difficult to main-
tain.

Important goals in many fields of software-engineering
(SE) research have been to limit the effort for document-
ing design decisions for DSML projects and to increase the
quality of the documented rationale. This research has ex-
plored ways of gathering, validating, and referencing collec-
tions of reusable generic design rationale—such as software
patterns [27]—to achieve these two goals. In our work,
we build on the software-pattern tradition for capturing and
for reusing SE knowledge. A software pattern documents
a proven solution to a recurring engineering problem in or
across different application domains, including e.g. software
architecture, distributed systems, and application integration
(see, e.g., [28, 29, 30]). While patterns are already useful
when used in isolation, they unfold their whole potential as
part of pattern languages [31, 32]. A pattern language docu-
ments the relations between different patterns and describes
how interrelated SE problems can be solved in a proven way.
In particular, a pattern language gives structure to a pattern
catalog and guides the software developer in choosing a suit-
able selection of patterns to address a given problem.

In this spirit, in a three-year research effort, we docu-
mented recurring design decisions extracted from 90 UML-
based DSMLs in terms of a decision-record catalog [33]. Sim-
ilar to pattern descriptions, we document reusable DSML de-
sign decisions via a structured text format (decision record).
Each decision record documents detailed information about
a given decision-making situation (decision point). The cata-
log of decision records also describes typical combinations of
decisions on developing a DSML. This way, the catalog serves
as a source of reusable generic design rationale when devel-
oping DSMLs using UML.

Figure 1 shows a high-level overview of design-decision
making for developing a UML-based DSML. In a decision-
making situation, a decision is triggered by a decision prob-
lem. An exemplary problem is about how to express design
constraints of a DSML. Each problem occurs in a particular
context. For instance, one must define constraints on the
DSML’s language elements which cannot be expressed via
graphical symbols. Decision making is affected by different
drivers that influence the choice of a particular solution to
the problem: When and where do constraints have to be
checked? Are model-level checks via some graphical DSML
editor needed, or instance-level checks in a particular tar-

get platform? For each problem, typically different solutions
(options) are available; for example, defining constraints via
a formal constraint language or using informal textual anno-
tations. Each option comes with characteristic consequences.
A consequence of formal constraints, for instance, is that they
can be checked via corresponding software tools. At the same
time, formal constraints are harder to change and to main-
tain than informal annotations.

A decision record in our catalog reflects this structure of
decision-making situations by describing a recurring problem
in a given context, common solution options as well as char-
acteristic drivers and consequences. The decision-record cat-
alog and the results of a domain analysis (see, e.g., [34]) for
the DSML’s application domain are then used by DSML de-
velopers to make the actual design decisions for a particular
DSML. Finally, the design decisions guide the actual imple-
mentation of the DSML using UML (see Figure 1).

In this paper, we report on applying a systematic litera-
ture review (SLR) and a content analysis as methods to rig-
orously collect, document, and validate design decisions on
UML-based DSLs. We provide examples on how the respec-
tive design decisions are documented and how they can be
applied when defining a new UML-based DSML. We do not,
however, discuss all design decisions and corresponding de-
cision options identified through this study. They are docu-
mented in a companion catalog in full detail [33].1 In other
words, this paper emphasizes the research method and doc-
uments how design decisions were identified, extracted, and
validated. The key contributions of this paper are:

• Research design: Our multi-stage and multi-method re-
search effort took place over three years. The stages
of our work include preparatory design reviews, early
manual literature searches [35], a pilot study [36], con-
struction of a quasi-gold-standard (QGS) paper corpus,
an extensive automated search, and a citation-driven
manual search (snowballing; [37, 38]). In a sequen-
tial multi-method (qualitative-quantitative) research de-
sign, we conducted an extensive systematic literature re-
view (SLR), as well as content analysis and data mining
to extract details on reusable, generic design decisions
from the SLR.

• Literature review: The SLR was performed by adopt-
ing established guidelines [37, 39, 40]. Starting from
more than 8,000 publications retrieved by automated
and snowballing searches, in a two-extractor process,
we selected 84 publications representing 80 UML-based
DSMLs. A detailed SLR protocol is available [41].2

• Content analysis: Design decisions were extracted from
these 84 publications using a deductive content anal-
ysis [42, 43]. This content analysis involved a cod-
ing schema (including indicators and decision rules for
coders), several inter-subject iterations over the paper

1The design-decision catalog is available at http://epub.wu.ac.at/
4312/.

2The SLR protocol is available at http://epub.wu.ac.at/4311/.
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Figure 1: High-level overview of design-decision making for developing domain-specific modeling languages (DSMLs) using the
Unified Modeling Language (UML).

material (segmentation, coding), and an inter-rater re-
liability analysis.

• Data mining: We performed a frequent-item-set analy-
sis [44] to mine the design-decision data collected from
the SLR for recurring decision-making patterns.

This paper is accompanied by three companion docu-
ments. First, and in line with established SLR practice, there
is a detailed review protocol [41] of all steps performed to
make our SLR transparent and reproducible. Second, there is
a pre-study revision of the decision-record catalog [45] which
served as input for sub-steps of the SLR (e.g. construction of
a quasi-gold standard) and of the content analysis (e.g. con-
struction of a coding schema). Third, there is a post-study
revision [33] of this catalog which incorporates the results of
our SLR as an increment to the pre-study revision.

The remainder is structured as follows: In Section 2, we
justify the choice of capturing DSML design rationale via an
SLR and the choice of representing design rationale in terms
of structured decision records. We also motivate our research
by giving two illustrative, concrete examples of using the
decision-record catalog in DSML development: design-space
analyses and design-process documentation. Section 3 enu-
merates the research questions driving the SLR study. In
Section 4, we present the details of conducting and the in-
termediate results of the various stages of our study. The
design-decision data gathered from the corresponding identi-
fied DSML designs, as well as study limitations, are described
in Section 5. Important implications are discussed in Sec-
tion 6. Related work on DSL development and empirical re-
search on UML is reviewed in Section 7. Section 8 concludes
the paper by reiterating over key contributions and by point-
ing to future work.

2. Design Rationale on DSML Development

A domain-specific language (DSL) is a software language
which is specialized for addressing a given class of engineer-
ing problems, which are characteristic for an application do-
main. A DSL is based on abstractions aligned to this domain
and provides a concrete syntax suitable for employing its ab-
stractions effectively. A domain-specific modeling language

(DSML) is a DSL with a graphical concrete syntax for the
primary purpose of diagrammatic modeling in a particular
application domain [4, 22]. A DSML focuses on providing
modeling abstractions for the problem concerns in the ap-
plication domain which are independent from a given soft-
ware platform, rather than on issues of implementing the
domain (see, e.g., [46]). The collection of specification arti-
facts, which contribute to defining a DSML, is referred to as
the DSML’s language model in the broader sense [22]. This
language model contains a core language-model which de-
scribes the structural elements and their relationships using
metamodeling techniques (e.g. metamodels and/or profiles
in the MOF/UML). This core language-model is also known
as a DSML’s abstract syntax, especially when specified using
grammars. Hereafter, for brevity, we refer to a DSML’s lan-
guage model to denote its core language-model (abstract syn-
tax) only. As another characteristic, formal specification tech-
niques are used in DSML development to express the struc-
tural and behavioral semantics of the DSML and its instance
models [47]. A DSML is then commonly deployed as part of a
model-driven development toolkit (e.g. as part of the Eclipse
Modeling Framework).

For the scope of our study, we look at DSMLs which are in-
ternal to or embedded into the Unified Modeling Language
version 2.x (UML 2.x; [15, 48, 49]). The language mod-
els of embedded DSMLs are defined on top of the UML 2.x
or by extending the UML 2.x language model [10]. UML
2.x was rapidly adopted by DSML developers as the host
modeling-language for their UML-based DSMLs. For one,
this was facilitated by important modeling toolkits already
providing UML 2.x support even before its final release in
2005 (e.g. Sparx Systems Enterprise Architect, Eclipse Mod-
eling Tools). In some cases, this went hand in hand with
dropping support for UML 1.x entirely. Besides, UML 2.x pro-
vides a larger base of predefined structural and behavioral di-
agram types (14 vs. 8 in UML 1.x), on which a DSML can be
built. In addition, UML 2.x and its language architecture [50]
provide for three implementation techniques for embedded
DSMLs: language-model extension, language-model piggy-
backing, and language-model specialization. Note that a
DSML development project might require a combination of
these three implementation techniques.
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To begin with, a DSML can be defined as a language-model
extension [1] of UML 2.x. In this scenario, the UML 2.x meta-
model is extended and modified in an additive manner. This
can be achieved by first introducing new metamodel pack-
ages, which contain new or redefining metaclass definitions.
These metamodel packages are defined using the Meta Ob-
ject Facility (MOF) and they may reference predefined UML
2.x metamodel packages. To create an actual UML 2.x meta-
model derivative, they are then merged into the UML 2.x
metamodel packages [51, 52].

A second option is to have a DSML use UML 2.x as
its base and add DSML-specific elements without changing
the underlying structural and behavioral UML 2.x semantics
(language-model piggybacking; [1]). This can be achieved
using UML 2.x profiles [15, 48], which decorate models de-
fined using the UML 2.x metamodel or a UML 2.x metamodel
derivative.

A third DSML implementation technique applicable to
UML 2.x is a variant of language-model specialization [1]:
metamodel pruning. In metamodel pruning, an effective
metamodel (i.e. the DSML language model) is extracted from
an original metamodel (e.g. UML 2.x metamodel) in an au-
tomated manner [53, 54]. The extraction procedure es-
tablishes a generalization relationship between the effective
(super-)metamodel and the original (sub-)metamodel. This
way, DSML models defined over the smaller, effective meta-
model also conform to the larger, original metamodel.

The above DSML implementation techniques for UML-
based DSMLs go beyond the ones available in UML 1.x. More-
over, UML 2.x avoids known semantics pitfalls relating to
these implementation techniques in UML 1.x (e.g. profiles;
[50, 55]). This also determined our choice of UML 2.x.

Design rationale (DR; [23, 24]) on DSML development is
the reasoning and justification of decisions made when de-
signing, creating, and using the core artifacts of a DSML
(e.g. abstract and concrete syntax, behavior specification,
metamodeling infrastructure, MDD tool chain). Document-
ing design rationale explicitly aims at helping design-decision
makers by providing and explaining past decisions (e.g. in a
design-space analysis) and by improving the understanding
of a DSML design during development and maintenance (e.g.
as a kind of design-process documentation). Most impor-
tantly, documenting design rationale on UML-based DSML
development must go beyond a mere enumeration of advan-
tages and disadvantages specific to the three DSML imple-
mentation techniques in UML 2.x (see above). On the one
hand, the choice of implementation techniques is only one
decision dimension. On the other hand, the rationale behind
such a choice can be specific to every DSML development
project.

We distinguish between two kinds of DSML design ra-
tionale [27]: DSML-specific design rationale reflects rea-
soning required and collected explicitly during a partic-
ular design process for a single DSML. Examples of ex-
plicitly documented, specific design rationale in software-
language engineering may be found in artifacts created in
source-configuration management tools and development-

issue trackers and open-standards artifacts. Examples in-
clude Java Community Process documents and the recorded
issue votes during the ANSI/CLISP X3J13 specification pro-
cess as collected in Steele [56]. DSML-generic design ra-
tionale is reasoning knowledge obtained through develop-
ing multiple DSMLs, for one or several application domains.
Generic design rationale is commonly found only as the
implicit knowledge of experienced DSML engineers. Soft-
ware patterns have been used in software-language engi-
neering to document generic design rationale explicitly (see,
e.g., [1, 57]).

An approach for managing design rationale in UML-based
DSML development involves a procedure to represent design
rationale, to capture it, and to put the documented design
rationale to use in other DSML development projects. Rep-
resenting and organizing a body of design rationale chunks
deals with structuring and creating documentation items. In
this paper, our emphasis is on creating documentation items
on generic DSML design rationale (decision records) as ex-
plained in Section 2.1. Two intended scenarios for using
the documented generic DSML design rationale (i.e. design-
space analysis, process documentation) are presented in Sec-
tion 2.2. Our approach of capturing and of transforming spe-
cific DSML rationale into generic design rationale is elabo-
rated on in Section 4.

2.1. Representing Design Rationale

The process of developing a DSML involves different, char-
acteristic development activities [22, 58]. From a decision-
making perspective, each development activity also marks a
decision point, i.e. a point in time at which particular design-
decision problems must be addressed. In doing so, differ-
ent design solutions based on their assumed or known prop-
erties for the DSML design as well as their effects on any
subsequent design decisions are assessed. From the angle of
design-rationale documentation, a decision point is a point
in time for recording an on-going decision-making process.

In our approach, design rationale on a given decision point
is captured from multiple DSML projects and represented as
a reusable resource for decision making at this decision point
in developing a new DSML. We refer to this reusable resource
as a decision record (see Figure 3).3 In particular, we consider
six decision points in UML-based DSML development and,
therefore, six decision records (D1–D6, hereafter).

Language-model definition (D1) involves identifying the re-
spective domain abstractions that must be represented in our
DSML, after a systematic analysis and a structuring of the re-
spective application domain. The main challenge at this de-
cision point is how to identify and to describe these domain
abstractions in order to arrive at a comprehensive and com-
prehensible basis for developing the DSML. Language-model

3Throughout the paper, we apply some notation conventions to refer to
decision records and their content items such as decision options. Di denotes
a decision record corresponding to decision point i; Oi.j refers to decision
option j at decision point i. In set notation, the O-prefix for decision options
as set elements is omitted for brevity.
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formalization (D2) is about how the domain definition cre-
ated in D1 can be turned into a formal model. By formal
model, we refer to a description that can be checked for con-
formance against previously defined well-formedness rules.
Moreover, a formal model is amenable to processing and to
manipulating by automated tools [59]. For the DSMLs stud-
ied in this paper, a formal language model is realized using
well-defined metamodeling languages (MOF/UML). A meta-
modeling language is itself based on a well-defined and well-
documented language model. The latter is referred to as the
meta-metamodel, such as the CMOF for the UML metamodel.
In addition, a metamodeling language provides at least one
well-defined and well-documented concrete syntax to define
the DSML’s language model. The DSMLs of interest in this
paper can, for example, employ the CMOF diagram syntax
to specify a UML metamodel extension. To remove ambigu-
ity from a formal language model, a language model is ex-
tended to include additional language-model constraints (D3)
to express constraints on domain abstractions, such as invari-
ants for domain concepts, pre- and post-conditions, as well as
guards. Concrete-syntax definition (D4) is about deciding on
the “user interface” of UML-based DSMLs, looking at several
options (e.g. model annotations, reuse or extend a diagram-
matic syntax, mix foreign syntaxes with the UML syntax).
The behavior specification (D5) of a DSML defines behaviors
of one or more DSML language element(s). It determines
how the language elements of the DSML interact to produce
the behavior intended by the DSML engineers using, e.g.,
UML M1 behavior models or formal textual specifications.
To produce executable, platform-specific model artifacts from
DSML models, all DSML artifacts need to be mapped to a soft-
ware platform using techniques of platform integration (D6;
e.g. model transformations, code generators).

The order in which these development activities, and the
corresponding decision points, are considered can character-
ize different DSML development styles [22]. Depending on
the DSML development scenario some decision points may
also be skipped (depending on, e.g., application domain, us-
age intention, and development style).

2.1.1. Decision Records
A decision record provides two or more descriptions of

proven solutions to a generic and recurring problem in devel-
oping a DSML. The problem described by a decision record
must not only recur, that is, be observable for many DSML
development projects, but it must also have the quality of
requiring an act of design-decision making. For structuring
and presenting the recurring DSML design decisions as de-
cision records, we developed and refined a document tem-
plate [33, 35, 45]. Each decision record is structured into
seven sections. The most important sections are identified
in Figure 3, an excerpt from the actual decision record on
concrete-syntax definition (D4) is depicted in Figure 2.

A decision record first describes a recurring design-decision
problem that has been repeatedly observed for several DSML
development projects. The exemplary decision record in Fig-
ure 2 gives a problem statement frequently observed when

deciding on the concrete-syntax style for a DSML: “In which
representation should the domain modeler create models us-
ing the DSML?”. This problem applies to a specific decision
context. The decision context is primarily set by one of the de-
cision points characteristic for DSML development (D1–D6,
above). In addition, a particular metamodeling toolkit (e.g.
MOF/UML), the application domain modeled by a DSML,
and the target software platform can contribute to establish-
ing the decision context. To give an example: The problem
statement in Figure 2 would not apply for a DSML project
which is not about providing a particularly tailored or any
concrete syntax to modelers. This could be because model-
ers are expected to work on an abstract-syntax representation
only.

As its core content, a decision record lists decision options
which describe solutions to the initial stated decision prob-
lem. The excerpt in Figure 2 shows the option MODEL AN-
NOTATION (O4.1) which is about realizing a tailored con-
crete syntax by means of model annotations. Next, a deci-
sion record documents means to select an option (or a com-
bination of options) in terms of decision drivers. An exem-
plary driver in Figure 2 is the cognitive expressiveness of
concrete-syntax styles. These drivers are likely to steer the
DSML designer towards a particular option or option com-
bination. This selection decision affects the solution spaces
of subsequent decisions. For example, they can set a new
decision context. To scaffold follow-up decision making, a
decision record makes the DSML designer aware of known
decision consequences. Consequences can include the need
to evaluate other decision options within the same decision
record or in related decision records. However, consequences
can also point to follow-up decision problems not covered by
the decision-record catalog alone. Such a consequence is the
need for usability evaluations in Figure 2.

To provide evidence that the listed decision options are
taken from observed practice, a decision record comprises
DSML projects as examples of application of the individual
options or option combinations. In Figure 2, one can see
that a number of DSML projects also recorded as part of our
decision-record catalog are referenced as applications. A de-
cision record is then closed by replicating one concrete real-
ization sketch of one decision option, taken from one DSML
application. In Figure 2, an example of providing a combined
graphical and textual concrete-syntax is given.

This document template has been derived—over multiple
research stages (see Section 4)—from prior work on docu-
menting design rationale in software engineering. In partic-
ular, it is inspired by software-pattern descriptions [32] and
architectural design decisions [60]. For the content of a de-
cision record, in particular the decision options, to qualify
as generic design rationale, it must reflect recurring prac-
tice. To have recurrence, we require a decision option to
be encountered in a certain number of DSML applications.
To become included into the draft, pre-study revision of the
decision records, decision options had to be accounted for
by two distinct sources. For example, an option could be
supported by one primary study documenting a DSML and
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D4 Concrete-Syntax Definition
Problem. In which representation should the domain modeler create models using the DSML?

Context. The concrete syntax serves as the DSML’s interface. Different syntax types can be defined
and tailored to the need of the modeler . . .

. . .

. . .

. . .
Options.

O4.1 Model annotation: Attach UML comments as concrete-syntax cues to a UML model, containing
complementary domain information such as keywords, narrative statements, or formal definitions (see,
e.g., [3]). . . .

O4.2 Diagrammatic syntax extension: . . .
. . .
. . .
. . .

Decision drivers. An overview of positive and negative links between decision drivers and available
options is shown in the table below. . . .

Non-diagrammatic UML notation requirements: Textual notations [1] for the UML are auxiliary rep-
resentations and act as frontend syntaxes (O4.4).

Driver/Option O4.1 O4.2 O4.3 O4.4 O4.5 O4.6 O4.7

Non-diagrammatic UML notation
requirements o o − − − o o

Degree of cognitive expressiveness − + +/− +/− +/− − o
Disruptiveness − + + + ++ − +/−
Degree of required modeling-tool
support ++ − +/− + −− ++ o

Consequences.
Usability evaluation: The DSML syntax is especially important from the DSML user perspective. If

a DSML is mainly used by non-programmers, a special focus on usability aspects is needed. . . .
. . .
. . .
. . .

Application. In our case studies we provide a couple of different concrete syntax definitions such as
UML stereotype-specific annotations for reusing symbols (P1, P3, P7, P9, P10). . . .

«AuditEventSource» Login failure :

  loginFailure() -> LoginInfo

    { userID, timestamp }

  <AR> LoginError -> LoginInfo :

    { AuditTrail::log() }

      <C> [userID, OperatorKind::equal, 1]

userID : Integer

timestamp : TimeExpression

«signal»

LoginInfo

publish

«AuditEventSource» loginFailure()

ERP-System

AuditSystem

condition

IfAdmin

userID

OperatorKind::equal

1

C

AuditTrail

log()

LoginError AR

subscribe : LoginInfo

Figure 1: Exemplary graphical and textual concrete syntax [2].

Sketch. Figure 1 shows an example of two concrete syntax definitions . . .

Figure 2: Excerpt from the actual decision record on concrete-syntax definition (D4) in Hoisl et al. [33], highlighting the document
sections corresponding to the key concepts in Figure 3.

one secondary study on designing UML-based DSMLs. Based
on the study’s results, in the post-study revision, we veri-
fied which design option has at least applications in three
different third-party DSMLs, that is, DSMLs not developed
by the authors. This way, we adopt a commonly followed
rule of thumb in the software-pattern community. This rule
of thumb mandates that a software-pattern description must
provide at least three known uses of the pattern in existing
software systems (see, e.g., [31, 32]).4

The catalog revised based on the study results provides
six decision records—one for each decision point (D1–D6)—
containing 27 decision options to describe a DSML [33].5 Ta-
bles 1 and 2 provide a preview of the study results, including

4Note, however, that the number of occurrences observed for important
decision options (and decision-option sets) turned out much higher than
three (see Sections 5 and 6).

5Note that there are actually 31 decision codes/numbers. Four of those
codes/numbers serve for coding pseudo-decision options; e.g., not taking
any decision. Depending on the analysis requirements, they are either ig-
nored or included as dedicated no-option codes.

thumbnail descriptions of nine frequently adopted decision
options which help characterize a majority of the DSML de-
signs identified in our study (see also Section 6).

2.1.2. Decision-Option Sets
Making a decision when developing a specific UML-based

DSML is about evaluating and finally adopting one or several
decision options listed by a decision record in our decision-
record catalog [33]. This way, a decision links to and con-
forms with a decision record (see also Figure 3). Design-
decision making on a given DSML involves decisions at sev-
eral, but not necessarily all decision points (D1–D6). Adding
up all decisions results in a set of adopted decision options
(an option set, hereafter) which represents the DSML design
as product of this decision making.6

6Option sets are also an outcome of the coding step during content anal-
ysis (coding form; see Section 5.1) and a prerequisite for later data mining
(see Section 3).
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Table 1: Thumbnail descriptions of 12 (out of 27 total) decision options specific to the decision points 1–3 (D1–D3). 6 decision
options (O1.1, O1.4, O2.2, O2.3, O3.1, O3.4; in bold font face) characterize a critical number of DSML designs, a key finding of
our SLR study (see Section 6).

Pr
ob

le
m

st
at

em
en

t
O

pt
io

n
s

D
ri

ve
rs

D
1

H
ow

sh
ou

ld
th

e
do

m
ai

n
(o

r
do

m
ai

n
fr

ag
m

en
t)

be
de

sc
ri

be
d?

O
1.

1
IN

F
O

R
M

A
L

T
E

X
T

U
A

L
D

E
S

C
R

IP
T

IO
N

U
se

in
fo

rm
al

te
xt

to
id

en
ti

fy
an

d
to

de
sc

ri
be

do
m

ai
n

ab
st

ra
ct

io
ns

an
d

th
ei

r
re

la
ti

on
sh

ip
s

(e
.g

.d
om

ai
n-

vi
si

on
st

at
em

en
ts

,d
om

ai
n-

di
st

ill
at

io
n

lis
ts

).
O

1.
2

F
O

R
M

A
L

T
E

X
T

U
A

L
D

E
S

C
R

IP
T

IO
N

U
se

fo
rm

al
te

xt
to

id
en

ti
fy

an
d

to
de

sc
ri

be
do

m
ai

n
ab

st
ra

ct
io

ns
an

d
th

ei
r

re
la

ti
on

sh
ip

s
(e

.g
.a

gr
am

m
ar

,a
un

iv
er

sa
la

lg
eb

ra
).

O
1.

3
IN

F
O

R
M

A
L

D
IA

G
R

A
M

M
AT

IC
M

O
D

E
L

U
se

ad
ho

c
di

ag
ra

m
s

to
id

en
ti

fy
an

d
to

de
sc

ri
be

do
m

ai
n

ab
st

ra
ct

io
ns

an
d

th
ei

r
re

la
ti

on
sh

ip
s

(e
.g

.e
ar

ly
fe

at
ur

e
di

ag
ra

m
s,

ps
eu

do
cl

as
s

di
ag

ra
m

s)
.

O
1.

4
F

O
R

M
A

L
D

IA
G

R
A

M
M

A
T

IC
M

O
D

E
L

U
se

fo
rm

al
ly

de
fin

ed
di

ag
ra

m
s

to
id

en
ti

fy
an

d
to

de
sc

ri
be

do
m

ai
n

ab
st

ra
ct

io
ns

an
d

th
ei

r
re

la
-

ti
on

sh
ip

s
(e

.g
.M

O
F

an
d

U
M

L
cl

as
s

di
ag

ra
m

s,
ST

AT
EM

AT
E

st
at

ec
ha

rt
s)

.

A
va

ila
bi

lit
y

of
ex

is
ti

ng
di

ag
ra

m
-

m
at

ic
do

m
ai

n
de

sc
ri

pt
io

ns
,

in
-

te
nd

ed
ta

rg
et

au
di

en
ce

,
co

rr
e-

sp
on

de
nc

e
m

is
m

at
ch

es
w

it
h

U
M

L
se

m
an

ti
cs

,
co

ns
is

te
nc

y
pr

es
er

va
-

ti
on

ef
fo

rt
,

co
gn

it
iv

e
ef

fe
ct

iv
en

es
s

of
a

re
pr

es
en

ta
ti

on
al

fo
rm

at

D
2

In
w

hi
ch

M
O

F/
U

M
L-

co
m

pl
ia

nt
w

ay
sh

ou
ld

th
e

do
m

ai
n

co
nc

ep
ts

be
fo

rm
al

iz
ed

?

O
2.

1
M

1
S

T
R

U
C

T
U

R
A

L
M

O
D

E
L

Im
pl

em
en

t
th

e
la

ng
ua

ge
m

od
el

us
in

g
st

ru
ct

ur
al

U
M

L
m

od
el

s
at

le
ve

l
M

1
(e

.g
.

cl
as

s
or

co
m

po
si

te
-s

tr
uc

tu
re

di
ag

ra
m

s)
.

O
2.

2
P

R
O

F
IL

E
R

E
-/

D
E

F
IN

IT
IO

N

Im
pl

em
en

t
th

e
la

ng
ua

ge
m

od
el

by
cr

ea
ti

ng
(o

r
by

ad
ap

ti
ng

ex
is

ti
ng

)
U

M
L

pr
ofi

le
s

(i
.e

.«
pr

of
il

e»
pa

ck
ag

es
co

nt
ai

ni
ng

st
er

eo
ty

pe
de

fin
it

io
ns

).
O

2.
3

M
E

TA
M

O
D

E
L

E
X

T
E

N
S

IO
N

Im
pl

em
en

t
th

e
la

ng
ua

ge
m

od
el

by
cr

ea
ti

ng
on

e
or

se
ve

ra
l

m
et

am
od

el
ex

te
ns

io
ns

(i
.e

.«
me

ta
mo

de
l»

pa
ck

ag
es

co
nt

ai
ni

ng
ne

w
m

et
ac

la
ss

es
an

d
as

so
ci

at
io

ns
).

O
2.

4
M

E
TA

M
O

D
E

L
M

O
D

IF
IC

AT
IO

N

Im
pl

em
en

t
th

e
la

ng
ua

ge
m

od
el

by
cr

ea
ti

ng
on

e
or

se
ve

ra
l

m
et

am
od

el
ex

te
ns

io
ns

(i
.e

.«
me

ta
mo

de
l»

pa
ck

ag
es

co
nt

ai
ni

ng
re

de
fin

in
g

m
et

ac
la

ss
es

an
d

as
so

ci
at

io
ns

).

O
ve

rl
ap

of
D

SM
L

an
d

U
M

L
do

-
m

ai
n

sp
ac

es
,

de
gr

ee
of

D
SM

L
ex

-
pr

es
si

ve
ne

ss
,

po
rt

ab
ili

ty
an

d
ev

o-
lu

ti
on

re
qu

ir
em

en
ts

,c
om

pa
ti

bi
lit

y
w

it
h

ex
is

ti
ng

ar
ti

fa
ct

s

D
3

D
o

w
e

ha
ve

to
de

fin
e

co
n-

st
ra

in
ts

ov
er

th
e

la
ng

ua
ge

m
od

el
(s

)?
If

so
,

ho
w

sh
ou

ld
th

es
e

co
ns

tr
ai

nt
s

be
ex

pr
es

se
d?

O
3.

1
C

O
N

S
T

R
A

IN
T-

L
A

N
G

U
A

G
E

E
X

P
R

E
S

S
IO

N

M
ak

e
la

ng
ua

ge
-m

od
el

co
ns

tr
ai

nt
s

ex
pl

ic
it

us
in

g
a

co
ns

tr
ai

nt
-e

xp
re

ss
io

n
la

ng
ua

ge
(e

.g
.O

C
L,

EV
L)

.
O

3.
2

C
O

D
E

A
N

N
O

TA
T

IO
N

M
ak

e
la

ng
ua

ge
-m

od
el

co
ns

tr
ai

nt
s

ex
pl

ic
it

us
in

g
ex

pr
es

si
on

s
in

(o
r

a
sp

ec
ia

liz
ed

su
b-

la
ng

ua
ge

em
be

dd
ed

w
it

hi
n)

a
ge

ne
ra

l-
pu

rp
os

e
pr

og
ra

m
m

in
g

la
ng

ua
ge

(G
PL

;e
.g

.J
av

a)
.

O
3.

3
C

O
N

S
T

R
A

IN
IN

G
M

O
D

E
L

T
R

A
N

S
F

O
R

M
AT

IO
N

Ex
pr

es
s

la
ng

ua
ge

-m
od

el
co

ns
tr

ai
nt

s
as

pa
rt

of
ex

is
ti

ng
m

od
el

(m
od

el
-t

o-
te

xt
/m

od
el

-t
o-

m
od

el
;

M
2T
/M

2M
)

tr
an

sf
or

m
at

io
ns

,o
r

th
ro

ug
h

de
di

ca
te

d
on

es
(e

.g
.O

C
L

m
od

el
-n

av
ig

at
io

n
ex

pr
es

-
si

on
s

or
co

nd
it

io
na

ls
ta

te
m

en
ts

in
ET

L/
EO

L
te

m
pl

at
es

).
O

3.
4

IN
F

O
R

M
A

L
T

E
X

T
U

A
L

A
N

N
O

TA
T

IO
N

U
se

in
fo

rm
al

an
d

un
st

ru
ct

ur
ed

te
xt

an
no

ta
ti

on
s

to
ca

pt
ur

e
co

ns
tr

ai
nt

de
sc

ri
pt

io
ns

in
th

e
la

n-
gu

ag
e

m
od

el
(e

.g
.p

ro
se

te
xt

in
U

M
L

co
m

m
en

ts
).

C
on

st
ra

in
t

fo
rm

al
iz

at
io

n
re

qu
ir

e-
m

en
ts

,
la

ng
ua

ge
-m

od
el

ch
ec

ki
ng

ti
m

e,
in

te
gr

at
ed

la
ng

ua
ge

-m
od

el
co

ns
tr

ai
nt

re
qu

ir
em

en
ts

,
m

ai
n-

ta
in

ab
ili

ty
ef

fo
rt

,
po

rt
ab

ili
ty

re
-

qu
ir

em
en

ts
,

la
ng

ua
ge

m
od

el
an

d
co

ns
tr

ai
nt

s
co

nf
or

m
an

ce

8



Table 2: Thumbnail descriptions of 15 (out of 27 total) decision options specific to the decision points 4–6 (D4–D6). 3 decision
options (O4.1, O4.6, O6.2; in bold font face) characterize a critical number of DSML designs, a key finding of our SLR study (see
Section 6).
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Figure 3: An overview of the 9 key concepts and their
relationships: decision point, decision context, deci-
sion problem, decision record, decision option, decision
driver, decision consequence, decision application, and
decision sketch.

Consider the example of UML4SOA [61], one of the
80 third-party UML-based DSMLs reviewed in our study
(see Section 5 and also the Appendix). UML4SOA re-
fines the UML activity, class, and component diagrams to
model service-oriented architectures (SOA). The language
model of UML4SOA is defined textually (O1.1) and inte-
grates with the UML via a UML metamodel extension (O2.3)
as well as equivalent UML profile definitions for tool adop-
tion (O2.2; see Table 1). In addition, the metamodel ex-
tension and profile definitions are accompanied by OCL con-
straint definitions (O3.1). The metamodel extension comes
with new and resampled diagram symbols (O4.2), the pro-
files imply model annotations (e.g. comments containing
tags; O4.1) and symbol reuse (O4.6; see Table 2). As for
platform integration, UML4SOA employs intermediate model
representations (O6.1) to transform extended UML activi-
ties in several steps (O6.5) into web-service orchestration
specifications (BPEL) using API-based generators (e.g. the
Eclipse/EMF Java API; O6.3). Based on our catalog of de-
cision records, UML4SOA can be described as an option set
containing ten options from our decision-record catalog [33]:
{1.1,2.2, 2.3,3.1, 4.1,4.2, 4.6,6.1, 6.3,6.5}.

In addition, option subsets are eligible to represent
decision-option associations. An association between two or
multiple decision options represent a possible, intentional
co-occurrence of two (or more) corresponding decision op-
tions. An association denotes that two or more decision op-
tions must be considered together, without implying any par-
ticular (e.g. temporal) order of adoption. Decision-option as-
sociations can represent decision drivers and decision conse-
quences which directly relate to decision options. Consider
the proper subset {2.2, 4.1,4.6} contained by UML4SOA’s op-
tion set above. It denotes that—as a consequence of adopting
UML profiles (O2.2)—UML4SOA reuses diagram symbols of
the activity diagram notation (O4.6) which become extended
by model annotations (O4.1; e.g. stereotype tags, tagged val-

ues). As we will learn in Sections 5 & 6, this option subset
can be frequently observed in DSMLs. Our catalog currently
documents 21 such decision-option associations [33].

2.2. DR Reuse: Design-Space Analysis

In this section, we exemplify the use of our decision-record
catalog. The decision records facilitate re-constructing the
decision space of an existing DSML using Questions-Options-
Criteria (QOC) diagrams. Note that we do not consider our
catalog to be the only and authoritative source of input in
this usage scenario. Rather, they complement existing mate-
rial, such as pattern collections on software-language devel-
opment (see, e.g., [1]).

An important area for using documented design rationale
is to facilitate the creation of a systematic description of an
existing design which reflects the reasoning of the design-
ers. Here, the objective is an explicit description which is
sufficiently detailed to assist in decision making and stake-
holder communication during ongoing phases of an artifact’s
lifecycle. Relevant phases include test creation, corrective
maintenance, and authoring documentation. An established
semi-formal, diagrammatic approach for describing a space
of design arguments is the Questions, Options, and Criteria
(QOC) notation [24, 62].

Questions deal with features of the designed artifact. In
the example from Figure 4, such a feature is the representa-
tion of audit rules in the technical domain of system auditing.
An audit rule determines which system events should be au-
dited by an auditor component or subsystem. Consider file-
access events by selected system users as an example. The
DSML SecurityAudit provides UML-based support to model
such audit rules as part of an auditing system. The DSML
representation should allow domain modelers (a security au-
ditor) to author audit rules. In QOC, options model possible
answers to the questions. The exemplary design space shown
in Figure 4 of the SecurityAudit DSML consist of three op-
tions. Clearly, the actual design space of the SecurityAudit
DSML was larger. Two QOC options have correspondences
to decision options from our catalog (D4: O4.2, O4.3, O4.5;
see Figure 4). Depending on the design context, a QOC op-
tion might map to several decision options in our catalog or
vice versa. Criteria indicate properties or effects of adopt-
ing given options, e.g., to satisfy certain requirements. Our
catalog describes decision drivers for adopting or discarding
certain decision options. The three relevant decision options
(O4.2, O4.3, O4.5) describe, for example, four drivers which
are reproduced in Table 3 (see also decision record D4 in
[33]). The decision records enumerate positive and negative
links between drivers and options. As such, our catalog of-
fers candidate criteria to be adopted in a QOC analysis. In
Figure 4, two drivers are referenced as QOC criteria (disrup-
tiveness, modeling-tool support). The positive and negative
links form the basis for the assessment of the QOC options to
answer the QOC question. Finally, a QOC decision denotes
the act of marking QOC options as adopted (see the solid
rectangles in Figure 4). Each decision may be followed by
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How to define audit rules specific 
to a system-event type?

Q:

As a separate object diagram 
(MOF instance viewpoint, M2)

O:

As an extended class diagram
(UML instance viewpoint, M1)
{O4.2}

O:

As a structured non-diagrammatic
(textual) notation
 

{O4.3, O4.5}

O:

Disruptiveness
{D4}

C:

Modeling-tool support
{D4}

C:

EffectivenessC:

How to design the textual
notation?

Q:

(Quasi-)natural language (NLR)O: LearnabilityC:

WritabilityC:O: Fully structured: 
Context-free grammar (EBNF)

Q: ...  Question
O: ...  Option

C: ...
O: ...  Option from catalog 
       {O*.*}

O: ...  Option (adopted)

Q: ... Question (follow-up)

O: ... C: ... Positive assessment
O: ... C: ... Negative assessment

Criterion

Figure 4: A partial QOC representation of a selected design-space fragment for the DSML SecurityAudit. The boxed options are
the decisions made in the design of the DSML. This example follows the original QOC notation introduced in MacLean et al. [62];
advanced QOC notation elements such as arguments are omitted for brevity.

another QOC question. In our example, the choice of provid-
ing a structured, textual notation is succeeded by a question
on the concrete-syntax style to be used.

Table 3: Exemplary overview of positive and negative
links between criteria (or drivers as found in our cata-
log) and available options depicted as a rationale table.
They form the basis of the assessments shown in the QOC
representation in Figure 4. (+)+: (very) positive influ-
ence; o: no influence; (−)−: (very) negative influence.
An option having either a (very) positive or a (very) nega-
tive influence—depending on the intended DSML’s appli-
cation domain, professional background as well as prior
knowledge and experience of users etc.—is denoted by
(+)+/(−)−.

Driver/Option O4.2 O4.3 O4.5

Disruptiveness + + ++
Modeling-tool support − +/− −−
Cognitive expressiveness + +/− +/−
Non-diagrammatic UML notation o − −

Systematically linking QOC diagrams and structured docu-
mentation of design decisions to perform design-space anal-
yses has already been proposed. Zdun [63] integrates QOC
diagrams and software patterns for systematic pattern selec-
tion.

3. Research Questions

By describing and documenting DSML designs through the
lenses of decision points and decision records, we take a
decision-makers’ perspective on a DSML design. On the one
hand, a decision-making perspective targets the stakeholder
roles relevant for DSML design-decision making (e.g. busi-
ness designer, software architect, domain engineer, DSML im-
plementer, domain modeler). On the other hand, such a per-
spective facilitates recording the results of decision making.

A decision-making perspective complements development-
process perspectives on DSML development, such as the
one proposed by Strembeck and Zdun [22]. A process
perspective puts emphasis on the actual development ac-
tivities and development artifacts in DSML development.

However, a decision-making perspective and the resulting
design-decision documentation shifts focus on DSML devel-
opment at a finer grained level of abstraction and makes de-
cision interdependencies explicit—independent of the actual
development-process style [22].

Recording and presenting repeatedly observed design de-
cisions has the potential of facilitating the documentation of
design decisions in other development contexts. Such con-
texts can be set by a new DSML project or by a mainte-
nance task on an existing DSML. In Section 2.2, we make the
case for a systematic reuse of previously gained process and
decision knowledge (e.g. options, drivers, consequences) in
design-space analyses. To this end, our study was guided by
the following research question:

Research question 1: What are the design-decision
options for UML-based DSML designs reported in sci-
entific literature?

To answer this question, we conducted a systematic liter-
ature review (SLR) and a systematic content analysis. In its
preparation, execution, and reporting, we apply established
guidelines [37, 38, 39, 40]. Section 4 summarizes the SLR
procedure and its results. An overview of the content analysis
of the SLR paper corpus is given in Section 5. The combined
SLR and content-analysis protocol can be found in Sobernig
et al. [41].

Each UML-based DSML design can be described by an op-
tion set that contains a particular combination of the options
described by the decision-record catalog.7 Therefore, at first
glance, our catalog of 27 decision options defines an exten-
sive design space of decision-option sets (see Tables 1 and 2):
In a convenience view, one can generate 227−1 unique com-
binations of these 27 decision options to characterize DSML
designs. This convenience view neglects any combinatorial
constraints, such as the ones imposed by documented asso-
ciations between decision options.

7Option sets are also an outcome of the coding step during content anal-
ysis (coding form; see Section 5.1) and a prerequisite for data mining (see
RQ2).
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We require that a DSML design must at least report one op-
tion on language-model definition (D1) and another one on
language-model formalization (D2). This requirement fol-
lows from the following three assumptions: First, we only
consider DSMLs that were designed in a language-model-
driven development style [22], which implies at least one
decision on D1. Second, at least one of the corresponding
options for the extension of the UML must be chosen (D2) in
order to qualify as a UML-based DSML. Third, backed by a
documentation analysis based on scientific publications, we
expect that these two design dimensions are mandatory in
scientific reports on DSML projects. This might even be the
case when they were not explicitly addressed in the actual
design-decision making of the DSML designers.

Even when considering the above presence conditions on
D1 and D2, our catalog still allows for expressing a vast space
of distinct options sets for DSMLs: 117,964,800 unique op-
tion combinations! This number computes as follows start-
ing from the 27 options in our catalog: 24 − 1 (D1) times
24 − 1 times (D2) times 227−4−4 (D3–D6). In practice, how-
ever, we expect a reduced observable design-decision space
across existing DSMLs. In particular, there is partial evidence
suggesting that certain UML extension techniques are more
commonly adopted than others (e.g. profiles [13, 64]). This
leads to our second research question:

Research question 2: What are frequently observed
decision options and frequently observed combina-
tions of decision options (option sets) in and across
existing UML-based DSML designs?

Collecting option sets that represent existing DSML designs
allows for important insights beyond their mere observabil-
ity. If several existing DSML designs exhibit identical op-
tion sets, then such recurring option sets indicate repeated
decision-making practice in designing DSMLs. At the same
time, repeatedly observed option sets can serve for grouping
different DSML designs into families that share characteristic
combinations of design options.

To address our second research question, we are thus in-
terested in frequency patterns that occur for the collected op-
tion sets. Such frequency patterns can help in characterizing
an empirically observable subset of the theoretically possible
design space that is described by our catalog. Detecting and
interpreting such decision patterns (e.g. hub decisions) has
been reported as an important use case for design-rationale
documentation [65].

In order to characterize the observable design-decision
space for UML-based DSMLs, we mine for frequent option
(sub-)sets using an analysis that is based on frequent item
sets [44, 66]. We are interested in commonly recurring com-
binations of decision options which are (proper) subsets of
observed option sets. Technically, we want to extract option
(sub-)sets that adhere to certain constraints (i.e. minimum
support, closedness, freeness, maximality; see [44, 66]).
Sobernig et al. [41] provide a technical background on those
concepts in the context of our study.

Such frequent option (sub-)sets can express characteris-
tic fragments of a DSML design as well as complete DSML
designs (also called “prototype option-sets”). These option
sets can differ in terms of the number of options (or, proper
option subsets) that they contain (size), in terms of their rel-
atively higher or lower levels of support, and whether they
are contained as-is in the base of observed option sets or not;
i.e., whether they totally describe at least one DSML design
alone, rather than a fragment of it. Table 4 summarizes the
three kinds of characteristic option (sub-)sets that we con-
sider in answering our second research question. Section 5
elaborates on our findings.

4. A Review-driven Approach to Capturing Generic DSML
Design Rationale

To answer our research questions, we set out to distill
generic DSML design rationale from a maximal number of
DSML design documents. This way, the extracted design
rationale is more likely valid beyond single DSML designs.
To the best of our knowledge, no such source of generic
rationale on UML-based DSML designs existed prior to our
decision-record catalog. The secondary studies on DSML de-
velopment, which we identified as related work, do not re-
flect actual design-decision making in DSML development
projects; specifically not for UML-based DSMLs (see Sec-
tion 7). Therefore, our emphasis was on gathering primary
studies on UML-based DSMLs. A primary study is a piece of
design documentation authored by the respective DSML de-
velopers themselves. In scientific literature, primary studies
come as DSML solution proposals and/or personal experi-
ence reports [67].

Capturing design rationale (DR) behind a UML-based
DSML design can be achieved in different, systematic
ways [24]. First, one can recover design decisions by re-
viewing DSML artifacts after the fact (e.g. abstract-syntax or
concrete-syntax specifications). This can either be done by
the DSML developers themselves or by third-party experts in
DSML development and in DR documentation (see also Sec-
tion 2.2). Second, DSML designers might record their ratio-
nale themselves as a byproduct of the decision-making pro-
cess. A third source are records of communication created
by DSML designers, for example, language-user documen-
tation, change/maintenance documentation, and scientific
publications. Finally, if available, design-support software
can be used for documenting design-decisions (e.g. IDEs in-
cluding support for design-knowledge management [68]).
To the best of our knowledge, however, contemporary design-
support software for DSMLs does not provide DR capturing
facilities.

As in other fields of software development, the capture
problem [23, 24] often prevents DSML design rationale from
becoming documented explicitly by DSML developers. In
earlier, preparatory studies including manual design reviews,
a snowballing study, and a pilot SLR, we found, however,
that scientific publications of DSML developers are impor-
tant primary studies for documented DSML design ratio-
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Table 4: Overview of the option-set constructs considered for analyzing frequency patterns in the selected DSMLs. Each construct
is defined as a set of data-mining restrictions (e.g. closedness, maximality, freeness [44]) over the space of (frequent) option sets
representing the reviewed DSMLs. Details on these underlying data-mining restrictions are provided in Sobernig et al. [41].

Kind of option (sub-)set Description

Smallest common option subset A frequent option subset which is also a smallest (i.e. of minimal size) recurring proper option subset contained by observed DSML designs
and/or by observed design fragments. We distinguish between two kinds of smallest common option subset: (1) option subsets specific
to one decision record (D1–D6); (2) option subsets specific to two or more decision records (D1–D6).

Prototype option-set with frequent
extensions

A frequent option set which represents a largest option subset (design fragment) which was also frequently found to represent complete
DSML designs. This prototype option-set is frequently found extended by adding other (frequently observed) options. In this sense, it
represents an evolutionary prototype to derive extended DSML designs.

Prototype option-set with infre-
quent extensions

A frequent option set which represents a largest option subset (design fragment) which was also frequently found to represent complete
DSML designs. Extensions that add options to this (evolutionary) prototype for deriving other option sets (DSML designs) are infrequent.

nale [35, 36]. Scientific publications must not necessarily
document the rationale for design decisions directly. Of-
ten, they provide a systematic overview of DSML design arti-
facts and references to them (e.g. abstract-syntax or concrete-
syntax definitions). Moreover, DSML developers submitting
to relevant scientific publication venues (e.g. SoSyM journal,
MoDELS conference) are more likely to report UML-specific
design decisions explicitly. They adopt best-practice exam-
ples for design documentation from OMG standard docu-
ments directly, from already published papers in the respec-
tive venues, and from secondary studies on UML-based DSML
development (e.g. [69, 70, 71, 72]). Finally, for some DSMLs
being research prototypes only, scientific reports are often the
only source of documented design decisions.

For these reasons, we opted for a systematic literature re-
view (SLR). The main goal of this SLR was to identify a max-
imum number of scientific publications which document de-
sign rationale on UML-based DSMLs as primary studies. The
targeted scientific publications were required to be marked
by a sufficient documentation quality. By documentation
quality, we refer to the correctness and the completeness of
the design documentation.

4.1. Planning & Conducting the Review

The SLR was performed in three steps (see Figure 5). First,
to provide a basis for evaluation of the search procedure, we
established a corpus of reference publications (viz., a quasi-
gold standard, QGS; see Section 4.1.1). Based on this ref-
erence corpus, we identified the search engines for an au-
tomated publication search. We refined the corresponding
search terms and the queries in several iterations. Second,
we performed the actual engine-based publication search
(see Section 4.1.2). Based on the bibliographical records ex-
tracted publications selected up to this point, we then per-
formed a backward-snowballing search (see Section 4.1.3).
Backward snowballing is the practice of manually identifying
additional publications for selection from the reference lists
(citations) of a given set of publications [37, 38].

We selected publications for inclusion and assessed their
quality based on predefined criteria at each stage. The se-
lection and quality-assessment decisions involved multiple
raters per publication (i.e. the authors). Therefore, we report
the inter-rater reliability (IRR) for the data extracted from
the selected publications. IRR measures document patterns

of agreement and disagreement between two and more raters
in their assessments of details extracted from the selected
publications [73]. This section summarizes the adopted pro-
cedures at each stage (working tasks, criteria selection), the
intermediate results (QGS, review, and snowballing corpora),
and the intermediate evaluations (validity, reliability mea-
surement).

4.1.1. Quasi-Gold Standard
To guide publication search, and to report the search va-

lidity, we developed a quasi-gold standard (QGS; [40, 74]).
A quasi-gold standard is a collection of manually selected pa-
pers from a number of venues and outlets (e.g. journals, con-
ference series), which are known and recognized for publish-
ing work on the topic areas under review by a relevant com-
munity; in our case: model-driven development, UML, and
DSMLs. The results of the automated literature search must
include the quasi-gold standard. Otherwise, the search strat-
egy must be adapted.

As opposed to a “gold standard” collection of papers for
evaluating literature searches, a quasi-gold standard is spe-
cific to a set of venues/outlets over a specified time span [40].
We used the QGS to guide the main, semi-automated litera-
ture search (i.e., to select the search engines and to guide the
selection of search terms) and, finally, to validate its quality
attributes (i.e. sensitivity and precision).

Constructing our own QGS corpus became necessary be-
cause, at the time of designing the SLR, there was no ade-
quate third-party publication corpus available. In 2013, the
only candidate was a prior mapping study by Nascimento
et al. [13] on application domains of DSLs, DSL development
tooling, and research agendas on DSL engineering. However,
our study aimed at a specific subset of DSLs (viz. UML-based
DSMLs). Nascimento et al. [13] reviewed 170 publications
on DSMLs and only 21 of these were specific to the UML. Fi-
nally, while covering an extensive publication period (1966–
2011), the mapping study by Nascimento et al. [13] does
not extend to 2012 as required by our study. To the best of
our knowledge, there is still no adequate third-party corpus
available.

The publication collections obtained from our earlier re-
search steps [35, 36] did not qualify as a reference corpus
either. This was because of their strong bias towards our re-
search projects and our own experiences. Furthermore, the

13



Conduct
automated search

&
backward snowballing

Consolidate
catalog

of
decision
records

2012 2013 2014

Frequent-
item-set
analysis

Create
quasi-gold
standard
corpus 

Conduct
main

search

Conduct
backward

snowballing

Section 4.1

Section 4.1.2Section 4.1.1 Section 4.1.3

Section 5 Section 5

Preparatory studies
(design reviews, backward snowballing,

draft review protocol & pilot study)
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Figure 6: Sub-steps of establishing a QGS corpus and eliciting search strings for the main search.

publications from our prior research [35]were also limited to
DSMLs for security-related application domains. The third-
party publications collected during our pilot study were not
considered as QGS candidates because of flaws in our pilot
SLR design [36].

Figure 6 visualizes the five sub-steps of QGS construction.
As a starting point, we considered all publications collected
from the three sources above. These included our own DSML
publications [35], the third-party publications from our pi-
lot review [36], and the third-party publications returned by
the mapping study [13]. The three sources accounted for
159 papers and 119 publication venues in total. The pub-
lication venues included 86 presence venues (conferences,
symposia, and workshops) and 33 archival venues (journals,
monographs; see also Figure 7).

33

31

23

7

86

75

28

10

Archival venues

Presence venues

0 25 50 75

SE venues

Venues deemed relevant

Venues of fitting type

Candidate venues

Figure 7: Overview of the stepwise selection of publi-
cation venues for establishing the quasi-gold standard
(QGS) corpus.

Selection Criteria. In a pair session, the 119 publication
venues were filtered by two authors (Hoisl, Sobernig). Fig-

ure 7 summarizes the intermediate results of filtering. Fi-
nally, 17 venues were selected. The seven journals included
top-tier SE venues such as IEEE TSE, ACM TOSEM, and
SoSyM. The ten selected conference venues comprised i.a.
ICSE, OOPSLA, MoDELS, and ASE.8 The selected venues
complied with four criteria:

1. Time coverage: A publication venue covers the years be-
tween and including 2005 and 2012. In 2005, the UML
2.0 specification was published. 2012 marks the year
before performing the engine searches in January and
February 2013.

2. Community relevance: An archival venue is deemed rel-
evant by a scientific audience if it is listed with the
ERA 2012 journal list [75]. The ERA list resulted from
a public and international consultation process among
scientists. 23 of the 31 journals were listed with ERA
2012. For a presence venue, we examined whether the
venue has a regular publication history depending on
the venue format (e.g. yearly, bi-yearly) during the re-
view period. This was the case for 28 of the 75 confer-
ences.

3. SE focus: The venue has a dedicated software-
engineering (SE) focus. The two authors judged a venue
based on publicly available SE venue lists, including
SCImago Journal Rank [76] and Microsoft Academic
Search [77]. 17 out of the remaining 51 venues fulfilled
this condition.

4. Content maturity: The venue is committed to publishing
mature and scientifically rigorous content. In general,
we verified whether there was a peer-review procedure

8See Appendix A in [41] for the venues’ full names.
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in place. As for presence venues, 11 workshops were ex-
cluded. Two archival venues other than journals were
discarded (i.e. a festschrift and a project-report mono-
graph).

Quasi-Gold Standard Corpus. Two authors manually
screened the selected 17 venues. This involved 418 journal
volumes and 80 proceeding issues published between 2005–
2012. In this initial iteration, candidate papers were selected
by reviewing title, author-provided keywords, and abstracts
(in this order). The reviewers used centrally maintained
publication-history records of each venue (e.g. DBLP9) and
the publication bases of the venue publishers (i.e. IEEE,
ACM, Springer, Elsevier) to additional important metadata
(e.g. abstracts).

The screening result was a collection of 83 articles (52
journal and 31 proceedings articles). Each article was rated
for inclusion into the QGS corpus independently by two au-
thors. 37 publications were positively rated by both authors
and formed the final QGS corpus (24 journal and 13 pro-
ceedings articles). The two independently rating authors ar-
rived at the same selection decision (inclusion or exclusion)
for 75.9% of the 83 publications without negotiation. The
conflicting selection decisions were first revisited in a joint
session between the two rating authors. Then, if necessary,
the third, non-involved author adjudicated on an article at
issue.

Any inter-subjective rating process bears the risk of ran-
dom ratings and personal bias, so that the percent agreement
of 75.9% is likely to be overstated [73]. Applying standard
chance-correction (Cohen’s Kappa), we established that the
two rating authors achieved actual decision agreement be-
yond chance (inclusion/exclusion) in approx. 51% of the to-
tal expect cases beyond chance. In technical terms, Cohen’s
Kappa coefficient cκC on the 83 publications and the corre-
sponding 166 ratings amounted to 0.51±0.009.10 Kappa’s
chance correction results from a worst-case assumption (ran-
dom assignment), the “true”, but unknown agreement level
lies between 0.51 and 0.759. According to standard Kappa
benchmarks [78], this indicates an intermediate to good
chance-corrected (worst-case) reliability level. Therefore, we
considered the underlying selection procedure (criteria) reli-
able. Any decision conflicts were resolved as outlined above.

Comparatively equal shares of candidate articles published
in journals and conferences, respectively, made it into the
QGS corpus. Approximately 46% of the journal articles
(24/52) and 42% of the proceedings articles (13/31) entered
the corpus. Figure 8 depicts the number of finally included
publications per venue. JOT, JSS, SoSyM, and SAFECOMP
were the top four venues contributing publications to the
QGS corpus. These top four accounted for ≈60% (22/37)
of the included publications. From six venues, not a single

9See http://dblp.uni-trier.de/, last accessed: Feb 2, 2015.
10± signals the leave-one-out Jackknife variance estimate Var(cκC ) of Co-

hen’s Kappa statistic cκC to quantify the degree of statistical insecurity inher-
ent in the data-generating process.

publication was selected. The distribution over time shows
that ≈49% of the included publications (18/37) were pub-
lished in two peak years: 2007 and 2011 (see Figure 9).
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Figure 8: Publications found during manual screening of
the 17 QGS venues and publications finally included into
the QGS corpus (per venue; ordered by the decreasing
number of found papers). See Appendix A in Sobernig
et al. [41] for the venues’ full names.
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Figure 9: The numbers of publications found (dashed
line) and included (solid line) into the QGS corpus, per
publication year (2005–2012).

Based on the 37 QGS publications, two subsequent steps
were performed. On the one hand, the relevant search en-
gines for the automated search were identified. On the other
hand, a search string for the automated search was con-
structed from the QGS corpus.

Search Engines. The 37 QGS publications were published in
eleven distinct venues, which are issued by five different pub-
lishers: Springer (15 papers), AITO (7), IEEE (7), Elsevier
(6), and ACM (2). For these publishers, we identified four
search engines: SpringerLink, IEEE Xplore, Scopus, and ACM
Digital Library. These met previously defined requirements,
such as full time-coverage, access to bibliographical meta-
data, and minimal content overlap [41].

Search String. We extracted the search string from the
QGS publication corpus in a systematic and subjective man-
ner [40]. The extracted 49 search terms were grouped into
two term sets: 17 search terms specific to a (meta-)modeling
technology (e.g. “uml”, “mof”) as well as 32 search terms
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specific to DSL and DSML development (e.g. “profile”, “meta-
model”). The resulting search string, from which the four
engine-specific search expressions were derived, is docu-
mented in [41]. This final search string was developed in
several iterations to maximize search sensitivity. Search sen-
sitivity reflects the number of QGS publications retrieved by
a given search string [40]. The iterations are reported in full
detail in [41].

The final search string represents pairs of search terms,
with each pair drawing one search term from each term set.
More precisely, the terms within each set were considered al-
ternatives (exclusive-or; e.g. “uml” xor “mof”). Then, to ar-
rive at term pairs, the two sets were merged element-wise us-
ing conjunction. The final query expression, therefore, repre-
sented 544 unique term pairs (e.g. “uml” and “profile”). This
tactic met a triple objective: First, we arrived at more precise
search terms regarding our study context. Second, this tac-
tic minimized any semantic overlap between terms related
to technologies and DSML engineering, respectively. Third,
all four engines supported this structured search string. We
could enter the search string as one concatenated boolean
expression in a disjunctive-normal form (leaving aside minor
concrete-syntax differences), rather than in its complex ex-
pansion into unique term pairs.

4.1.2. Main Search
In this step, we conducted the automated publication

search using the search string developed in the previous step
on the four selected search engines: ACM Digital Library,
IEEE Xplore, Scopus, and SpringerLink. Figure 10 provides
an overview of the sub-steps of this automated search.

Engine-based Search. This step involved four activities:
search execution, duplicate cleansing, validity computation,
and QGS-based capping. Search execution yielded 5,778
search hits split into four result sets, one for each of the four
search engines. When extracting the results, we applied and
preserved the relevance-based sorting of search hits (as pro-
vided by each engine).

From the ACM Digital Library, 933 hits were retrieved.
IEEE Xplore returned 1,845 hits. Searching Scopus and
SpringerLink yielded 2,000 and 1,000 hits, respectively (see
Figure 11). IEEE Xplore, Scopus, and SpringerLink cap the
result sets when exporting them into a processable format.
For IEEE Xplore, which enforces a capping at 2,000 hits, the
restriction did not apply given a smaller number of actual
hits. As for Scopus and SpringerLink, the numbers reported
above correspond to the capped result sets. The actual re-
sult sets of Scopus and SpringerLink amounted to more than
16,500 and more than 8,500 hits, respectively.

The four engines demanded their own variants of the com-
plex search string (see Section 4.1.1). This was mainly due
to different concrete syntaxes of the query processors. In ad-
dition, all provided different means to limit the searches to
our required range of publication years (2005–2012) and to
publications having a full-text body written in English lan-

guage. The resulting four search strings are documented in
the SLR protocol [41].

Duplicate detection was performed for each result set and
across the four result sets. In total, we removed 1,083 hits as
unwanted duplicates (see Figure 11). These duplicated hits
were almost entirely caused by redundant hits between two
and more result sets, rather than replicated entries within
one result set alone. As a minor exception, however, Scopus
contained ten duplicated hits within its result set. Duplicate
detection was performed in three passes: First, we used the
Document Object Identifiers (DOI) provided by the searched
publication data bases for their hits. 5,232 of the 5,778 hits
were equipped with a DOI. Second, for the publications lack-
ing a DOI, we matched their publication titles character-wise
and in a case-insensitive manner. Third, to overcome possi-
ble barriers of the conservative, exact matching strategy, we
matched hits based on their tokenized titles and a Jaccard
similarity function [79]. Barriers included the heterogene-
ity in the titles in the presence of punctuation, encoding arti-
facts, and typos. Duplicate removal was performed in a man-
ner preserving the relevance sorting of the four result sets.

Validity computation was performed on the remaining,
unique 4,695 hits (see Figure 11). For this, we computed the
quasi-sensitivity of the engine-based search with respect to
our QGS corpus. The overall objective was to obtain a search
sensitivity at a level between 70 and 80% [40]. In other
words, between 70 and 80% of the QGS publications should
be contained in the collated result set. We arrived at an over-
all quasi-sensitivity of ≈75.7% for the main search: 28 of 37
QGS publications were successfully retrieved across all four
search engines. Scopus contributed 14, SpringerLink seven,
ACM Digital Library four, and IEEE Xplore three QGS publi-
cations. Note that this validity computation was repeatedly
performed, actually, over several search iterations to maxi-
mize the sensitivity.

Finally, we applied a capping of the search hits based on
the retrieved QGS publications. We defined a cutoff at the
position of the last QGS publication found in each result
set. For example, the last QGS publication in the set of 853
unique ACM Digital Library hits was listed at position 781.
Thus, position 781 became the cutoff position for result set
of ACM Digital Library (see Figure 11). This capping strat-
egy was justified because of the substantial quasi-sensitivity
level achieved with the engine searches (see above). After
capping, 2,678 hits or 46.4% of the total search hits entered
the manual selection procedure.

Selection Criteria. The 2,678 papers in the cleansed, re-
duced, and collated result set were evaluated by two au-
thors according to the nine selection criteria (i.e. four venue-
specific and five publication-specific ones), yielding a total
of 5,709 inclusion and exclusion decisions, respectively. Af-
ter this selection step, 106 of the 2,678 papers (≈4%) were
included. The nine selection criteria accurately reflect the
study’s objective. To give one example, the fact that we were
interested in DSML designs based on the UML 2.0 led us to
impose 2005 as the starting year, given that the UML 2.0 spec-
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Figure 10: Sub-steps of conducting the main search.
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Figure 11: Overview of cleansing (duplicate detection) and reduction steps (sensitivity cutoff) for each result set, yielding in total
2,678 papers entering the selection procedure.

ification was formally released in July 2005.

The first four criteria were specific to the publication venue
of a given search hit. These four criteria corresponded to
the ones already applied for selecting the QGS venues: time
coverage (2005–2012), community relevance, SE focus, and
content maturity (see Section 4.1.1). Testing the venue-
specific criteria first allowed us to make a selection decision
on papers sharing a venue at once. This helped us consider-
ably to cope with the extensive result set.

Once satisfying all venue-specific criteria, a paper was
checked for five publication-specific criteria. Most impor-
tantly, it was established whether the paper’s full-text was
accessible to us, e.g. whether our institutional subscriptions
to the publisher’s digital libraries covered these items, or
whether an author copy could be retrieved otherwise. Only
47 papers could not be accessed at all. Based on the full-text,
it was then decided whether a paper reports an actual DSML
design. This decision involved several checks regarding the
paper type (e.g. excluding editorial introductions or position
papers) as well as the paper’s scope as either primary or sec-
ondary studies on DSMLs.

To determine whether a candidate paper and the corre-
sponding DSML design were based on the UML 2.x, we first
checked the paper’s references list for citations of the corre-
sponding OMG UML specification documents. If missing, we
reviewed the full-text for clarifying statements and the vari-
ous design artifacts. If available, we also attempted to infer
the UML version dependencies from the concrete-syntax el-
ements used in diagrams. In parallel, we verified whether
all necessary details of the DSML design are reported by the
candidate paper. For example, we verified whether a valid
specification of a UML profile and its elements is provided.

In total, approximately a quarter of the papers (i.e. 704 out
of 2,678) were excluded because they did not comply with
the report-type criterion. Papers not reporting on UML-based
DSML designs or a secondary study on DSMLs fell into this
group. 152 of the excluded publications were checked and
agreed on by two authors independently from each other.11

Approximately, 70% of the papers (1,868/ 2,678) did not sat-
isfy all of the eight remaining venue- or publication-specific
criteria.

Quality Assessment. The 106 papers that were included at
this point were then further assessed for two quality prop-
erties: 1) duplicates and 2) erroneous DSML designs or de-
sign reports. In total, 33 papers did not pass this assessment
step. Given the inherent limitations of the semi-automated
duplicate detection (see above), quality assessment involved
manual checking for duplicates when working on the full-text
bodies and the design details. This way, we found another
eight duplicates (see duplicated in Figure 12). For example,

11Validation by the second extractor for false negatives was based on a
20% sample of all 704 papers processed by the first extractor and considered
as either wrong report type or as containing erroneous DSML documenta-
tion artifacts. Due to this sampling, in a probabilistic projection, we risking
having missed out between 0 and up to 23 publications. With one false neg-
ative found in this sample, in the worst case, we risk having missed up to
33 false negatives in the total set of 704 publications (binominal confidence
interval (0, 34]; 99% confidence level). Note, however, that any false neg-
ative at this point might still have been ruled out as a true negative due to
four subsequently evaluated criteria (e.g. a wrong UML version) and dur-
ing quality assessment (i.e. duplicate removal). With only 73 out of 106
publications (i.e. ≈68.9%) having entered the final publication corpus (see
Figure 10), we arrive at the number of up to 23 potentially missed pub-
lications in the paper corpus as false negatives under the above empirical
probability: 33 ∗ 0.689≈ 22.7
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the 2,678 papers entering the selection procedure, with
106 entering quality assessment, and 73 finally becoming
included.

one hit turned out having two replicated entries between two
or more result sets which did not share the same DOI. This
way, they had escaped the semi-automated duplicate detec-
tion before.

The extent, to which we could extract design rationale
from the included papers, was directly dependent on the
completeness, the expressiveness, and the correctness of the
design documentation by the publication authors. This chal-
lenge is a concrete instance of inappropriate rationale repre-
sentation in design-rationale capturing in more general [24].
We checked the documented DSML designs for a number of
well-discussed, primarily syntactic issues when it comes to
designing UML-based DSMLs (see, e.g., [55, 64, 80]). To
the extent concrete-syntax issues also signal semantics viola-
tions, we also considered certain classes of semantics defects.
This way, we identified 25 papers whose DSML designs were
reported in an inappropriate, non-extractable manner and
were therefore excluded from data extraction. The quality
issues are reported in full detail in the SLR protocol [41].

Extraction of Publication Data. After having completed the
quality assessment, 73 papers representing 2.7% of the orig-
inal search hits remained (see Figure 12). For this final publi-
cation set, we extracted or completed the publication-specific
data. Besides, we coded the DSML design decision data ac-
cording to our decision-record catalog (see Section 5.3).

Overall, we recorded 15 metadata items for each included
paper. These items included bibliographical entries such as
the publication year, paper-specific keywords, and the venue.
In addition, the selection decision was noted for each hit.
The included papers were further described by eight decision-
mining entries: Beyond the DSML project name (if avail-
able), the DSML projects were classified according to their
application domain(s) and the relevant UML diagram types.
Next, the respective decision options identified for a given
DSML design were recorded with respect to each of the six
decision points from our decision-record catalog. Each DSML
design became represented as one decision-option set (see
Section 2.1.2). The final paper corpus including the 73 pa-
pers identified via the engine-based search is characterized
according to the extracted publication data in Section 4.2. In

Section 5.3, we report on the extracted design-decision data
in more detail.

Inter-Rater Reliability. 2,400 of the 2,678 search hits, which
remained after applying the cutoff points, were reviewed by
one author. 278 were rated and assessed for inclusion or for
exclusion by two authors. This co-rated subset comprised all
publications included by one author, all publications consid-
ered erroneous, and a randomized 20% sample of the papers
excluded by one author.

For this co-rated subset, the respective rating authors
achieved a percent agreement of 88.5%. That is, for more
than 245 of the 278 publications two authors arrived at the
same selection decision (i.e. included or excluded) indepen-
dently from each other and without negotiations. Chance-
corrected (worst-case) inter-rater agreementcκC amounted to
≈ 0.875±0.0004.12 This represents a very good (worst-case)
agreement level according to standard benchmarks [73, 78].
Therefore, we considered the underlying selection procedure
(criteria) reliable. Any conflicting selection decisions were
first revisited in a joint session between the two rating au-
thors. Then, if necessary, the third, non-involved author ad-
judicated on a search hit at issue.

4.1.3. Backward Snowballing
To incorporate prior work considered relevant by the au-

thors of the 73 included papers, we performed a manual,
citation-based search using the bibliographical references
taken from the 73 included papers. We followed a backward-
snowballing procedure as documented in [37, 38]. The pro-
cedural steps are summarized in Figure 13.

Manual Search. The snowballing procedure ended after hav-
ing completed three search iterations. The initial iteration
used the 73 papers included from the main search hits as a
start set (see Section 4.1.2). The subsequent two iterations
were triggered by newly included papers from a previous it-
eration. After having completed the third iteration, no new
candidate papers were found. In each iteration, we first ex-
tracted the references lists from the start-set publications. In
the initial iteration, we obtained 2,116 references from 73 pa-
pers. In the second iteration, we worked on 200 references
taken from seven papers included during the first iteration.
The third and last iteration used 21 references from one ad-
ditional paper that was found during the second iteration.
Across the three iterations, we reviewed a total of 2,337 ref-
erences.

All 2,337 extracted references were checked by at least one
reviewer, duplicate detection was performed manually. This
was a consequence of the unavailability of structured and
processable reference lists from all four data sources (ACM
Digital Library, IEEE Xplore, Scopus, and SpringerLink). On

12Missing data in terms of hits only rated by one author have been con-
sidered for computing the marginal probabilities in deriving cκC . ± signals
the leave-one-out Jackknife variance estimate Var(cκC ) of Cohen’s Kappa
statistic.
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Figure 13: Sub-steps of conducting the citation-based search (backward snowballing).

top, the bibliographical reference data was widely heteroge-
neous (mixed bibliography styles, missing bibliographical en-
tries such as DOIs).

Selection Criteria. We made the selection decision on the
snowballing hits by applying the nine venue- and publication-
specific criteria as for the main, engine-based search (see Sec-
tion 4.1.2). This way, we selected another 39 publications as
inclusion candidates. In addition, snowballing yielded one
more QGS publication adding to the 28 QGS publications
from the main search (see Section 4.1.2). We, thus, arrived
at a final quasi-sensitivity of ≈78.4% (29/37) for our review.

Approximately 7.3% of the extracted references
(170/2,337) did not relate to reports on UML-based
DSML designs as primary studies, but rather to other (non-
UML) DSMLs, to secondary studies on DSML designs, or
they were not related to DSMLs at all. 37 of these off-topic
references were verified by two authors independently from
each other.13 The majority of 91% (2,128/2,337) did not
satisfy the eight remaining venue- and publication-specific
criteria.

Quality Assessment. The 39 candidate publications were then
assessed for duplicates and issues of design-documentation
quality. In total, by comparing the snowballing hits to the
cleaned automated search hits, we identified and removed
25 unwanted duplicates. For six of the remaining 14 publica-
tions, the documentation-quality assessment revealed quality
issues similar to the ones during the main search. The is-
sues included ambiguous UML metamodel extensions, faults
in defining and applying the UML profiles, and syntax errors
(see the SLR protocol [41]). Eight publications entered the
paper corpus (see Figure 13).

13Validation by the second extractor for false negatives was based on a
20% sample of all 170 papers processed by the first extractor and considered
as wrong report type. Due to this sampling, in a probabilistic projection, we
risk having missed out between zero and up to seven publications. With one
false negative found in this sample, in the worst case, we risk having missed
up to 31 false negatives in the total set of 170 publications (binominal con-
fidence interval (0, 32]; 99% confidence level). Any false negative found at
this point might still have been ruled out as a true negative due to four sub-
sequently evaluated criteria (e.g. a wrong UML version) and during quality
assessment (i.e. duplicate removal). With only eight out of 39 publications
(i.e. ≈20.5%) having entered the final publication corpus (see Figure 13),
we arrive at the number of up to seven potentially missed publications in
the paper corpus as false negatives under the above empirical probability:
31 ∗ 0.205≈ 6.4.

Extraction of Publication Data. From the eight additional
publications, we extracted bibliographical metadata and
coded their design-decision data (see Sections 4.1.2 and 5.3,
respectively). Missing (e.g. publication years) and inconsis-
tent metadata (e.g. title formats) prevented us from extract-
ing descriptive statistics over all backward snowballing items.

Inter-Rater Reliability. During selection and quality assess-
ment, 2,267 of the 2,337 snowballing hits were reviewed
by exactly one author. 69 hits were assessed for inclu-
sion and for exclusion by two authors. The co-rating au-
thors agreed on more than 80% of the rated references in
each of the iterations. The corresponding chance-corrected
(worst-case) agreement levels cκC for the each iteration were
≈0.967±0.0005, ≈0.833±0.0345, and 1, respectively.14

Therefore, we achieved a very good to almost perfect level
according to standard Kappa benchmarks [73, 78] for each
iteration. Therefore, we considered the underlying selection
procedure (criteria) reliable. Any conflicting selection deci-
sions were first revisited in a joint session between the two
rating authors. Then, if necessary, the third, non-involved
author adjudicated on a search hit at issue.

4.2. Paper Corpus

To summarize, the main, engine-based search and the
snowballing searches resulted in retrieving and review-
ing 5,015 publications. The main search accounted for
2,678 (53.4%), snowballing for another 2,337 publications
(46.6%). From these 5,015 publications, we considered a
total of 81 articles as relevant: 73 from main search plus 8
from snowballing. Recall that from 37 QGS publications, 29
had been returned by the main and snowballing searches.
To complete the paper corpus, we re-considered the missing
eight QGS publications for inclusion based on all 9 selection
criteria. This way, we classified two QGS journal articles and
one QGS conference article as relevant. We so arrived at a
paper corpus of 84 publications out of a total of 5,023 re-
viewed publications (the complete list of all 84 publications
can be found in the Appendix). The corpus was composed of
54 conference articles (64%) and 30 journal articles (36%).

14Missing data in terms of hits only rated by one author have been con-
sidered for computing the marginal probabilities in deriving cκC . ± signals
the leave-one-out Jackknife variance estimate Var(cκC ) of Cohen’s Kappa
statistic.
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Figure 14: Finally selected articles per venue type (journal, conference, total) and per publication year (2005–2012). The release
years of important UML revisions are plotted as vertical lines. Note that the paper corpus extends to 2013. This is due to
running the search in Spring 2013 permitting results from 2013 to handle the ambiguity of “publication year” as either venue or
paper-publishing year.

Figure 14 shows the timeline distribution of the 84 in-
cluded articles, discriminating between archival and pres-
ence venues. The release years of important UML revisions
(2.0, 2.1.2, 2.2, 2.3, and 2.4.1) in this time window are plot-
ted as vertical lines. In general, the total number of publica-
tions on UML-based DSMLs, which are considered relevant
for the scope of our study, appears to be in decline. Confer-
ence articles show a clear decrease and journal articles stag-
nate. 2006 and 2011 represent intermittent peaks. This gen-
eral observation of a paper drop is in line with findings on
UML profiles prior to 2010 by Pardillo [64].

In total, the 84 included articles were published in 29 dif-
ferent conference proceedings and in 13 different journals
(see Table 5). The top four conference venues (MoDELS,
ECMFA, SAC, and SAFECOMP; 14% of all conference venues)
account for 26 publications (48% of the total 54 conference
publications). The top four journal venues (SoSyM, IST, JOT,
and CSI; 31% of all journal venues) account for 20 articles
(67% of the total 30 journal articles). In total, more than
half of all included publications (46 publications, 55%) were
published in eight different venues. There are two confer-
ence outliers (MoDELS and ECMFA; 10 and 9 publications,
respectively) and one journal outlier (SoSyM; 10 articles)
contributing an over-proportionally high number of included
articles.

Table 5: Included articles per publication venue. Jour-
nals are flagged with an asterisk (*). See Appendix A in
Sobernig et al. [41] for the venues’ full names.

Frequency Publication venue

10 MoDELS, SoSyM*
9 ECMFA
4 IST*, JOT*, SAC
3 SAFECOMP
2 COMPSAC, CSI*, EDOC, ICWE, IETSoftw*
1 CSMR, EMSOFT, ER, ESEC, FASE, HASE, ICSEA, ICSOC, ICWS, IJI-

CIC*, IJSEKE*, Informatica*, ISeB*, ISSRE, JRPIT*, JSW*, OOPSLA,
OTM, QSIC, SAM, SCC, SCCC, SEAA, SEFM, SEKE, SFM, SOCA*,
SoMeT, SP&E*, SPLC

To map the domain coverage of the selected DSMLs, we
classified every DSML project of the included publications ac-
cording to the 2012 ACM Computing Classification System
(CCS)15. For example, GWfM-Sec is a UML-based DSML for
the modeling of security-critical, inter-organizational work-
flows and provide a mapping to the Web Services Choreogra-
phy Description Language (WS-CDL). We assigned this article
the following CCS categories: software security engineering,
web services, orchestration languages.

In total, we applied 155 category assignments for all 84
publications (the assignments per publication can be found
in the Appendix). This corresponds to a mean of 1.85 cate-
gories per publication. The 155 assignments were specific
to 61 unique CCS categories. Table 6 reports the result-
ing frequency distribution of assigned categories. A notable
number of DSMLs fall into the areas of service-oriented and
embedded software systems, model verification and valida-
tion, as well as requirements analysis and security require-
ments. However, the frequency distribution clearly demon-
strates that the paper corpus covers a very broad and diverse
range of DSML application domains. This is an important
achievement and prerequisite for answering our first research
question (see Section 6).

5. Results: Captured Design Decisions

The paper corpus of 84 publications described the designs
of 80 unique DSMLs. This is because, at closer inspection,
eight of the 84 publications turned out to cover complemen-
tary details of four distinct DSML designs. In the follow-
ing, we shift perspective from the 84 publications to these
80 unique DSMLs to report on the extracted design-decision
data. A list of all DSMLs is provided in the Appendix.

15See http://www.acm.org/about/class; last accessed: Sep 9, 2015.
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Table 6: Frequency of occurrence of ACM 2012 CCS cat-
egories for the corpus of 84 selected articles.

Frequency ACM 2012 CCS categories

11 Service-oriented architectures
10 Web services
7 Embedded systems, Model verification and validation, Software de-

velopment techniques
6 Security requirements
5 Model checking, Requirements analysis, Web applications
4 Data warehouses, Graphical user interfaces, Real-time systems, Soft-

ware development process management, Software testing and de-
bugging

3 Avionics, Business process modeling, Safety critical systems, Soft-
ware architectures, Software evolution, Software security engineer-
ing, System on a chip, Web interfaces

2 Design patterns, Fault tree analysis, Measurement, Metrics, Or-
chestration languages, Reusability, Software product lines, Software
safety, Transportation

1 Access control, Architecture description languages, Availability, Col-
laborative and social computing, Database design and models, Data
mining, Distributed architectures, Electronic commerce, Engineer-
ing, Enterprise data management, Enterprise information systems,
Error detection and error correction, Estimation, Hardware descrip-
tion languages and compilation, Hypertext languages, Operating
systems security, Performance, Robustness, Scenario-based design,
Semantic web description languages, Software design engineering,
Software fault tolerance, Software performance, Software reliabil-
ity, Systems analysis and design, Telecommunications, Trust frame-
works, Ubiquitous and mobile computing, Use cases, Version control

5.1. Content Analysis

We performed a content analysis (CA) on all corpus papers
using the 80 DSMLs as units of analysis. The content analy-
sis involved human coding of the papers’ full-text according
to a previously defined coding schema. This coding schema
was systematically derived from the decision-record catalog
by the authors. The CA purpose was a threefold test for this
coding schema:

1. Test for saturation: Is each decision category reflected
at least once in the corpus?

2. Test for exhaustiveness: Can each unit of coding (e.g.,
text fragment, specification artifact) be assigned to an
already defined category?

3. Test for generalizability: Are the decision categories gen-
eral in terms of being found for at least three units of
analysis (DSMLs)?16

Hence, we applied a directed (deductive) content analysis us-
ing hypothesis coding [42]. Note that these three tests are spe-
cific to the content-analysis step of our multi-method study.
Our two main research questions are exploratory (see Sec-
tion 3). Running the three tests sets the context for system-
atically answering the research questions (esp. RQ2; see Sec-
tion 6).

Coding schema. The coding schema comprised category defi-
nitions, category indicators, category examples, and decision
rules. The structure and content of the (pre-study) decision-
record catalog provided a framework for building the coding
schema as a two-level category hierarchy. At the top level,

16The indicative threshold of three is borrowed from the software-pattern
community, see Section 2.1.1 for a justification.

the decision records formed main categories (D1–Dm). De-
cision options became subcategories. The subcategory codes
(O1.1–Om.n) were then used for material coding and coding
analysis (see below). The decision records already provided
all description items for the coding categories and instruction
items for coders (see Table 7).

Table 7: Correspondences between content items of the
decision-record catalog and the CA coding schema, which
was built according to the guidelines in [43].

Decision-record catalog Coding schema

Decision record Main category
Decision option Subcategory
Record name, option name Category name
Record description, option description Category description
Applications, sketch, option descriptions Indicators, positive examples
Option descriptions, decision consequences Decision rules

Indicators complement category descriptions and can sig-
nal the presence of a category of interest (decision option)
in the material to the coder. Important indicators in our cod-
ing schema were artifact types characteristic for DSMLs and
technology projections. The decision record on “language-
model constraints” (D3 [33]), for instance, identifies kinds
(and examples) of code listings. As for technology projec-
tions, this decision-record description refers to constraint-
expression languages such as OCL and EVL as examples.

To illustrate the categories during coding, we included pos-
itive examples of what the category is meant to cover. Pos-
itive examples included concrete instances of artifact types
(e.g. concrete code listings) and technology projections pro-
vided by the catalog (sketches). Sketches were extracted
from DSMLs or secondary studies on extending the UML and
on building UML-based DSMLs. The following is an exem-
plary sketch taken from the decision record on “language-
model constraints” (D3; [33]):

“Sketch. Consider the following excerpt from P8: For a UML ac-
tivity, each action can be guarded by a constraint whose condi-
tions refer to a set of operands and checking operations. At run-
time (level M0), the operations are called to evaluate whether
an action should be entered, depending upon some contex-
tual state. Constraint 1 shows a constraint-language expres-
sion (OCL) accompanied by a complementary textual annota-
tion. [. . . ]

Constraint 1: The operands specified in a ContextCondition are
either ContextAttributes or ConstantValues:

context ContextCondition inv:
self.expression.operand.oclAsType(OperandType)->

forAll(o |
o.oclIsKindOf(ContextAttribute) or
o.oclIsKindOf(ConstantValue))

”
[33, pp. 22–23]

Some categories exhibited an overlap between concepts
and between indicators (examples). Consider, for exam-
ple, the subtle differences between the concrete-syntax deci-
sion options (categories) DIAGRAMMATIC SYNTAX EXTENSION
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(O4.2) versus MIXED SYNTAX (O4.3). To guide coding un-
der ambiguity, the coding schema included decision helpers
(“decision rules”) taken from the decision-record catalog. To
draw a definitional line between the two, the decision-record
description contains guidelines such as “[. . . ] in contrast to
O4.2, this option [O4.3] would define a new and domain-
specific diagram type” [33, p. 24].

Another set of decision rules was derived from the descrip-
tion of decision associations (see Section 2.1.2). Given a unit
of coding, coders are so pointed to related categories in other
main categories for further consideration. For instance, once
having assigned a category PROFILE RE-/DEFINITION (O2.2)
to a given unit of coding, the same unit of coding is likely
to contain details on specific concrete-syntax choices. There-
fore, a decision rule points the coder to potentially relevant
concrete-syntax categories (e.g., DIAGRAM SYMBOL REUSE;
O4.6). The decision association “native stereotype defini-
tion” exemplifies such a decision rule:

“A UML profile definition (O2.2) for the language-model for-
malization was observed in combination with a concrete syntax
specification via annotating model elements (O4.1) and reusing
diagram symbols (O4.6; see, e.g., P22 or P54). [. . . ] A stereo-
type inherits all semantics (abstract syntax) and the notation
(concrete syntax) from its extended UML base class.” [33, p.
38]

Figure 15: Thumbnail overview of the corpus paper on
the DSML BusinessActivities after segmentation. Five
(out of six possible) themes are identified as colored seg-
ments. The ninth and tenth pages (465, 466) are high-
lighted for the coding details in Fig. 16.

Segmentation and coding were all performed using PDF
copies of the selected materials, PDF reader software, and
portable PDF annotations.

Segmentation. In this step, we marked relevant parts
(themes) and units of coding. From preparatory work, we
were aware that statements and content fragments docu-
menting design decision do not follow the internal struc-
ture of the scientific publication (e.g., dedicated sections per
design aspect). Rather, we had found them spread across
the document, including appendix material and externally

referenced companion material. In addition, we had de-
cided to consider all auxiliary design-documentation arti-
facts contained (e.g. diagrams) or referenced by the pub-
lication at hand, if fully accessible. Important artifacts in-
cluded package diagrams as well as implementation artifacts
such as metamodel, profile, and concrete-syntax specifica-
tions. Therefore, we first marked statements and content
items (e.g. tables, figures, listings) having a common point
of reference (themes).

We used color highlighting to identify six themes in a doc-
ument (“domain analysis”, “UML2”, etc.; see Fig. 15). The
available themes are defined by the decision-context descrip-
tions of the decision records. For example, the theme “do-
main analysis” results from the decision record on “language-
model definition” (D1) which describes the broader decision
context as part of a domain-analysis step:

“Decision context. A prerequisite for DSML design is a system-
atic analysis and the structuring of the language domain. By
applying a domain analysis method, such as domain-driven de-
sign [. . . ], information about the selected domain is collected
and evaluated (e.g. based on literature reviews, scenario ana-
lyzes, and collected expert knowledge). [. . . ]” [33, p. 12]

Those parts of a document containing details on domain-
analysis procedures, techniques, and analysis findings were
marked using the theme’s color code (see the color legend in
Fig. 15). In Fig. 15, five theme segments are shown color-
highlighted (out of six possible ones) for the paper on the
DSML BusinessActivities. As an example, the “domain anal-
ysis” segment in the themed document groups those docu-
ment items which deal with analyzing the application do-
main (RBAC for business processes) and which define key
domain abstractions and their relationships (e.g. separation
and binding of duty). This way, all corpus material was split
up into up to six different thematic segments (per DSML).

Within each thematic block, we then identified smaller
parts (units of coding) to be assigned codes in a separate
step (see paragraph on “Main coding”). Units of coding were
complete phrases, phrase blocks, and content items such as
tables, figures, listings, and formula blocks. Relevant phrases
were identified using underline marks, other content items
were marked using margin bars. See Fig. 16 for various ex-
amples of marks and units of coding. For instance, on p.
465 of the excerpt, three listings depicting constraint expres-
sions (OCL) were marked using vertical margin bars. Each
of these listings formed a separate unit to be later assigned a
code. Note that the identified segments were not broken up
into units of coding exhaustively. Phrases and content items
deemed irrelevant for the three above tests were not consid-
ered as units of coding. The two paragraphs discussing ratio-
nale for making or limitations of given formal propositions
on p. 464 in Fig. 16 are examples of such excluded content.

Segmentation as a separate working step reduced the risk
of accidentally skipping relevant content during actual cod-
ing, yet it helped break down the large paper corpus into a
manageable material collection for main coding. Note that
segmentation step was carried as an integrated part of SLR
data extraction (see Section 4.1). During data extraction,
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Figure 16: Excerpt (two pages) from the segmented and coded corpus article on DSML BusinessActivities.

the corpus papers were divided up between the authors for
extraction and segmentation. This helped avoid excessive
and time-consuming iterations over the entire corpus. To
establish that all authors perform segmentation in a consis-
tent manner, segmentation was performed collaboratively in
a joint coding session for papers collected during preparatory
studies [35, 36].

Main coding. In the main coding phase, each unit of coding
became assigned to one of the categories (decision options)
of the coding schema. Category assignment was performed
in line with the overall SLR extraction procedure (see Sec-
tion 5). For the majority of the corpus papers, coding was
conducted independently by two authors, each author being
“blinded” for the assignments of his alter. A smaller share
was coded/recoded by a single author. This was due to one

author having initially excluded a DSML or the underlying
publication(s), for example. As a result, the overall paper
corpus was effectively split into two parts: For 62 of the 80
DSMLs, coding was performed twice and independently by
two authors. This part was also checked for coding consis-
tency (see below). For the remaining 18 papers, there were
assignments by a single author.

The choice of a particular category assignment was first
recorded by each author for each unit of coding as a text
mark. The mark’s text identified the category assigned to
a given unit of coding. For example, “Fig. 7” on page 465
in Fig. 16 was handled as a single unit of coding and text-
marked by “O2.3”. This text mark indicates that the package
diagram documents a UML metamodel extension in a for-
mal and diagrammatic way (METAMODEL EXTENSION). The
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UML metamodel is extended by adding six sub-metaclasses
(BusinessAction, Subject etc.). Note that this coding step
resulted in repeatedly assigning categories to several differ-
ent coding units per unit of analysis (DSML): Consider the
three OCL listings in Fig. 16, each of them being marked
“O3.1” (CONSTRAINT-LANGUAGE EXPRESSION). Each unit of
coding could also be assigned to two or more categories.
Each text mark could be accompanied with text comments,
e.g., for providing some rationale for the assignment.

In a second step, the category assignments were prepared
for further analysis using a summarizing coding form. The
coding form is documented in the SLR protocol [41]. For
every DSML, each coding author recorded whether a given
category has been assigned at least once, i.e. there is at least
one unit of coding having assigned a certain category (de-
cision option). Recording and further analyzing the state
of presence (absence) of one category per DSML was suffi-
cient to answer the three tests and the overall research ques-
tions. Each row in these coding forms translates directly into
the decision-option sets used for further analysis (see Sec-
tion 2.1.2).

Coding Consistency. To compare the coding performed by the
pairs of authors, we used summary measures of inter-rater
agreement. Inter-rater agreement signals how consistent the
different coders were in assigning categories (codes) of the
coding schema to units of analysis (DSMLs) in the material.
That is, to which extent they are in agreement on codes to
assign and/or on codes to discard independently from each
other, based on the coding schema, and without negotiating
a joint decision. Any conflicting coding was first revisited
in a joint session between the two coding authors. Then, if
necessary, the third, non-involved author adjudicated on a
DSML at issue.

Table 8 summarizes the percent agreement (upper bound)
and the extended chance-corrected Kupper-Hafner indices
(lower bound, worst case) for the six main coding categories.
The two independently coding authors arrived at the same
assignment of categories to units of analysis (DSMLs) for
84% (D3) through 98% (D5) of the 62 co-rated DSML de-
signs. Applying chance correction (extended KH index Ĉ∗)
under worst-case assumptions (random assignment), we es-
tablished that the two rating authors achieved actual cod-
ing agreement beyond chance in approx. 77% (D1) through
98% (D5) of the total expected cases beyond chance. In
technical terms, coding consistency amounted to an ex-
tended KH index Ĉ∗ equal to and greater than 0.77±0.001217

for all six main coding categories (see Table 8). This in-
cludes agreement in terms of categories not assigned to
DSMLs by both coders. Therefore, for the 62 co-rated DSML
designs, the co-rating authors were in medium to good
chance-corrected (worst-case) agreement according to stan-
dard benchmarks [73, 78]. Hence, we considered the coding

17± signals the leave-one-out Jackknife variance estimate Var(Ĉ∗) of the
extended chance-corrected Kupper-Hafner Index Ĉ∗.

guided by the coding schema consistent. Any coding conflicts
were resolved as outlined above.

Table 8: Coding consistency per main coding category
(D1–D6); Kupper-Hafner (KH) Index; π̂∗: Percent agree-
ment (incl. missing ratings); Ĉ∗: Chance-corrected KH
indices (incl. missing ratings); Var(...): leave-one-out
Jackknife variance estimates.

D1 D2 D3 D4 D5 D6

π̂∗ 0.85 0.96 0.84 0.94 0.98 0.87
Var(π̂∗) 0.0004 0.0002 0.0005 0.0002 0.0001 0.0004

Ĉ∗ 0.77 0.95 0.80 0.92 0.98 0.84
Var(Ĉ∗) 0.0012 0.0003 0.0008 0.0003 0.0002 0.0007

Test Results. Based on the coded decision data, the three tests
guiding content analysis were answered as follows:

1. Saturation: Is each decision category reflected at least once
in the corpus?
No: Three categories out of the 31 available categories
were not assigned to any unit of coding, and therefore,
not reflected in any DSML.
Therefore: We annotated the corresponding decision
options in the decision-record catalog to reflect this
missing evidence from our content analysis. See Sec-
tions 5.5 and 6 for a discussion.

2. Exhaustiveness: Can each unit of coding (text fragment,
specification artifact) be assigned to an already defined
category?
No: The paper corpus revealed units of coding which
could not be assigned to any of 26 categories of the ini-
tial coding schema.
Therefore: The coding schema was extended accord-
ingly, by introducing five new categories on options for
behavior specification and platform integration. See
Sections 5.5 and 6 for a discussion.

3. Generalizability: Are the decision categories general in
terms of being found for at least three units of analysis
(DSMLs)?
No: Seven of the finally available 31 available categories
were not assigned to at least three DSMLs.
Therefore: We proceeded with a frequency-pattern anal-
ysis for the 24 generalizable categories (see Section 5).
The presentation of the decision options corresponding
to the seven non-generalizable categories was revised,
for example, by marking them as candidate options. See
Sections 5.5 and 6 for a discussion.

The detailed numbers (frequencies) underlying these tests
are reported in Section 5.3.

5.2. Descriptive Data

Before reviewing the design-decision data, we characterize
the 80 DSMLs regarding the adopted UML diagram types and
their specification size.
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Diagram Types. The majority of the 59 DSMLs tailor a struc-
tural UML diagram type; 38 DSMLs adopted and tailored one
or more structural and no behavioral diagram types (see Ta-
ble 9; the diagram types tailored by each DSML are listed in
the Appendix). Class diagrams are adopted by 50 DSMLs,
followed by component and package diagrams (14 DSMLs
each). This observation completes the empirical picture of a
preponderance of class diagrams in broader UML usage (see,
e.g., [12, 81]). Profile diagrams have not been found adopted
by any of the DSMLs.

With respect to behavioral diagrams, 39 DSMLs tailor at
least one behavioral diagram type; 18 build on behavioral
diagrams only, without building on any UML structural dia-
gram type. Activity (20), state machine (11), and use case
diagrams (8) are most frequently used, while communication
and timing diagrams are not used by any DSML.

21 DSMLs provide both tailored structural and behavioral
diagrams. Similar distributions between structural and be-
havioral diagram types were found in an earlier secondary
study on UML profile usage [64].

Table 9: Overview of the structural and behavioral UML
diagram-types according to Appendix A in Object Man-
agement Group [10], as adopted and/or tailored by 77
out of 80 DSMLs identified using the SLR. Three DSMLs,
which target all or are unspecific about the UML diagram
types, are omitted.

DSMLs
(cnt.)

Diagram type
(ranked by decreasing cnt.)

59 Structure diagrams

50 Class
14 Component
14 Package
7 Composite structure
5 Object
3 Deployment
0 Profile

39 Behavior diagrams

20 Activity
11 State machine
8 Use case
4 Sequence
1 Interaction overview
0 Communication
0 Timing

Specification Size. We quantified the core language-model
sizes of the 80 DSMLs. Our findings below indicate that, on
the one hand, our pool of DSMLs compares with prior re-
ports on UML extension sizes. On the other hand, our DSML
pool covers a greater size variety than prior work [16, 64].
Depending on the different, underlying UML implementa-
tion techniques (O2.1–O2.4), the specification size was es-
tablished differently.

For 61 DSMLs defining their language models using UML
profiles (O2.2), we counted the stereotype definitions and
the corresponding, distinct base UML metaclasses. In this
group, we find a median of 13±8.918 stereotype definitions

18We report the variance in terms of the median absolute deviation from

per DSML. A typical profile extends a median of 5±3 dis-
tinct base metaclasses per DSML. As outliers, three DSMLs
defined 40 (AspectSM), 48 (WebML), and 116 stereotypes
(IEC61508), respectively. Two DSMLs extend 14 base meta-
classes (UML4SOA, SafeUML). The specification sizes of
these 61 DSMLs slightly differ from those reported by related
work on UML profiles, but fall into a closely comparable size
range. Pardillo [64] studied 39 UML profiles, with a median
of 9±5.9 stereotypes per profile and a median of 4±1.5 ex-
tended base metaclasses per profile. Staron and Wohlin [16]
cover three UML profiles containing between seven and 13
stereotype definitions.

17 DSMLs used a UML metamodel extension and/or mod-
ification (O2.3, O2.4). For these, we collected the number of
newly introduced and redefined UML metaclasses. A typical
DSML adds and redefines a median of 12±11.9 UML meta-
classes (O2.3, O2.4). One outlier includes 51 UML meta-
classes (DMM/UCMM). Existing empirical work reports on
UML metamodels of between 20 and 30 metaclasses [16].

For three DSMLs defining their language model using a
UML class model at level M1 (O2.1), we attempted to count
the number of UML classes. Given their incomplete design
documentation, we failed in this attempt for two DSMLs
(EM, UML-GUI). For the one remaining DSML (SECTET), we
counted 20 UML classes.

5.3. Extracted Decision Data

Content analysis yielded one decision-option set per DSML
(see Section 2.1.2). For brevity, we refer to decisions op-
tion by their option code (e.g. O1.4, O3.1) in the following,
rather than by name (e.g. FORMAL DIAGRAMMATIC MODEL,
CONSTRAINT-LANGUAGE EXPRESSION). For a complete refer-
ence on the relevant decision options, see Tables 1 and 2 in
Section 2.1.

Decision Points. Each of the 80 DSMLs covered the points of
language-model definition (D1) and language-model formal-
ization (D2), respectively. This was also a minimum require-
ment for a DSML design to become included in our study (see
Section 4.1.2). For the remaining four decision points (D3–
D6), we also recorded whether or not any decision could be
recovered.

Table 10 shows the frequencies per decision-option code
observed for the 80 coded DSMLs. The majority of DSMLs
adopted one or several decision options for D3 (language-
model constraints) and D4 (concrete syntax): 48 DSMLs
explicitly documented language-model constraints (D3; e.g.
OCL expressions) beyond the constraints expressed directly
via their formalized language models. 73 DSMLs included at
least one decision on the concrete syntax (D4) of the DSML.
On the contrary, only three DSMLs reported on decisions re-
lated to additional behavioral specifications (D5), and only
26 DSML designs comprised decisions related to platform in-
tegration (D6). The latter is reflected by the comparatively

the median (MADM) using the ± notation along with the median value.
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Table 10: The number of occurrences (abs. frequency nopt , rel. frequency fopt) of each of the 27 (31) decision-option codes
available from the decision-record catalog [33] in the 80 reviewed DSML designs. The 27 actual decision options are described
in Tables 1 and 2. Four decision-option codes represent the absence of a decision (i.e. no-option codes: O3.5, O4.7, O5.5, and
O6.6).

Decision option (code) nopt ( fopt , %) Decision option (code) nopt ( fopt , %)

Language-model definition (D1) Concrete-syntax definition (D4)
INFORMAL TEXTUAL DESCRIPTION (O1.1) 80 (100) DIAGRAM SYMBOL REUSE (O4.6) 69 (86.3)
FORMAL DIAGRAMMATIC MODEL (O1.4) 23 (29.8) MODEL ANNOTATION (O4.1) 62 (77.5)
FORMAL TEXTUAL DESCRIPTION (O1.2) 5 (7.3) DIAGRAMMATIC SYNTAX EXTENSION (O4.2) 14 (17.5)
INFORMAL DIAGRAMMATIC MODEL (O1.3) 3 (3.8) No decision (O4.7) 7 (8.8)

Language-model formalization (D2) MIXED SYNTAX (O4.3) 3 (3.8)
PROFILE RE-/DEFINITION (O2.2) 62 (77.5) FRONTEND-SYNTAX EXTENSION (O4.4) 1 (1.3)
METAMODEL EXTENSION (O2.3) 17 (21.3) ALTERNATIVE SYNTAX (O4.5) 1 (1.3)
M1 STRUCTURAL MODEL (O2.1) 4 (5) Behavior specification (D5)
METAMODEL MODIFICATION (O2.4) 2 (2.5) No decision (O5.5) 77 (96.3)

Language-model constraints (D3) INFORMAL TEXTUAL SPECIFICATION (O5.3) 2 (2.5)
INFORMAL TEXTUAL ANNOTATION (O3.4) 35 (43.8) M1 BEHAVIORAL MODEL (O5.1) 1 (1.3)
No decision (O3.5) 32 (40) FORMAL TEXTUAL SPECIFICATION (O5.2) 1 (1.3)
CONSTRAINT-LANGUAGE EXPRESSION (O3.1) 31 (38.8) CONSTRAINING MODEL EXECUTION (O5.4) 0 (0)
CODE ANNOTATION (O3.2) 0 (0) Platform integration (D6)
CONSTRAINING MODEL TRANSFORMATION (O3.3) 0 (0) No decision (O6.6) 54 (67.5)

GENERATOR TEMPLATE (O6.2) 16 (20)
M2M TRANSFORMATION (O6.5) 9 (11.3)
API-BASED GENERATOR (O6.3) 7 (8.8)
INTERMEDIATE MODEL REPRESENTATION (O6.1) 4 (5)
(DIRECT) MODEL EXECUTION (O6.4) 1 (1.3)

large numbers of no-option codes displayed in Table 10 (O5.5
and O6.6, respectively).

Language-Model Definition (D1). For identifying and describ-
ing relevant domain abstractions and their relationships,
the decision-record catalog documents four decision options
(O1.1–1.4). Each of the four available option codes was iden-
tified at least once. 52 DSMLs applied a single option only
(see Table 10). This decision was to use a textual, natural-
language representation (O1.1). The 28 remaining DSMLs
are characterized by a combination of two or three D1 op-
tions. Not a single design used all four options. 23 of 28
DSMLs provide a formal diagrammatic definition (O1.4) of
their language model, prior to actually formalizing (imple-
menting) the language model on top of UML. In all 23 cases,
this decision option is accompanied by a textual, natural-
language definition of the language model (O1.1).

Language-Model Formalization (D2). To realize the DSML by
reusing the UML, concrete UML techniques for implement-
ing the language DSML as a UML extension, as a UML spe-
cialization, and/or by piggybacking on UML must be con-
sidered. The decision-record catalog describes four combin-
able options (O2.1–O2.4). Each available option code was
marked at least for one DSML design (see Table 10). 75
of the 80 DSMLs applied exactly one option, the remaining
five projects adopted two options. 62 of the DSML projects
(≈78%) involved UML profiles (O2.2) to realize the language
model, and ≈21% of the DSMLs (17/80) extend the UML
metamodel without modifying it (O2.3). Only three DSMLs
applied both, UML metamodel extensions (O2.3) and UML
profiles (O2.2), 14 DSMLs used UML metamodel extensions

only. Just two DSMLs explicitly modify the UML metamodel
(O2.4) when extending it (O2.3).

Language-Model Constraints (D3). Once a language model
has been formalized (D2), additional structural conditions
can be placed on DSML models at the level of the lan-
guage model (e.g. consistency conditions on model ele-
ments). The decision-record catalog lists four options of
defining language-model constraints (O3.1–O3.4). Two out
of the four available options (see also Table 10) were applied
in the 80 DSMLs: constraint-language expressions (O3.1 in
31 DSMLs) and textual annotations (O3.4 in 35 DSMLs). We
did not find evidence for code annotations (O3.2) and trans-
lational constraining (O3.3). In 30 DSMLs, only one of these
options was adopted: O3.1 13 times and O3.4 17 times. In
18 DSMLs, O3.1 and O3.4 are adopted both.

Concrete-Syntax Definition (D4). Defining the DSML’s con-
crete syntax requires deciding on the style of the primary
modeling interface presented to the domain modeler. In ad-
dition, it must be decided whether or not, and, if yes, how to
integrate the DSML concrete syntax with the diagrammatic
one of UML. Our decision-record catalog documents six op-
tions (O4.1–O4.6). All six options have been found applied
at least once (see also Table 10). 73 of the 80 DSMLs con-
tained at least one decision on their concrete syntax. Many
DSML projects (49) took a combination of two decision op-
tions on their concrete-syntax style; 17 DSMLs applied one
and 14 DSMLs three options. The two most frequently found
decision options are model annotations (O4.1: 62 DSMLs)
and the unmodified reuse of existing UML diagram symbols
(O4.6: 69). 48 of the 49 DSML designs, which adopt ex-
actly two options, reflect these two options (O4.1 and O4.6).

26



A UML diagram-syntax extension is adopted in 14 DSMLs
(O4.2; e.g. by introducing new symbols or modifying existing
ones).

Behavior Specification (D5). Behavior specifications stipulate
how language elements of the DSML interact to produce the
intended system behavior in a platform-independent man-
ner. Only three of the 80 DSML design involve dedicated
behavioral specification artifacts. These three DSMLs doc-
ument these refinements of behavioral-semantics by adopt-
ing a UML M1 model representation (O5.1), a formal textual
specification (O5.2), or in an informal textual way (O5.3).
Only one of these three DSMLs applies two options in a com-
plimentary manner (O5.1 and O5.3). The remaining two
picked a single option only (O5.2, O5.3). Constraining model
execution (O5.4) was not found applied in any DSML.

Platform Integration (D6). Platform integration comprises
support for mapping DSML models into specification arti-
facts, which are processable and possibly executable by a tar-
geted software platform, in a fully or semi-automated man-
ner. Our decision-record catalog describes five support tech-
niques for platform integration (O6.1–O6.5). 26 DSMLs ap-
plied at least one of these five techniques and each platform-
integration technique was applied at least once (see also
Table 10). From the 26 DSMLs, 19 DSMLs applied a sin-
gle platform-integration option only rather than a combina-
tion of two or more options. The most frequently adopted
option is O6.2 (generator templates) in 20% of the DSMLs
(16/80). Generator templates are also the option, which
is most frequently used in isolation (with 12 of the 19
single-option DSMLs). Generation templates are followed
by model-to-model (M2M) transformations (O6.5: 9 DSMLs)
and API-based generators for platform-specific models (O6.3:
7 DSMLs). M2M transformations (O6.5) are found mostly in
combination with at least one other D6 option (in six out of
nine DSMLs). The remaining 68% of the DSMLs do not con-
sider or at least did not document any platform-integration
techniques (O6.6: 54 DSMLs).

Decision-Option Sets. A decision-option set adds up all de-
cisions recorded for a given DSML as a set of option codes
corresponding to the decision options compiled by the cat-
alog (see Section 2.1.2). Therefore, we obtained a base of
80 decision-option sets from the 80 DSMLs (see also the Ap-
pendix). By running a frequent-item-set analysis on these
80 observed decision-option sets, one for each DSML, 53 of
the 80 observed option sets were unique (non-duplicated).
From these 53, 14 unique option sets represent two or more
DSMLs. In our study, none of the option sets were shared
by more than five DSMLs. The maximum number of deci-
sion options included in an option set is ten for the unique
option sets (i.e. for option sets that were applied for exactly
one DSML) and seven options for the 14 shared ones (i.e. for
option sets describing two or more DSMLs).

Remember that we consider an option subset to be fre-
quent when it is used by three or more DSMLs. This is also

referred to as a minimum support of three for an option sub-
set. This follows from a threshold on backing up a software-
pattern description with at least three known uses of a given
pattern in existing software systems; a threshold which is
commonly applied in the software-pattern community (see,
e.g., [31, 32]). We found 188 of such frequent options sets;
that is, option sets which are contained partly or fully in more
than three observed option sets.

Smallest Common Option Subsets. In our pool of 80 DSMLs,
we found two smallest common option subsets specific to
one decision point. For language-model constraints (D3),
the proper option subset {3.1,3.4} reflects that 18 DSMLs
(i.e. the option subset is said of having a support of 18)
define language-model constraints using both, a constraint-
expression language as well as auxiliary or complimentary
textual constraint definitions in natural language. As for
platform integration (D6), a second proper option subset
{6.2, 6.5} (support: 3) indicates that the respective 3 DSMLs
use a two-level model transformation chain (PIM-PIM-PSM):
First, platform-independent models (PIM) are transformed
into another PIM representation which is then transformed
into a structured textual, platform-specific (PSM) represen-
tation. For example, in UML2Alloy extended UML class mod-
els (PIM) are transformed into models of an Alloy metamodel
(PIM) which are finally transformed into textual Alloy defi-
nitions accepted by an Alloy model checker (PSM).

Seven smallest common option subsets contain options
through two and more decision points (D1–D6). Four out of
seven option subsets specific to two or more decision points re-
late language-model formalization (D2) and language-model
constraining (D3). These three subsets {2.2,3.4}, {2.2, 3.1},
and {2.2, 3.1,3.4} show that applying one or several UML
profiles is often associated with defining language-model
constraints either only textually (30 DSMLs), or by using a
special purpose constraint-expression language (26 DSMLs),
or both (13 DSMLs). In contrast, metamodel extensions
(O2.3) are found frequently combined with both constraint-
definition strategies, rather than either of the two exclu-
sively: {2.3, 3.1,3.4}. Metamodel extensions (O2.3) are also
commonly applied together with diagrammatic syntax exten-
sions (O4.2) and M2M transformation (O6.5). Finally, 22 of
the 80 DSMLs adopt UML profiles (O2.2) for realizing a lan-
guage model (O1.4).

Prototype Option-Sets. For the 80 DSMLs, we extracted seven
distinct prototype option-sets (see Table 11). A prototype
option-set describes complete DSML designs, on the one
hand. On the other hand, it is also (frequently) extended to
DSML designs to include additional decision options (see Ta-
ble 4). These option sets are characterized based on the un-
derlying UML implementation techniques: UML extension,
UML piggybacking, and UML specialization (see Section 2
for definitions based on [1]).

Six prototype option-sets come with frequent extensions.
For example, the option set describing UML-PMS, a DSML for
performance modeling of mobile systems building on UML
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Table 11: Overview of the seven prototype option-sets (ordered by decreasing absolute support). See Tables 1 and 2 in Section 2.1
for descriptions of the option codes. Details on the exemplary DSMLs including citations are documented in the Appendix and
in Hoisl et al. [33].

Prototype Option set Support (abs.) Frequency (abs.) DSMLs (ex.)

UML piggybacking plus informal constraints {1.1,2.2, 3.4,4.1, 4.6} 30 5 UML-AOF, PredefinedConstraints, UML-PMS
UML piggybacking plus formal constraints {1.1, 2.2,3.1, 4.1,4.6} 26 4 REMP, CUP, UML4PF
Two-level UML piggybacking {1.1,1.4, 2.2,4.1, 4.6} 22 5 SPArch, MoDePeMART, RichService
UML piggybacking for domain-specific M2T system {1.1, 2.2,4.1, 4.6,6.2} 15 3 DPL, WCAAUML, WS-CM
UML piggybacking plus mixed constraints {1.1,2.2, 3.1,3.4, 4.1,4.6} 13 3 ArchitecturalPrimitives, SHP, C2style
UML metamodel (“middleweight”) extension {1.1, 2.3,4.6} 10 4 UML2Ext, UML4SPM, MDATC

Two-level UML piggybacking plus mixed constraints {1.1,1.4, 2.2,3.1, 3.4,4.1, 4.6} 5 3 UACL, SafeUML, and IEC61508

activities, denotes four additional DSML designs (total fre-
quency: 5). Besides, this option set is found as a large sub-
set in the option sets of 25 additional DSMLs (support: 30).
The majority of prototype option-sets (5) involve UML pro-
files only (O2.2) and therefore realize UML piggybacking.
Just one prototype option-set—UML4SPM, an extension of
UML activities and classes to model software-development
processes—builds on metamodel extensions (O2.3) only and,
therefore, represents a UML extension (a.k.a. middleweight
extension [82]). All six prototype option-sets, that come with
frequent extensions, involve at least one concrete-syntax de-
cision option. The only platform-integration option adopted
in three prototype option-sets are M2T generator templates
(O6.2). These prototypes, therefore, represent the impor-
tant group of domain-specific model-to-text transformation
systems using UML piggybacking.

In addition, we found a seventh prototype option-set la-
belled “two-level UML piggybacking plus mixed constraints”
which comes with infrequent extensions (cf. Table 4). These
DSMLs are realized at two model levels: a diagrammatic
language model independent from the UML and a UML
profile implementing the language in the UML. The three
DSMLs for this prototype are UACL, SafeUML, and IEC61508
(see Table 11). SafeUML is a domain-specific adaptation of
component and class diagrams for modeling in the avionics
safety domain, to give an example. This prototype option-
set is, however, only extended by less than three additional
DSMLs (2). Therefore, it is considered extended infre-
quently. These DSMLs provide for constraints expressed both
via CONSTRAINT-LANGUAGE EXPRESSION (O3.1) and INFOR-
MAL TEXTUAL ANNOTATION (O3.4) (hence: “plus mixed con-
straints”).

5.4. Study Limitations

We deliberately narrowed the applicability of our findings
to DSMLs embedded into UML 2.x (see Section 2). Therefore,
we excluded DSMLs based on UML 1.x and other, non-UML
metamodeling infrastructures (e.g. Kermeta, Ecore, XMF).

While this appears, at first glance, as a barrier to gener-
alizing the recorded design decisions, the choice of UML 2.x
was necessary because important design decisions taken for
the UML 2.x are substantially different from those for UML
1.x; not to mention from other metamodeling infrastructures.
Regarding UML 1.x, there are important lines separating the

UML 2.x and UML 1.x regarding their language architectures
and the foundational semantics of the available extension
techniques (e.g. profiles, package merge; see [50, 51, 55]).
By focussing on UML 2.x, we aimed at increasing the inter-
nal validity of our SLR-based study design at the expense
of its external validity. Note, however, that many recorded
decisions can be adopted in a broader sense to be compati-
ble with DSMLs based on other metamodeling infrastructures
and DSLs generally (e.g. concrete-syntax decisions).

Based on our SLR, we applied a documentation analysis
to extract design decisions from scientific publications and
their companion material. We considered supporting ma-
terial if reported by and available from the publication au-
thors. A documentation analysis represents an indirect data-
collection technique [83]. Therefore, information on order-
ing of design decisions over time (decision sequences) often
remained implicit and, therefore, unrecoverable for us. Even
if documented, any indirectly observed order of decision op-
tions adopted by DSML engineers might have also followed
from the presentation requirements of a scientific publica-
tion (i.e. the one reporting on a DSML); an order which does
not necessarily correspond to the original one during deci-
sion making. Therefore, in our research setting, we can only
study option sets in terms of decision associations. For the
same reason, we focused on one process style of DSML devel-
opment only (i.e. language-model-driven development; see
Section 3). We might have neglected design decisions char-
acteristic for other development styles (e.g. mockup-driven
DSML development; [22]).

SLR studies such as this one have the major problem
of finding a representative set of relevant primary stud-
ies. In general, we closely followed established guidelines
on designing and conducting SLRs available from research
on evidence-based software engineering to avoid any pit-
falls [37, 39, 40]. As for the search strategy, we used an
extensive automated search based on four search engines by
primary publishers in the software-engineering field (ACM
Digital Library, IEEE Xplore, Scopus, and SpringerLink). This
search yielded 5,778 hits which included the majority of ref-
erence publications (28/37) previously collected in a man-
ual search. Backward snowballing added another reference
publication. Therefore, our automated search missed eight
publications that should have been found. While the missing
ones were considered for inclusion in a separate step, this
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still indicates that we risk having missed other relevant pri-
mary studies on UML-based DSMLs, in more general. Note
that we addressed this threat right from the beginning, by
building our review procedure around the principle of con-
tinuous search validation and search refinement driven by a
QGS as a recommended practice [40, 74].

We applied a review and extraction process involving two
independently working data extractors on each item (search
hit, publication, DSML). This was to avoid limitations of an
extractor-checker procedure [84]. On the flip side, this re-
quired us to control the workload per data extractor in the
light of the excessive result sets when checking for false nega-
tives. Recall that we were required to process 5,778 hits from
automated search and 2,337 from snowballing. A false neg-
ative is a hit which is deemed excluded by one data extrac-
tor, in the first iteration during selection, and which becomes
included after a negotiated agreement between the two ex-
tractors. This negotiated agreement is triggered by an inde-
pendent inclusion decision of the second extractor. In these
cases, we drew subsets of hits for the second, independent
assessment (i.e. 20% random samples). As elaborated in Sec-
tions 4.1.2 and 4.1.3, due to this sampling and in a probabilis-
tic projection (99% confidence level), we risk having missed
out between zero and 22 publications as false negatives dur-
ing automated search (from 704 negatives) and between zero
and seven publications during snowballing (from 170 nega-
tives), respectively.19 This threat cannot be neglected, how-
ever, we mitigated for this risk in two ways. First, we applied
sampling for false-negative checking only for decisions which
were based on structured and objectively evaluable decision
criteria (e.g. publication year, venue names based on prede-
fined venue lists). This way, we hope to have minimized the
risk of undisclosed disagreement on negatives between the
respective two data extractors. For the actual decision-data
extraction, which involved more subjective assessments, no
sampling was applied. For example, to establish whether
a DSML’s design documentation is of unacceptable quality,
each DSML design was reviewed by two independent data ex-
tractors. Second, we consider the results reported (frequency
counts, prototype designs) robust against the risk of false
negatives. Consider, for example, the substantial support re-
ported for the prototype designs. Each prototype design is
observed for between ten and 30 DSMLs (see Table 11). It
is unlikely that false negatives in the ranges above would re-
duce the observed support of just one or of a few prototypes,
so that they would not be observable anymore.

As a result of our quality-assessment procedure, we ex-
cluded another 31 DSML candidates due to their incomplete
and/or incorrect documentation of their designs. More pre-
cisely, we watched out for critical, UML-specific specification
defects [55, 64, 80] which would prevent us from extract-
ing the decision options unambiguously, based on the design
artifacts available to us via the corresponding scientific pub-
lications (e.g. diagrams, structured and unstructured text on

19Note that the two intervals cannot be simply summed up because of
the backward dependency between snowballing on automated search.

design rationale).
At the same time, however, by excluding the DSMLs, we

risk having biased our quantitative results (e.g. frequency
counts and prototype designs). By making this exclusion
decision, however, we strengthened the qualitative validity
of our results by extracting decision options and option sets
from DSMLs of acceptable documentation quality only. For
the reasons put forth for potentially false negatives (see pre-
vious paragraph), we are also confident that our quantitative
findings are robust against the exclusion of these DSML de-
signs.

In our search design, we also omitted certain kinds of pub-
lications explicitly. On the one hand, we excluded publica-
tions appearing in venues not considered SE venues. This
was realized by filtering venues according to publicly avail-
able third-party sources enumerating SE venues. The main
objective was to put focus on DSML documentation artifacts
which are likely to reflect on DSML and UML design ratio-
nale; and to avoid large numbers of publications from out-
side the SE domain. On the other hand, we excluded cer-
tain venue formats (e.g. workshops) and grey literature (i.e.
technical reports, working papers) to increase the probability
of building our analysis on documentation artifacts having a
certain maturity. In addition, we targeted publications hav-
ing been subjected to community-driven quality assessment
(e.g. peer reviews). A similar limitation is that we restricted
the search hits retrieved from the automated search based on
the QGS corpus publications (see Section 4.1): from 5,778
total hits, 2,678 containing all QGS publications found dur-
ing the automated search were considered for selection. This
was necessary to reduce the number of publications to man-
ageable levels for reading during selection by two indepen-
dent raters. While settling us at a sufficient level of search
validity (75.7% [40]), it means that we may have missed rel-
evant publications. Note, however, that we undertook back-
ward snowballing to make sure that we did not skip work
considered relevant by the authors of the primary studies ob-
tained as search hits.

There is a bias inherent to our SLR design in that by relying
on scientific publications only, the recorded design decisions
on DSMLs risk being specific to DSMLs as research-driven
prototypes and proof-of-concept implementations. Design
decisions during DSML development in industry might not
necessarily be covered by our revised catalog and the find-
ings in this study. The industrial case in Staron and Wohlin
[16] exemplifies this. This case is based on more balanced
numbers of metamodel extensions (2) and profiles (3). At
a coarser-grained level, our study reports a clear preponder-
ance of UML profiles in 80% of the reviewed DSMLs. How-
ever, we find it difficult to assess the severity of this bias.
To begin with, the primary studies reviewed in this SLR did
not disclose their industrial background, if any at all. Simi-
larly, while related empirical studies on UML usage certainly
document the existence of UML extensions and UML-based
DSML designs (see, e.g., [12, 13]; see also Section 7), they
do not discriminate between industry-driven and research-
driven projects.
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For selection and data extraction, we used a process in-
volving two independently working data extractors on each
item (search hit, publication, DSML) to avoid pitfalls of an
extractor-checker process in complex extraction settings and
to follow closely corresponding recommendations [84]. The
observed disagreement about publications and DSMLs be-
tween the extractors was rigorously documented using estab-
lished IRR statistics, adding to the detailed documentation
of the final extraction agreed by both extractors. To reduce
some of the overhead of a two-extractor process, we had one
extractor perform selection and extraction decisions on re-
duced data sets. This involved a first extractor reviewing all
included items, but only a sample of the excluded ones by
the second extractor. A final issue with respect to extraction
and selection was that due to a number of constraints aris-
ing during the process, two of the three authors performed
the majority of extractions. Constraints included personal-
ized access to publisher databases and individual time con-
straints. This might potentially have introduced bias.

An important motivation of this SLR study—besides
validation—was to remove personal bias from the decisions
recorded in the initial catalog [45]. This personal bias was
most likely introduced by looking at our own DSML projects
at that time. However, even for the SLR study, we could
not fully avoid personal bias because we risked collecting
data from our own publications, if retrieved at the various
SLR stages (QGS corpus construction, automated search, and
backward snowballing). Therefore, we excluded our own
DSML projects from the result set so that from the 80 DSMLs
obtained from this SLR none was developed by the authors
themselves. Furthermore, there was only one third-party
DSML (i.e. UML4SOA in [61]) which was more familiar to
us than the others, because one of our own DSMLs is built
on top of it. Nevertheless, personal bias cannot be ruled out,
simply because our understanding of DSML development has
entered our judgments during data extraction.

5.5. Catalog Revision
An important, secondary outcome of the SLR study is a

revision of the initial decision-record catalog [35, 45]. The
updated and improved version included changes to the cat-
alog’s content as well as to its presentation. Table 12 gives
an overview of the changes resulting in the current decision-
record catalog [33]. As a result of the SLR and our frequent-
item-set analysis (see Section 5), the content items in the
decision-record catalog were revised (decision points, op-
tions, and associations; see Section 6).

Important but comparatively few additions and modifica-
tions to the catalog were necessary. As shown in Table 12,
the main addition content-wise was the inclusion of deci-
sion record D5 on decisions relating to behavioral specifica-
tion. While it was necessary to cover this sub-space of deci-
sion options to fully characterize the DSMLs in our study, we
also found that except for very few DSMLs, explicitly doc-
umented behavioral specifications are widely missing (see
Section 5.3). However, within the limits of our study, this
can be explained straightforwardly because the majority of

the reviewed DSMLs focus on structural viewpoints (i.e. UML
classes) and the corresponding application domains did not
require an additional behavior specification. In addition,
some of the DSMLs reviewed for our study directly reuse
or slightly adopt UML built-in behavior (e.g. provided by
UML activities). Thus, DSMLs providing a dedicated behav-
ior specification were documented as known-usage examples
in the newly added decision record D5.

Apart from D5, only one new decision option was added.
O6.5 for D6 (platform integration) allows for characteriz-
ing DSMLs which build on endogenous M2M transforma-
tions for platform integration, i.e. transformations between
models defined over the same metamodel—rather than using
M2M transformations only for creating different intermedi-
ate model representations within an MDD tool chain (which
is covered by O6.1). In addition, we refined the descriptions
of three decision options (O2.1, O2.2, O4.3) to cover aspects
revealed by the reviewed DSMLs and to better discriminate
between decision options. For example, we revised decision
option O2.2 (formalizing a language model via UML profiles)
to include scenarios of extending and/or redefining existing
UML profiles.

Table 12: Comparative overview of the numbers of con-
tent items (e.g., decision records, decision options) in-
cluded in the decision-record catalog in its pre-study ver-
sion [45] and in the post-study revision [33]. ∗: The
numbers in round brackets indicate that four decision
options serve for coding pseudo-decisions only (e.g. not
choosing any option); ∗∗: These entries show the num-
bers for third-party studies (DSMLs) compared to all
studies (DSMLs), including our own.

Pre-study revision Post-study revision

Decision records 5 6
Decision options 22 (26)∗ 27 (31)∗

Decision drivers 22 27
Decision consequences 9 13
Decision associations 11 21

Underlying resources

Primary studies 6/ 19∗∗ 84/ 97∗∗

DSMLs 6/ 16∗∗ 80/ 90∗∗

Secondary studies 15 25

The resulting catalog lists 27 decision options and 21 as-
sociations between these options (e.g., dependencies; see
also Table 12). In addition, the catalog provides seven pro-
totypical solutions of existing DSMLs which represent com-
monly adopted combinations of decision options from 80
third-party DSMLs. Note that the catalog also records ten
self-developed DSMLs summing up to a total of 90 DSMLs
(see also the Appendix). 40 decision drivers and correspond-
ing decision consequences (e.g., forward dependencies on
follow-up decisions) are available to assess the decision op-
tions (e.g., in terms of rationale tables). In addition, the cata-
log offers application examples and implementation sketches
taken from the 90 DSMLs that we examined in detail. More-
over, the decision catalog provides references to 25 secondary
studies on DSML development (e.g., [47, 85]).
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6. Discussion

In this three-year research project, we started from our
own experiences gained from building ten UML-based DSMLs
to define a preliminary decision-record catalog for such
DSMLs. To extend and to validate this decision catalog, we
performed this systematic literature review (SLR). Our multi-
stage SLR initially returned 8,152 publications: 37 articles
originated from a quasi-gold standard corpus, 5,778 from
the automated and 2,337 from the backward-snowballing
searches. 7,069 papers were unique, 5,023 were considered
for selection and quality assessment. Subsequently, we fil-
tered these publications based on multiple quality criteria.
As a result, we identified 84 publications on 80 UML-based
DSML projects (see Section 4 and also the Appendix). These
80 DSMLs are “third-party” artifacts, that is, we did not par-
ticipate in developing them.

Research question 1: What are the design-decision
options for UML-based DSML designs reported in sci-
entific literature?

Based on the literature review and content analysis, we
tested scientific literature for the presence or absence of 27
decision options. From these, 24 were reportedly adopted
by at least one DSML project. We found that three options
are not contained by any of the 80 DSMLs (see Section 5.3):
CODE ANNOTATION, CONSTRAINING MODEL TRANSFORMATION,
and CONSTRAINING MODEL EXECUTION (i.e. O3.2, O3.3, and
O5.4). This follows directly from the saturation test for the
coding schema reported in Section 5.1.

CODE ANNOTATION (O3.2) and CONSTRAINING MODEL

TRANSFORMATION (O.3.3) describe practices to realize and
to enforce language-model constraints indirectly. On the one
hand, this involves constraints defined as host-language ex-
pressions for a certain API (e.g. Java expressions binding the
Ecore Java API; O3.2). On the other hand, such constraints
could be realized in terms of assertions on a DSML model that
are defined as a part of corresponding model transformations
on the respective DSML models (O3.3).

Similarly, enforcing behavioral constraints (D5) via par-
tial or prohibitive model-execution engines (CONSTRAINING

MODEL EXECUTION; O5.4) was not documented for any
DSML. We did, however, find these options documented in
secondary studies (for O5.4 see, e.g., [86]) and applied them
in our own DSML projects (for O3.3 see DSML SOFServices).
As a result, our decision-record catalog lacks known-usage
examples for the three decision options mentioned above.
Hence, we highlighted these decision options as candidate
options in the post-study revision of the catalog; that is, can-
didates requiring further evidence.

Recall that there are three basic UML implementation ap-
proaches for DSMLs: language-model extension, language-
model piggybacking, and language-model specialization (see
Section 2). The first two have been found employed fre-
quently in the 80 DSMLs, most notably language-model pig-
gybacking (see discussion of RQ2). Language-model special-
ization involves a metamodel derived from the vanilla UML2

metamodel systematically, e.g., through metamodel cloning
and pruning [53, 54]. This approach has also been described
as a “heavyweight” metamodel extension [82]. Language-
model specialization is driven by the need for performing a
METAMODEL MODIFICATION (O2.4), that is, the need for re-
defining existing UML metaclasses, their features, and their
associations. The specialization approach comes at certain
maintenance and deployment costs (e.g., tracking changes
in the UML metamodel, low tool interoperability [82]).

In total, we only found two DSMLs for which a METAMODEL

MODIFICATION is reported: eSPEM and DMM/UCMM. The
former further extends the UML2/SPEM metamodel (activi-
ties and state machines) to model software-development pro-
cesses and artifact states. The latter provides a modeling
frontend for automated GUI generation. DMM/UCMM adds
new properties to existing UML metaclasses (e.g. Class and
Property). Besides being comparatively infrequent, the re-
spective design reports fall short in two ways:

First, they do not clarify how they realized the language-
model specialization technically, i.e., managing metamodel
derivation. Second, they also lack statements which doc-
ument the intention and rationale for performing a META-
MODEL MODIFICATION in the first place. Often, a METAMODEL

MODIFICATION appears merely accidental. For instance, in a
third DSML UCDM, existing UML metaclasses (e.g. UseCase)
are associated with newly introduced metaclasses (e.g. Use-
CaseDescription). The metamodel definition for UCDM is
underspecified regarding the ownership of association ends
and, hence, regarding the choice of a METAMODEL EXTENSION

(O2.3) or a METAMODEL MODIFICATION (O2.4):
(1) Both ends could be owned by the association, leaving

the UML2 metamodel unchanged (O2.3); (2) one end could
be owned by the association, the other one by a metaclass
(O2.3 or O2.4, depending on whether the owning class is
coming from the UML metamodel); or (3) both ends could
be owned by their corresponding metaclasses (O2.4).20

For these three reasons (infrequency, specification ambigu-
ity, unknown metamodel management), we cannot conclude
from our study that language-model specialization has been
adopted.

Even when omitting the decision options not observed in
the 80 third-party DSMLs, the design space described by the
24 found options amounts to a vast number of possible option
combinations.21 Therefore, the frequency patterns identified
for answering RQ2 turned out to be key.

Research question 2: What are frequently observed
decision options and frequently observed combina-

20Note that the UML has these degrees of freedom, however, to avoid
ambiguities, association end ownership can always be made explicit using
the dot-notation [10].

21See Section 3 for the rationale behind these combinatorial compu-
tations; pre-study revision (all options; 3,686,400): 24 − 1 (D1) times
24 − 1 times (D2) times 222−4−4 (D3-–D5); post-study revision (all options;
117,964,800): 24−1 (D1) times 24−1 times (D2) times 227−4−4 (D3-–D6);
post-study revision (excluding unobserved options; 29,491,200): 24−1 (D1)
times 24 − 1 times (D2) times 225−4−4(D3-–D6).
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tions of decision options (option sets) in and across
existing UML-based DSML designs?

From a total of 24 options (RQ1), 16 options are frequently
found in three or more projects. Among the most frequently
adopted options, the following are noteworthy (ordered by
frequency): DIAGRAM SYMBOL REUSE (O4.6), PROFILE RE-
/DEFINITION (O2.2), MODEL ANNOTATION (O4.1), INFORMAL

TEXTUAL ANNOTATION (O3.4), CONTRAINT-LANGUAGE EXPRES-
SION (O3.1), FORMAL DIAGRAMMATIC MODEL (O1.4), META-
MODEL EXTENSION (O2.3), and GENERATOR TEMPLATE (O6.2)
(see also Table 10). We discuss their relevance below in their
broader context, not necessarily in the above order.

A domain-analysis step in terms of domain engineer-
ing [87] and domain-driven design [34]) is contained by
most process guidelines available for DSL and DSML devel-
opment (see, e.g., [4, 22]). One challenge is to identify
and to define the domain abstractions and their relation-
ships in a manner which allows for 1) a detailled specifica-
tion independent from a concrete modelling language and
for 2) having the abstractions enter a UML-based language-
model implementation in a seamless (e.g. instantiation-based
model layers) and/or guided way (e.g., through transfor-
mations). Another challenge is making domain variabil-
ity explicit, for example, in terms of feature models [87].
Guidelines and the 84 primary studies reviewed put em-
phasis on (semi-)structured textual analysis techniques, such
as domain-vision (scoping) statements, domain-distillation
lists, and feature tables. This is indicated by all 80 DSMLs
adopting an INFORMAL TEXTUAL DESCRIPTION (O1.1) to cap-
ture their application-domain definition.

However, prior to our study, very little was known about
using a FORMAL DIAGRAMMATIC MODEL (O1.4) for a domain-
analysis step. A FORMAL DIAGRAMMATIC MODEL leans itself
towards a seamless and guided UML implementation of the
resulting language model (e.g., in the sense of model chain-
ing through transformations). It can also serve as the def-
initional basis for an FORMAL TEXTUAL DESCRIPTION (O1.2;
e.g., as a type graph using set theory). We found that only 23
DSMLs adopt such a FORMAL DIAGRAMMATIC MODEL (O1.4).
A closer look reveals that the dominant modeling formalism
in this group are E/MOF and/or UML class diagrams. Al-
ternatives such as Ecore or entity-relationship models (while
inter-changeable to some extent) are not reported. Only a
single DSML design (SOA) employed a type-graph notation
in the sense of a graph-transformation system.

Two follow-up observations are noteworthy: First, the us-
age of E/MOF and/or UML class diagrams most often pre-
pares the definition of UML profiles, rather than alternative
UML language-model implementations. This is confirmed by
the two “two-level UML piggybacking” prototypes (out of 7)
identified in Section 5. This is typically justified by referring
to profile-specific guidelines such as [69, 70, 71, 72, 88]. Sec-
ond, although E/MOF and/or UML class diagrams are avail-
able, they are not formally linked to the corresponding UML
implementation model e.g. by using model transformations,
inter-model consistency constraints, and/ or instantiation-

based model chaining. This is despite the availability of suit-
able approaches (see, e.g., [89]). Rather, convention-based
approaches dominate. A popular example is the 1:1 name
mapping of language-model elements into equally named
stereotypes.

The importance as well as relative pros and cons of UML
profiles as implementation vehicles have been covered to
some extent [69, 70, 71, 72, 88]. Basic evidence on the actual
adoption level, however, has been missing or has remained
partial. 62 DSMLs implement their language model using
newly defined and/ or redefined UML profiles (PROFILE RE-
/DEFINITION, O2.2). As a consequence, “UML piggybacking”
characterizes 5 of the 7 prototype designs in Section 5. This is
partly a confirmatory finding for observations of prior, but in-
herently limited empirical studies. For example, both Pardillo
[64] and Nascimento et al. [13] characterize publication-
centric trends on UML profile usage. However, they discuss
UML profiles in isolation. Our findings provide empirical in-
sights on UML profile usage in the context of implementation
alternatives, which is entirely missing from previous studies:
As a general observation, UML profile usage in 62 DSMLs
contrasts with 17 DSMLs using UML metamodel extensions.

Furthermore, we reveal coupled design decisions such
as on concrete syntax. The popularity of MODEL ANNOTA-
TION (e.g., UML comments carrying domain-specific key-
words or slot specifications; O4.1) directly follows from the
UML profile preponderance: The 62 profile-based DSMLs
also adopted this option. The same coupling can be found
between UML profiles and the concrete-syntax option DIA-
GRAM SYMBOL REUSE (O4.6) in 69 DSMLs. The latter cou-
pling partly results from the default that stereotyped ele-
ments carry on the notation defined for the extended UML
metaclass, if one is defined and not overruled explicitly.

Researchers have started systematizing the use and the
role of model-level consistency constraints for the UML in
general [90]. We complement these findings for UML-
based DSMLs. We established that 31 DSMLs adopted the
CONSTRAINT-LANGUAGE EXPRESSION (O3.1) option. To be
more precise, they all employ OCL expressions. This level
of adoption puts new focus on the portability issues of such
OCL consistency rules between different evaluation engines.
Portability remains limited due to the OCL/UML language
specifications leaving critical details to language and tool
implementers (e.g., navigation semantics between extension
and extended model elements; see [91] for an overview).

In addition, we found that constraint expressions are pre-
dominantly defined for an intra-model scope (e.g. to resolve
ambiguities in the language model). Inter-model constraint
expressions, including vertical constraints between differ-
ent model levels (e.g. platform-independent vs. platform-
specific), are the minority. Consider as an example a DSML
language model defined at level M2 which must enforce con-
sistency rules at level M0, i.e. the occurrence (instance) level
of DSML models. In fact, we found that for such scenarios,
DSML developers resort to an INFORMAL TEXTUAL ANNOTA-
TION (O3.4). The use of implementation idioms (e.g., proto-
typical concept pattern [92]) and alternatives to metamod-
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eling based on shallow instantiation (e.g., potency and deep
instantiation [46]) to work around or to overcome this limi-
tation was not observed.

Generating textual artifacts (e.g. source code, documenta-
tion, deployment descriptors) from models in software devel-
opment via model-to-text (M2T) transformation is a common
MDD activity [93]. The importance for model-driven devel-
opment of M2T transformations, in general, and M2T trans-
formation systems based on generator templates, in particu-
lar, has been reported earlier [94]. For UML-based DSMLs,
such evidence has been missing so far. We found that the
majority of DSMLs (16) providing for platform integration
(D6) adopt the GENERATOR TEMPLATE (O6.2) option. This is
a mandate for DSML-specific research on M2T transforma-
tion. Examples include scalable automated change propaga-
tion from domain-specific models to text artifacts [93] and
coupled evolution of generator templates under metamodel
composition for DSML integration [95].

Frequency Patterns. In total, our study identified and de-
scribes 16 frequent combinations of decision options: 9
smallest common option subsets and 7 prototype option-sets
(see Section 5). The latter are summarized below. To be
considered frequent, an option subset was required to oc-
cur in at least three different DSMLs (see Section 3). During
this pattern analysis, we learned that the reviewed DSMLs
have a maximum of ten decision options per DSML (e.g.
UML4SOA). For recurring option subsets, i.e. option subsets
found in more than one DSML, the maximum number of op-
tions in a particular option subset was seven (e.g. UML-PMS).
At the level of individual decision points, these maxima
translate into frequently recurring subsets containing options
from three decision records only: language-model defini-
tion (D1), language-model formalization (D2), and concrete-
syntax definition (D4).

Prototype option-set

O1.1 O1.4 O2.2 O2.3 O3.1 O3.4 O4.1 O4.6 O6.2

Figure 17: A feature diagram [96] representing the seven
prototype option-sets found in the pool of 80 third-party
DSMLs. These seven prototype option-sets include nine
different decision options. Each of the seven observed
prototype option-sets listed in Table 11 is one of the pos-
sible configuration of the feature space.

As a key finding, we extracted seven option subsets which
form so called prototype option-sets. These prototype option-
sets are a particularly useful way for structuring the design
space described by the 24 observed decision options. First,
they cover a critical share of the observed DSMLs. Second,
they stress commonalities and differences in terms of deci-

sion options between these highly representative option com-
binations. In particular, the seven prototype option-sets char-
acterize 30% of the observed DSMLs (24/80) in their entirety.
Furthermore, they are contained as large proper subsets by
25 extended option sets; therefore reaching a total coverage
of approximately 61% of the DSMLs included in our study
(49/80). By looking at the common and varying decision
options in the seven prototype option-sets, we find that all
seven are combinations of nine decision options. These nine
decision options correspond to the leaf elements of the fea-
ture diagram in Figure 17. As a result of this observation,
these nine options were highlighted in our catalog. In addi-
tion, we extended the catalog to include additional reading
aids based on the prototype option-sets. For example, we
added a variant of the feature diagram from Figure 17 as
well as thumbnail descriptions of the nine key options (see
also Tables 1 and 2 in Section 2.1). Adding these content
and navigation items is a concrete means to render the cata-
log tailorable [25, 65].

Moreover, we were able to identify ten additional associa-
tions between different decision options that are not yet in-
cluded in the prototype option-sets (see also Table 12). Asso-
ciations were found in terms of the two smallest common op-
tion subsets (e.g. model-transformation chaining in D6; see
Section 2.1) and in terms of associations derived from the
prototype option-sets. From our analysis, we also learned
about the frequency at which certain associations occur. This
finding also allowed us to confirm already documented asso-
ciations, such as the association between UML profiles and
certain concrete-syntax decisions. To reflect this evidence for
the reader of the catalog, we annotated the frequently ob-
served associations accordingly (ten in total).

Revised Catalog for DR Reuse. As an important by-product of
our study, the revised decision-record catalog serves as an
evidence-based and empirically validated foundation for de-
cision making in the context of UML-based DSML projects
(see Figure 18). For the identification of key decision prob-
lems, decision makers can consult our decision-record cata-
log, which documents recurring decision contexts and deci-
sion problems. The decision options and associations support
the inventory of suitable design decisions for deriving a selec-
tion of candidate solutions. Finally, the evaluation of candi-
date solutions for their fit to domain-specific and domain-
generic requirements can be performed using the docu-
mented decision drivers and decision consequences. In ad-
dition, the decision options are aligned with different styles
of DSML development (abstract-syntax-first vs. concrete-
syntax-first vs. extraction-based; see, e.g., [4, 22]).

The importance of the frequency patterns summarized
above stems from the fact that the documented decision op-
tions provide for a huge number of possible design option-
sets. Thus, without evidence-based guidance, making an
informed choice from this amount of combinations be-
comes impractical. Likewise, performing design-space anal-
yses or creating design-process documentation based on the
decision-record catalog can become a time-consuming and
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> Procedural development model
> 3 DSML development styles
> Decision-record catalog:
    -  90 UML-based DSMLs; 
    -  indexed by: UML diagram types, 
       application domains; 
    - decision records for six decision points;
    - commented access to 25 secondary studies
       on DSML development

- 

> 27 combinable decision options
> 7 common prototypical solutions, 
    based on 80 cataloged third-party DSMLs
> 21 associations between decision options

> 40 decision drivers & 
    decision consequences
> Rationale tables, linking options 
   and drivers/consequences
> Implementation sketches
> Selected DSMLs as 
   application examples 

Figure 18: Supporting decision making (identification, inventory, evaluation) on developing UML-based DSMLs via an evidence-
based decision-record catalog providing reusable design decisions [33].

tedious task (see Section 2.2). This is because of the sheer
size of the documented design-decision space. Creating
and maintaining design-rationale documentation for a DSML
project, however, is a substantial investment, and the effec-
tiveness of this investment is largely affected by the tailorabil-
ity of the reusable documentation of generic design rationale.
A tailorable documentation of generic design rationale [25]
provides means for customization such that for each DSML
project only relevant documentation items are provided to
decision makers (e.g. domain engineers, modelers, language
engineers, and software architects). Moreover, customiza-
tion usually involves supporting visualizations (e.g. decision-
flow and activity diagrams) for particular use cases [65].

7. Related Work

As explained in Section 2, the practice of documenting
generic design decisions via collections of structured descrip-
tions is an established procedure in the domain of software
engineering [23, 24]. In this paper, we also documented
reusable design decisions in a structured and tailorable man-
ner [25]. The way we documented the generic DSML ratio-
nale in this paper is related to similar documentation tech-
niques applied for software architecture design and architec-
tural design decisions [27, 60, 68, 97].

Moreover, we identified two additional areas of related
work for this paper. On the one hand, we have related work
on DSL design procedures and DSL design-decision making
(see Section 7.1). On the other hand, there are related con-
tributions which have systematically gathered empirical evi-
dence as well as generic design rationale on using the UML
for domain-specific modeling (see Section 7.2).

7.1. Systematic Development of Domain-specific Languages

Several related contributions exist that describe systematic
procedures for developing DSLs. Each of these approaches
is based on experiences drawn from actual DSL engineering
projects, and each of the related approaches provides insights
into the DSL development process, or into certain aspects of
DSL design, or into DSL-related design decisions. For exam-
ple, Strembeck and Zdun [22] discuss different DSL devel-
opment activities and describe how these activities can be
combined to tailor a DSL engineering process.

In a complementary contribution, Zdun and Strembeck
[4] document three main decisions to be made when apply-
ing the DSL development process from Strembeck and Zdun
[22]. These decisions relate to the choices of a specific type of
DSL development process, of a concrete syntax style, and of
developing an external vs. an embedded DSL. To render these
decision descriptions reusable, Zdun and Strembeck [4] doc-
ument them in a pattern-like format. In software engineer-
ing, a pattern is a time-proven solution to a recurring design
problem. A pattern description includes (at least) a “prob-
lem description”, a description of the “context” in which the
respective problem occurs, and one or more (alternative) “so-
lutions”. Typically, pattern descriptions also include different
“forces” that may influence the choice of a certain solution,
“consequences” that arise from a solution, as well as “known
uses” of a particular solution. In this way, the description
format we chose for the decision records resembles a pattern
format to a certain degree. However, decision records are not
identical to or variants of software patterns, since, for exam-
ple, they list multiple solution propositions (decision options)
rather than one.

While prior work on patterns for DSL development [4, 22]
aims at describing generic procedures and decisions for DSL
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development projects, our contribution in this paper provides
detailed insights into design decisions for UML-based DSLs.
In this way, our work complements [4, 22], as well as other
DSL development approaches such as [9, 98]. This is because
our work provides a systematic and in-depth documentation
of the follow-up decisions that DSL engineers face after they
decided to develop a UML-based DSL.22

A number of other patterns and pattern languages exist
that can be applied in DSL development and are thereby com-
plementary to our work. This includes patterns for the de-
sign and implementation of DSLs [1], patterns for evolving
frameworks into DSLs [99, 100], and approaches for pattern-
based DSL development [101]. Often, DSL-related patterns
do not only describe how a DSL is developed, but also why it
is developed in a specific way. In addition, pattern languages
also describe potential sequences in which the patterns can
be applied [32]. Pattern sequences compare with our notion
of option sets (see Section 2.1.2) in the sense that (ordered)
option sets can represent sequences of adopted decision op-
tions. The research design of this study, however, does not
allow us to assume a temporal ordering when extracting de-
sign decisions (see Section 5.4).

Mernik et al. [2] used the patterns from Spinellis [1] to
conduct a survey on decision factors affecting the analy-
sis, design, and implementation phases of DSL development.
These decision factors can be considered during DSL devel-
opment. For example, the decision factor Notation deals with
the consideration whether the DSL should provide a new
or an existing domain notation. For a few decision factors,
Mernik et al. [2] suggest implementation guidelines. The
work of Mernik et al. [2] is complementary to ours as it fo-
cuses on general issues of design-decision making and im-
plementation, rather than on design decisions for a specific
(host) language environment such as the UML.

Another group of related work reports observations from
developing DSLs in (industrial) practice. For example, Lu-
oma et al. [102] conducted a study including 23 industrial
projects for the definition of DSMLs. Similar to our approach,
a number of DSLs are systematically compared. However, in
contrast to our paper Luoma et al. [102] provide a high-level
description only and do not describe specific DSL design de-
cisions or decision-option sets in detail. Similar to patterns,
lessons learned have been used as a vehicle to preserve best
practices of DSL development. For example, Wile [103] re-
ports on twelve lessons learned from three DSL experiments.
For each lesson, he introduces a respective rule of thumb and
gives an overview of the experiences that are the origin of
the corresponding rule. Despite Wile’s lessons learned being
described at a comparatively high level of abstraction, they
can, in general, also be observed in our work and are hence
reflected in parts of our decision-record catalog. Kelly and Po-
hjonen [104] present a report on worst practices found by re-
viewing 76 DSL development projects, and Karsai et al. [105]

22Remember that each UML-based DSL is an embedded DSL and that
UML-based DSLs usually have a graphical concrete syntax or a mixture of
graphical and textual concrete syntaxes (see also Section 2).

propose 26 general guidelines for DSL development derived
from their own experiences.

A UML-based DSL uses UML as its host language and ex-
tends the UML with domain-specific language elements and,
therefore, qualifies as an embedded DSL (also: internal DSL).
Related work on developing embedded DSLs includes the
contributions by Günther et al. which describe a process and
corresponding patterns for the development of internal DSLs
on top of dynamic programming languages, such as Ruby
or Python [57, 106, 107]. Other related contributions de-
scribe how to build DSLs from component building blocks
that can be incrementally designed and composed (see, e.g.,
[108, 109]). This idea originates from approaches such
as keyword-based programming [110], in which so called
“keywords” serve as building blocks for DSLs. In particu-
lar, a number of (universal) keywords are suggested which
are then glued together to compose DSLs. This approach
was first envisioned in Landin [111] and is akin to building
embedded DSLs in dynamic languages (such as Ruby, Perl,
Python, or Tcl for example).

In the UML context, some authors propose approaches that
define domain-specific UML extensions via UML profiles (see,
e.g., [69, 70, 71, 72]). While each of these approaches is
related to our work, none of them document generic de-
sign decisions for UML-based DSLs. Weisemöller and Schürr
[112] give an overview of standard compliant ways to define
domain-specific UML extensions, while Atkinson and Kühne
[88] discuss potential issues with UML profiles and suggest
a solution to address these problems. Bruck and Hussey
[82] present different techniques for tailoring the UML (e.g.
lightweight profile or middleweight metamodel extension).
In particular, Bruck and Hussey [82] define a catalog of op-
tions and characterize different extension mechanisms ac-
cordingly. They also discuss pros and cons of using one ap-
proach or the other. However, Bruck and Hussey [82] focus
on UML customization techniques in general and do not in-
tegrate design decisions in the process of DSML development
(e.g. no development phases are distinguished, language-
model constraints as well as platform integration are not con-
sidered).

In addition, knowledge on DSL design decisions can also
be gained from analyzing toolkits for DSL development. For
example, Tolvanen and Kelly [113] present a tool for the defi-
nition and usage of integrated DSMLs. Similarly, Zdun [114]
presents a tool suite for textual DSL-based software and pro-
vides a discussion of architectural decisions for DSL develop-
ment. However, most existing contributions have a strong fo-
cus on textual domain-specific programming languages. To
the best of our knowledge, there is no report reflecting on
design decisions embodied in toolkits for UML-based DSML
development.

In summary, the related work on patterns, best practices,
and lessons learned in DSL development have in common
with our approach that all are based on experiences from
actual DSL projects and contain some information on DSL
design decisions and design rationale. Our work provides a
systematic and detailed description of decision options for
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building UML-based DSLs. In this way, our contribution is
complementary to those other approaches and can be com-
bined with them.

7.2. Empirical Evidence on UML and MDD Usage
We identified a number of systematic UML-related empir-

ical studies closely related to our paper. The research meth-
ods employed in these studies include systematic reviews (5),
surveys (2), a controlled experiment (1), and a case study
(1). Our findings complement the empirical observations of a
first group of related work (e.g. descriptive statistics on UML
usage).

Dobing and Parsons [115] performed a web-based survey
among 171 OMG members on the perceived importance of
the use-case viewpoint offered by the UML. They found that
UML class and use-case diagrams are the most widely and
regularly adopted diagram types (i.e. in more than two thirds
of the respondents projects), with state machine and collab-
oration diagrams ranking lowest. With respect to UML-based
DSMLs, our study shows a slightly different picture (see Sec-
tion 5). While we can confirm the preponderance of class
diagrams, we found that use-case diagrams are rarely cus-
tomized by means of a DSML while state machine diagrams
are frequently adopted in DSMLs.

Pardillo [64] conducted a SLR for the years from 1999
to 2009 to characterize trends on UML profile usage. Most
notably. The SLR documented publication trends, descrip-
tive statistics (e.g. extended metaclasses, profile-concept us-
age frequencies) and definition issues of documented pro-
file packages. The review was limited to a few handpicked,
but important presence venues (ER, MoDELS/UML) includ-
ing co-located workshops. An automated search in DBLP was
used, yielding 63 hits. 39 of those 63 were included in the
study. After a peak in 2002, Pardillo observes a decrease in
publications that present a UML profile. However, the SLR
study of Pardillo [64] is not directly comparable to ours. This
is because of a different review period, our study’s reach be-
yond UML profiles, and because of our more extensive pool
of venues. We cover journals and conferences beyond MoD-
ELS/UML and ER. Yet, in our study, we also observed a falling
number of yearly publications on UML-based DSMLs includ-
ing UML profiles (with intermittent peaks in 2006 and 2011).
Conference publications are on the decline and journal publi-
cations stagnate. We can also confirm that the MoDELS con-
ference continues to serve as the top venue for relevant pub-
lications. It ranks first in terms of included publications in
our paper corpus, while the ER conference only contributes
one publication (see Section 4.2).

Nascimento et al. [13] conducted a systematic mapping
study on DSLs in more general and for an unbounded time
range (1966–2011). They collected and reviewed 2,688 pub-
lications from 669 presence venues (i.e. conferences and
workshops) and 180 archival venues (i.e. journals). The
number of papers relating to (UML-based) DSMLs amounted
to 163, 69 of which report on DSML creation. The data ex-
tracted from these DSML publications is unfortunately not
discussed in detail in the research reported by Nascimento

et al. [13]. Only the number of DSML publications (21) refer-
ring to the usage of UML profiles is documented. To this end,
we complement the broader mapping work of Nascimento
et al. [13] for the later years in our review period by detailing
the usage characteristics of profiles versus metamodel exten-
sions in UML-based designs. The DSML-specific publications
in their paper corpus served for establishing our QGS corpus
as a third-party data source (see Section 4).

Garousi [116] performed a search-driven literature review
by collecting bibliographical records on UML-related mono-
graphs from the Google Books database for a time range be-
tween 2001–2009. As a major observation, the authors state
a peak year in 2005, allegedly caused by authors writing new
books on the UML 2.0 specification. From 2005 onwards,
however, the study finds a substantial and continued reduc-
tion in new UML books being published, down to only two
books in 2008. Our study draws a comparable timeline pic-
ture for scientific publications on UML 2.0 (see Section 4.2).

Nugroho and Chaudron [117] provide empirical findings
from an online questionnaire survey on the use of UML
amongst 80 professional software engineers. Part of the re-
sults targeted “imperfections” in UML models; i.e. how often
inconsistency, understandability, inaccuracy, and incomplete-
ness in models led to implementation problems. The study
indicates that in each of the four categories approximately
90% of the respondents reported the respective imperfection
occurring sometimes, often, or very often during a project.

Hutchinson et al. [12], Whittle et al. [118] report quantita-
tive data on MDD practice in industry based on 449 responses
to an online questionnaire, supplemented by qualitative data
from 22 semi-structured interviews with MDD practitioners.
Their report suggests that, in practice, the UML is the most
commonly adopted modeling language with 85.5% of the
respondents having adopted the UML. Another key finding,
however, is that DSMLs have gained an important share in
adoption. 39.2% of the respondents indicated that they use a
custom DSML developed in house, 21.5% make use of DSMLs
bundled with their modeling tool chain. Unfortunately, their
report remains silent about the share of co-adoption of the
standard UML and such DSMLs. Also, the authors do not
discriminate between DSMLs based on the UML and those
developed independently from the UML. In an earlier study,
Hutchinson et al. [14] hint at the fact that such DSMLs could
qualify as DSMLs embedded within the UML (e.g. using pro-
files). Therefore, these studies provide motivation for our
work, because they stress the need for systematic empirical
research on UML-based DSML development to fill the above
gap. Regarding platform integration (D6), only ≈32% of the
DSML projects considered platform-integration techniques.
This observation is confirmed by our study (see Section 5.3).
Hutchinson et al. [12] report a comparatively high number
of projects using MDD for code generation (O6.2) as well as
M2M transformation (O6.1, O6.5). Even fewer respondents
indicated to rely on executable models (O6.4)—observations
which are supported by our results. In addition, the reported
frequency of UML diagram types matches our observations of
a dominance of structural and, in particular, class diagrams
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(see Table 9).
Recently, Gorschek et al. [119] reported an inquiry con-

cerning the adoption of object-oriented design and imple-
mentation concepts (including object-oriented design mod-
els) using a web-based survey. 4,823 developers finally re-
sponded, 78.5% of which completed the survey. The only
selection criterion for participants was some proficiency in
an object-oriented programming language (e.g. C#, Java,
Python). The authors found that approximately 50% of the
respondents never (i.e. in less than 10% of the development
activities) and about 70% rarely (in less than 25% of the de-
velopment activities) use any diagrammatic design models.
In contrast, only approximately 11% employ models in more
than 75% of their development activities. In terms of demo-
graphics, this minority of software developers has received
a higher level of formal education. When using a formal di-
agrammatic notation, the UML or a UML-inspired notation
was prominently mentioned by the respondents. This large-
scale survey, while being widely unspecific of the concrete
type of UML usage (e.g. diagram types), just stresses that
there is only very little evidence on the use of UML-based
DSMLs in software-development practice and on their design
details. Our study cannot fully close this particular gap given
a different intention (extraction of generic design rationale)
and its data sources (i.e. mainly scientific publications by the
DSML developers). However, we provide a data set of DSML
projects as a starting point for follow-up work on DSML usage
in industry practice.

A second group of related empirical studies also docu-
mented important generic design rationale which was in-
cluded in our decision-record catalog. Below, we iterate over
these secondary studies to stress how we incorporated their
findings on UML-specific design rationale into our catalog.

In a follow-up and partly replicated review of Pardillo [64]
focusing on the data warehouse domain only, Pardillo and
Cachero [15] make the case of the (unwanted) coupling
of abstract-syntax and concrete-syntax decisions of a DSML
when adopting UML profiles. This issue has been included
into our revised decision-record catalog via option associa-
tions between D2 and D4.

The SLR of Budgen et al. [81] aims to collect and to reflect
on empirical research on the UML, involving measurement,
comprehension, quality, and maintenance of UML models.
The review yielded 49 papers published up to 2008. The
overview of papers on UML comprehension provides an im-
portant auxiliary source for our decision records on concrete-
syntax design (D4). The included papers cover findings on
the comprehensibility of stereotyped and non-stereotyped
models for different audiences, as well as the cognitive effec-
tiveness of different diagram types (sequence diagrams). In
addition, the authors recorded the different research meth-
ods adopted. These methods included mainly small-scale
controlled experiments in laboratory settings. Budgen et al.
[81] also found two empirical studies on “notation exten-
sions” in the UML, however, the respective paper category
was deliberately excluded from the analysis because the au-
thors were only concerned with contributions using standard

UML. To this end, we complement the SLR of Budgen et al.
[81] by organizing papers on UML extensions explicitly, in-
cluding notation (concrete-syntax) extensions. At the same
time, our SLR is a primary study on mining UML-specific de-
sign rationale.

Staron and Wohlin [16] report on a confirmatory case
study to test six alleged advantages and disadvantages of
UML extension techniques (profiles and metamodel exten-
sions) based on an industrial case: the UML-driven modeling
toolkit Tau G2 by Telelogic. The authors triangulated their
observations from data sources such as profile definitions and
metamodel extensions implemented using Tau G2, require-
ments documents of Telelogic’s customers, a fault database,
and interviews to reflect on decision-making processes. A
key observation was that software products based on meta-
model extensions exhibit more faults in terms of unfulfilled
or violated customer requirements. In addition, metamodel
extensions were found to incur substantially more develop-
ment effort (three to four weeks working time) than profiles
(one week). We incorporated these evidence-based findings
as arguments (drivers) into decision record D2. The observa-
tions of Staron and Wohlin [16] rest upon metamodel-based
extensions to activity diagrams as well as upon profile-based
extensions to deployment, interaction overview, and compo-
nent diagrams.

Staron et al. [120] conducted a series of four experiments
on the understandability of stereotyped UML class models, all
replicating a single design but varying in terms of control lev-
els and details of the treatment (e.g. order of artifact presen-
tation). The experiments were set in an academic environ-
ment (68 student subjects) and in an industrial environment
(four professional subjects). The replicated design involved
twelve tasks to be solved by the subjects. The tasks com-
prised counting specific model elements and identifying def-
inition defects in stereotyped and non-stereotyped models.
Non-stereotyped models contained the domain semantics of
the class model as unstructured UML comments attached to
model elements. The authors recorded three data points per
subject: total and per-task solving time as well as the num-
ber of correctly solved tasks. In this way, the authors found
that the subjects solved more tasks correctly based on stereo-
typed models. In addition, there was a decrease in the total
and relative task-solving times for stereotyped class models.
We refer to the findings from Staron et al. [120] as part of
a decision driver on the understandability of concrete-syntax
options (D4).

8. Conclusion

Existing approaches towards systematizing DSML devel-
opment [22, 49] put forth a development-process perspec-
tive, treating DSML development as a complex flow of ex-
ploratory and iterative development activities. Key activi-
ties are language-model definition, constraint specification,
concrete-syntax design, and platform integration [22]. A
process perspective has immediate benefits. It establishes
a shared process vocabulary (e.g., of different development
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artifacts) and represents common DSML development styles
via different flows between development activities (e.g.,
language-model-driven or mockup-driven DSML develop-
ment). On the flip side, a process perspective alone abstracts
from DSML development as a result of continuous decision-
making by stakeholders (e.g., domain engineers, modelers,
language engineers, and software architects). Such decision
making is always situated in a specific context shaped by
domain requirements and architecture requirements (e.g., a
certain modeling technology stack such as the UML).

Therefore, our work proposes a complementary decision-
centric perspective on DSML development. For the scope of
UML-based DSMLs, our focus is on providing tailorable doc-
umentation [25] of generic design decisions [27]. This pa-
per puts emphasis on the scientific approach: A three-year,
multi-method empirical study based on a systematic litera-
ture review (SLR), a content analysis, and a frequent-item-set
analysis was used to collect and to validate generic, reusable
design decisions. Key findings are:

• The study revealed 24 design-decision options in 80
UML-based DSMLs reported between 2005 and 2012,
covering design aspects from language-model imple-
mentation in the UML to platform integration (the com-
plete list of DSMLs is provided in the Appendix).

• Language-model piggybacking [1] using UML profiles
is the most frequently adopted DSML implementation
technique (by 78% of the DSMLs).

• Approximately one third of the documented decision op-
tions (9/24) can be combined to characterize more than
60% of the reviewed DSMLs (49/80).

• Based on these 9 critical decision options, 7 different
prototype DSML designs representing different variants
of UML piggybacking and UML extension [1] were iden-
tified.

• The most frequently tailored UML diagram types are
class diagrams (≈63% of the DSMLs) and activity di-
agrams (25%), respectively.

• The publication activity on UML-based DSMLs including
premier journal venues (e.g. SoSyM, IST) and confer-
ence venues (e.g. MoDELS, ECMFA) is on a downward
trend.

These findings were incorporated into an empirically vali-
dated and publicly available collection of reusable design
decisions on UML-based DSMLs. This decision-record cata-
log [33] lists 27 decision options and their interdependen-
cies for six different design-decision concerns (e.g. language-
model formalization, concrete-syntax definition). We used
the data on frequency as well as on commonalities and differ-
ences in DSML designs to highlight prototype designs in the
catalog. This way, we provide guidance for DSML engineers
and enable them to quickly find examples of decision-option
combinations that were successfully applied in other DSML
projects. Such guidance is particularly important because,
in total, hundreds of millions of possible decision-option sets
can be derived from our decision-record catalog. To the best
of our knowledge, our work is the first attempt to document

design rationale on UML-based DSML development based on
empirical evidence collected at a large scale.

The decision-record catalog [33] and the detailed SLR pro-
tocol [41] are publicly available. Important by-products of
this research project were multiple UML-based DSMLs (see,
e.g., SOFServices), techniques for integrating (otherwise in-
dependent) DSMLs (see, e.g., [95]), testing techniques for
DSML artifacts (see, e.g., [121, 122]), and empirical studies
to evaluate the resulting research artifacts (e.g. a controlled
experiment on testing notations [123]).

In future work, we will continue to extend and to evalu-
ate the decision-record catalog by incorporating additional
third-party DSMLs. We will replicate our SLR study for pub-
lication years starting with 2013. This way, we will also seek
the missing evidence for decision options deemed candidates
after our SLR study (see Section 6). In parallel, we plan to
add design decisions on DSML tooling support as a seventh
decision record (D7) to cover DSML editors and generators.
Furthermore, to overcome certain study limitations (see Sec-
tion 5.4), we will try to engage outside DSML experts, includ-
ing the authors of the 80 DSMLs identified during our SLR
study. We will employ direct inquisitive (e.g. interviews) and
observational research techniques (e.g. participant observa-
tions) to collect more qualitative evidence, such as on time
ordering in design-decision making.
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Appendix

Table 13 lists all 90 DSML projects from which design decisions have been extracted—ten are our own developments (#1–
#10), the rest has been retrieved via the SLR (#11–#90). The first column consecutively numbers and names each DSML (a
name either specified by the authors themselves or—when no explicit name was mentioned—one chosen by us) and references
corresponding publication(s). In the second column, the DSML application domain(s) are encoded according to the 2012 ACM
Computing Classification System (CCS).23 We have extracted the UML diagram type(s) tailored by a DSML as classified by the
UML superstructure itself (shown in the third column of Table 13). The last column lists the decision-option set representing
a DSML’s design as encoded according to our catalog.

Table 13: Application domains, tailored diagram types, and decision-option set for each of the 90 DSML projects.

DSML Application domain(s) Diagram type(s) Option set

#1 ConcernActivities ?24

[A 1] Access control, Software design engineering Activity
{1.1, 2.2,2.3, 3.1,3.4,

4.1,4.2, 4.6,5.5, 6.6}
#2 BusinessActivities
[A 2] Access control, Business process modeling, Software security engineering Activity, Class

{1.1, 1.2,1.4, 2.3,3.1,

3.4,4.2, 5.5,6.1, 6.4}

#3 UML-PD ?
[A 3, 4] Access control, Business process modeling, Software security engineering Activity, Class

{1.1, 1.2,1.4, 2.2,2.3,

3.1, 3.4,4.1, 4.2,4.6,

5.1,5.3, 6.6}
#4 UML-DEL
[A 4, 5] Access control, Business process modeling, Software security engineering Class

{1.1, 1.2,1.4, 2.3,3.1,

3.4,4.2, 5.5,6.6}
#5 SOF
[A 6] Business process modeling, Software security engineering Activity

{1.1, 2.3,3.1, 3.4,4.2,

5.5,6.6}
#6 UML-PD
[A 7] Access control, Business process modeling, Software security engineering Activity, Class

{1.1, 2.3,3.1, 3.4,4.7,

5.5,6.6}

#7 SOFServices ?
[A 8, 9]

Business process modeling, Service-oriented architectures, Software secu-
rity engineering, Web services Activity, CompositeStructure

{1.1, 1.2,1.4, 2.2,2.3,

3.1, 3.3,3.4, 4.1,4.6,

5.5,6.1, 6.3}
#8 UML-CC
[A 10] Access control, Business process modeling, Software security engineering Class

{1.1, 1.2,1.4, 2.3,3.1,

3.4,4.2, 5.5,6.6}

#9 SecurityAudit ?
[A 11]

Publish-subscribe / event-based architectures, Software security engineer-
ing *25

{1.1, 2.2,2.3, 3.1,3.4,

4.1, 4.3,4.5, 4.6,5.5,

6.2}
#10 MTD ?
[A 14] Object oriented languages, Software architectures Activity, Class, Object, StateMachine

{1.1, 2.2,2.3, 3.1,3.4,

4.1,4.2, 4.6,5.5, 6.6}
#11 ADModel
[A 15] Business process modeling Activity

{1.1, 2.3,3.5, 4.7,5.5,

6.3}
#12 AspectSM ?
[A 16]

Robustness, Software development techniques, Software testing and debug-
ging StateMachine

{1.1, 1.4,2.2, 3.1,4.1,

4.6,5.5, 6.2}
#13 UML4SPM ?
[A 17] Software development process management Activity, Class

{1.1, 2.3,3.5, 4.6,5.5,

6.6}
#14 MDATC ?
[A 18] Reusability, Software development techniques, Software product lines Activity, Package

{1.1, 2.3,3.5, 4.6,5.5,

6.6}
#15 TLM ?
[A 19] Model verification and validation, System on a chip Class

{1.1, 2.2,3.1, 4.1,4.6,

5.5,6.2}
#16 UPSS ?
[A 20] Service-oriented architectures Class, CompositeStructure

{1.1, 1.4,2.2, 3.4,4.1,

4.6,5.5, 6.6}
#17 BIT ?
[A 21] Software testing and debugging Class

{1.1, 2.2,3.1, 4.1,4.6,

5.5,6.1, 6.2,6.5}
#18 UML4PF ?
[A 22, 23]

Design patterns, Model checking, Requirements analysis, Security require-
ments Class

{1.1, 2.2,3.1, 4.1,4.6,

5.5,6.6}
#19 UP4WS ?
[A 24] Service-oriented architectures, Web services Class

{1.1, 2.2,3.4, 4.1,4.6,

5.5,6.2}
#20 CB ?
[A 25] Reusability, Software development techniques Class, Component

{1.1, 1.4,2.2, 3.4,4.1,

4.6,5.5, 6.1,6.3, 6.5}
#21 AbstractSet ?
[A 26] Model verification and validation Class, Package

{1.1, 1.4,2.2, 3.5,4.1,

4.6,5.5, 6.6}
#22 C2style ?
[A 27] Architecture description languages, Systems analysis and design Component, Sequence

{1.1, 2.2,3.1, 3.4,4.1,

4.6,5.5, 6.6}
#23 MARTE-DAM ?
[A 28, 29]

Embedded systems, Fault tree analysis, Real-time systems, Software fault
tolerance, Transportation

Component, Sequence, StateMachine,
UseCase

{1.1, 1.4,2.2, 3.1,4.1,

4.6,5.5, 6.3,6.5}

23See http://www.acm.org/about/class; last accessed: Sep 9, 2015.
24The DSML’s option set contains (at least) one of the seven prototype option-sets shown in Table 11.
25The DSML does not tailor a UML diagram type specifically; for example, a stereotype extension of a UML element applicable in all diagram types, such

as, Element (see, e.g., [A 11, 12]) or Constraint (see, e.g., [A 13]).
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DSML Application domain(s) Diagram type(s) Option set

#24 UMM-Local-
Choreographies ?
[A 30]

Business process modeling, Orchestration languages Activity
{1.1, 2.2,3.1, 4.1,4.6,

5.5,6.6}

#25 RichService ?
[A 31] Service-oriented architectures, Web services Class, Component, StateMachine

{1.1, 1.4,2.2, 3.5,4.1,

4.6,5.5, 6.6}
#26 UML-PMS ?
[A 32] Performance, Ubiquitous and mobile computing Activity

{1.1, 2.2,3.4, 4.1,4.6,

5.5,6.6}
#27 SOA ?
[A 33] Service-oriented architectures Class, Component, Deployment

{1.1, 1.4,2.2, 3.1,4.1,

4.2,4.6, 5.5,6.6}
#28 SWS ?
[A 34] Semantic web description languages, Web services Activity

{1.1, 1.4,2.2, 3.5,4.1,

4.6,5.5, 6.6}
#29 eSPEM ?
[A 35] Software development process management Activity, StateMachine

{1.1, 2.3,2.4, 3.5,4.6,

5.5,6.6}
#30 RCSD ?
[A 36] Transportation Class, Object

{1.1, 2.2,3.1, 3.4,4.1,

4.3,4.6, 5.2,6.6}
#31 UML-SOA-Sec
[A 37]

Business process modeling, Security requirements, Service-oriented archi-
tectures, Web services Activity

{1.1, 2.2,3.5, 4.1,4.2,

4.6,5.5, 6.6}

#32 UML2Alloy ?
[A 38] Model verification and validation Class, Package

{1.1, 1.4,2.2, 3.1,3.4,

4.1, 4.6,5.5, 6.1,6.2,

6.5}
#33 ExSAM ?
[A 39] Avionics, Embedded systems, Engineering CompositeStructure

{1.1, 1.4,2.2, 3.4,4.1,

4.6,5.5, 6.6}
#34 UACL ?
[A 40] Availability, Telecommunications Class, Component

{1.1, 1.4,2.2, 3.1,3.4,

4.1,4.6, 5.5,6.6}
#35 SECTET
[A 41] Service-oriented architectures, Software security engineering, Web services Class

{1.1, 2.1,3.5, 4.7,5.5,

6.2,6.5}

#36 UML4SOA ?
[A 61, 43] Service-oriented architectures Activity, Class, Component

{1.1, 2.2,2.3, 3.1,4.1,

4.2, 4.6,5.5, 6.1,6.3,

6.5}
#37 SafeUML ?
[A 44] Avionics, Software safety Class, Package

{1.1, 1.4,2.2, 3.1,3.4,

4.1,4.6, 5.5,6.6}
#38 IStarDW ?
[A 45] Data warehouses, Security requirements Class, Package

{1.1, 2.2,3.1, 3.4,4.1,

4.2,4.6, 5.5,6.5}
#39 TestOracle ?
[A 46] Software testing and debugging StateMachine

{1.1, 2.2,3.5, 4.1,4.3,

4.6,5.5, 6.2}
#40 MOCAS
[A 47] Model checking, Model verification and validation Object

{1.1, 2.3,3.1, 3.4,4.7,

5.5,6.4}
#41 CCFG
[A 48] Model verification and validation Activity

{1.1, 2.3,3.5, 4.2,5.5,

6.6}
#42 TimeSeriesAnalysis ?
[A 49] Data mining, Data warehouses Class, Object

{1.1, 2.2,3.1, 4.1,4.2,

4.6,5.5, 6.6}
#43 ADOM-UML
[A 50]

Model verification and validation, Requirements analysis, Software design
engineering *

{1.1, 1.2,2.2, 3.5,4.1,

4.6,5.5, 6.6}
#44 Predefined-
Constraints ?
[A 13]

Model checking *
{1.1, 2.2,3.4, 4.1,4.6,

5.5,6.6}

#45 TAM-PM ?
[A 51] Graphical user interfaces, Web interfaces Activity, Class

{1.1, 1.4,2.2, 3.1,4.1,

4.6,5.5, 6.2}
#46 SPEM4MDE
[A 52] Software development process management Activity, StateMachine

{1.1, 2.3,3.1, 3.4,4.2,

5.5,6.5}
#47 CSSL
[A 53] Collaborative and social computing Class, StateMachine

{1.1, 2.3,3.1, 3.4,4.5,

5.5,6.6}
#48 SystemC
[A 54] Embedded systems, System on a chip CompositeStructure, StateMachine

{1.1, 2.2,3.5, 4.1,4.2,

4.6,5.5, 6.6}
#49 UML2Ext ?
[A 55] Requirements analysis, Software product lines UseCase

{1.1, 2.3,3.5, 4.6,5.5,

6.6}
#50 HM3 ?
[A 56] Hypertext languages Class, UseCase

{1.1, 2.2,2.3, 3.1,3.4,

4.1,4.6, 5.5,6.6}
#51 WCAAUML ?
[A 57] Web applications, Web interfaces Class, Deployment, Package

{1.1, 2.2,3.5, 4.1,4.6,

5.5,6.2}
#52 IEC61508 ?
[A 58, 59] Model verification and validation, Safety critical systems Class, Package

{1.1, 1.4,2.2, 3.1,3.4,

4.1,4.6, 5.5,6.6}
#53 UCDM ?
[A 60] Use cases UseCase

{1.1, 2.3,3.1, 3.4,4.4,

4.6,5.3, 6.6}
#54 SPArch ?
[A 61] Software architectures, Software development process management Class, Component, Package

{1.1, 1.4,2.2, 3.5,4.1,

4.6,5.5, 6.6}
#55 MoDePeMART ?
[A 62] Measurement, Metrics, Software performance Class, StateMachine

{1.1, 1.4,2.2, 3.5,4.1,

4.6,5.5, 6.6}
#56 UPCC
[A 63] Enterprise data management, Service-oriented architectures, Web services Class

{1.1, 2.1,3.5, 4.7,5.5,

6.6}

A.2



DSML Application domain(s) Diagram type(s) Option set

#57 SELinux
[A 64] Access control, Operating systems security, Security requirements Class

{1.1, 1.3,2.2, 3.5,4.1,

4.6,5.5, 6.6}
#58 UML-GUI
[A 65] Graphical user interfaces Class, Component

{1.1, 1.2,2.1, 3.5,4.7,

5.5,6.3}
#59 SHP ?
[A 66] Software security engineering Class, Package

{1.1, 2.2,3.1, 3.4,4.1,

4.6,5.5, 6.6}
#60 SMF ?
[A 67] Fault tree analysis, Safety critical systems, Software safety Class, Component, UseCase

{1.1, 1.3,1.4, 2.2,3.5,

4.1,4.6, 5.5,6.6}
#61 DMM/UCMM ?
[A 68] Graphical user interfaces Class, UseCase

{1.1, 1.4,2.3, 2.4,3.5,

4.6,5.5, 6.6}
#62 CUP 2.0 ?
[A 69] Graphical user interfaces Activity, Class, Package

{1.1, 2.2,3.4, 4.1,4.2,

4.6,5.5, 6.2}
#63 REMP ?
[A 70] Embedded systems, Real-time systems, Software testing and debugging Class, StateMachine

{1.1, 2.2,3.1, 4.1,4.6,

5.5,6.6}
#64 DPL ?
[A 71] Web services Activity

{1.1, 2.2,3.5, 4.1,4.6,

5.5,6.2}
#65 WebRE ?
[A 72] Requirements analysis, Web applications Activity, UseCase

{1.1, 1.4,2.2, 3.5,4.1,

4.2,4.6, 5.5,6.6}
#66 AOM-AD ?
[A 73] Software development techniques Activity

{1.1, 1.2,2.2, 3.4,4.1,

4.6,5.5, 6.6}
#67 Reliability ?
[A 74] Software reliability InteractionOverview, Sequence

{1.1, 1.4,2.2, 3.4,4.1,

4.6,5.5, 6.2}
#68 UML-AOF ?
[A 75] Software development techniques Class, Package

{1.1, 2.2,3.4, 4.1,4.6,

5.5,6.6}
#69 CompSize
[A 76] Embedded systems, Estimation, Measurement, Metrics Class, Component

{1.1, 2.2,3.5, 4.1,4.6,

5.5,6.6}
#70 Architectural-
Primitives ?
[A 77]

Design patterns, Software architectures Component
{1.1, 2.2,3.1, 3.4,4.1,

4.6,5.5, 6.6}

#71 CUP ?
[A 78] Error detection and error correction, Model checking CompositeStructure, Sequence

{1.1, 2.2,3.1, 4.1,4.6,

5.5,6.6}
#72 GWfM-Sec ?
[A 79] Orchestration languages, Software security engineering, Web services Activity

{1.1, 2.2,2.3, 3.4,4.1,

4.6,5.5, 6.6}
#73 SoC ?
[A 80] Hardware description languages and compilation, System on a chip Activity, Class, CompositeStructure, De-

ployment
{1.1, 2.2,3.4, 4.1,4.6,

5.5,6.6}
#74 UMLtrust ?
[A 81]

Scenario-based design, Software development techniques, Trust frame-
works Class, Package, UseCase

{1.1, 2.2,3.4, 4.1,4.2,

4.6,5.5, 6.6}
#75 HERM ?
[A 82] Database design and models Class

{1.1, 1.2,1.4, 2.2,3.1,

3.4,4.1, 4.6,5.5, 6.6}
#76 WebML ?
[A 83] Web applications, Web interfaces Class, Component, CompositeStructure

{1.1, 1.4,2.2, 3.1,4.1,

4.2,4.6, 5.5,6.6}
#77 ODP
[A 84] Distributed architectures Class, Component, Object, Sequence

{1.1, 2.2,3.5, 4.1,4.6,

5.5,6.6}
#78 EIS ?
[A 85] Enterprise information systems Activity, Component

{1.1, 2.2,3.4, 4.1,4.2,

4.6,5.5, 6.6}
#79 SPTExt ?
[A 86] Embedded systems, Real-time systems Activity

{1.1, 1.2,1.3, 2.2,3.4,

4.1,4.6, 5.5,6.6}
#80 CAV ?
[A 87] Software architectures, Software evolution Class

{1.1, 2.2,3.4, 4.1,4.6,

5.5,6.6}
#81 SOA-NF ?
[A 88] Service-oriented architectures CompositeStructure

{1.1, 2.2,3.4, 4.1,4.6,

5.5,6.2}
#82 SECRDW
[A 89] Data warehouses, Security requirements Class, Package

{1.1, 2.3,3.5, 4.7,5.5,

6.6}
#83 SECDW ?
[A 90] Data warehouses, Security requirements Class, Object

{1.1, 2.2,3.1, 3.4,4.1,

4.2,4.6, 5.5,6.6}
#84 EM
[A 91] Electronic commerce, Web applications Class, StateMachine, UseCase

{1.1, 2.1,3.1, 3.4,4.7,

5.1,5.3, 6.6}
#85 WS-CM ?
[A 92] Web applications, Web services Class, StateMachine

{1.1, 2.2,3.5, 4.1,4.6,

5.5,6.2}
#86 aspectJ ?
[A 93] Software development techniques Class, Package

{1.1, 2.2,3.1, 3.4,4.1,

4.6,5.5, 6.2}
#87 ContextUML ?
[A 94] Service-oriented architectures, Web services Class

{1.1, 2.2,3.5, 4.1,4.6,

5.5,6.2, 6.3}
#88 DifferenceMM ?
[A 95] Software evolution Class

{1.1, 2.3,3.5, 4.6,5.5,

6.6}
#89 Versioning ?
[A 12] Software evolution, Version control *

{1.1, 1.4,2.2, 3.5,4.1,

4.6,5.5, 6.3}
#90 NFA
[A 96] Avionics, Model checking Class

{1.1, 2.3,3.5, 4.3,5.5,

6.5}
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