

Designing the Semantic Web for Higher Education -

Technological and Socio-economical Challenges

Bernd Simon bernd.simon@wu-wien.ac.at Barcelona, 04/04/2002

Outline

- What is the Semantic Web all about?
- How do Use Cases of the Semantic Web look like and how can we realize them?
- What is missing from the socio-economical point of view?

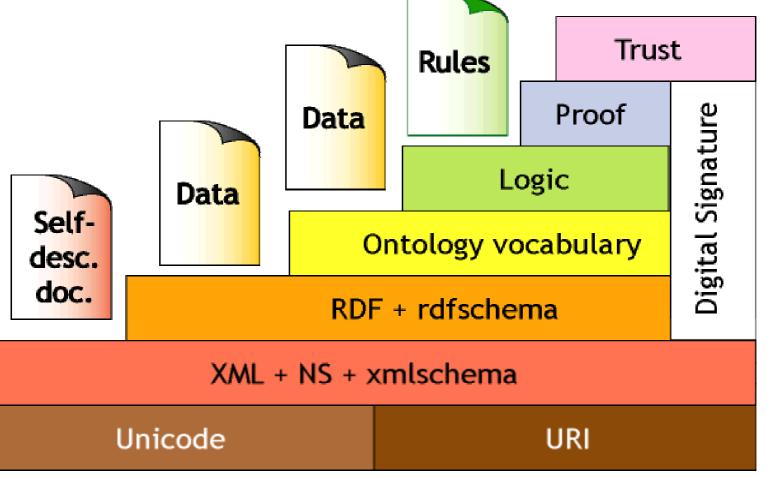
What is the Semantic Web all about?

Defining the Semantic Web

"The vision of the semantic web aims to have distributed data and services defined and linked in such a way that they can be used by machines not just for display purposes, but for automation, integration and reuse of data and services across various applications."

Berners-Lee, Hendler, Lassila 2001

"What we're seeing is just the first version of the Web. The next version will be even bigger and more powerful..."


Fensel, Musen 2001

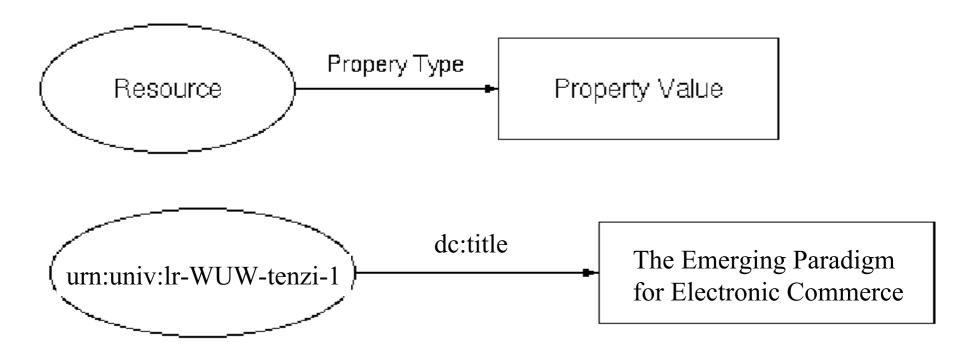
Emphasize on Services

McIlraith et al.,2001

- Automatic Web service discovery: automatic web service discovery involves the automatic location of Web services that provide a particular service.
- Automatic Web service invocation: Automatic Web service invocation involves the automatic execution of an identified Web service.
- Automatic Web service monitoring: Once a web service has been invoked, one may want to know the status of the service.
- Automatic Web service composition: This task involves the automatic composition and interoperation of Web services to perform some task, given a highlevel description of an objective.

Semantic Web Stack -The Layer Cake

Berners-Lee, 2000


Example of an XML Schema

```
<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  targetNamespace="http://www.books.org"
   xmlns="http://www.books.org">
 <xsd:element name="BookStore">
  <xsd:complexType>
     <xsd:sequence>
       <xsd:element ref="Book" minOccurs="1" maxOccurs="unbounded"/>
     </xsd:sequence>
  </xsd:complexType>
 </xsd:element>
 <xsd:element name="Book">
  <xsd:complexType>
     <xsd:sequence>
       <xsd:element ref="Title" minOccurs="1" maxOccurs="1"/>
       <xsd:element ref="Author" minOccurs="1" maxOccurs="unbounded"/>
  </xsd:sequence>
  </xsd:complexType>
 </xsd:element>
 <re><rusd:element name="Title" type="xsd:string"/></ru>
 <rr><rd><xsd:element name="Author" type="xsd:string"/></r>
</xsd:schema>
```

XML Instance

- <?xml version="1.0"?>
- <BookStore xmlns ="http://www.books.org"
- xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.books.org BookStore.xsd">
 <Book>
 - <Title>My Life and Times</Title>
 - <Author>Paul McCartney</Author>
 - </Book>
 - etc...
- </BookStore>

Resource Description Framework (RDF)

RDF Instance

```
<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF
```

```
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
```

```
<rdf:Description rdf:ID="urn:univ:lr-WUW-tenzi-1">
<dc:title>
```

The Emerging Paradigm for Electronic Commerce </dc:title>

```
<dc:creator rdf:resource="urn:univ:us-1"/>
```

```
<dcq:created>
```

```
<dcq:W3CDTF>
```

```
<rdf:value>2000-05-07</rdf:value>
```

```
</dcq:W3CDTF>
```

```
</dcq:created>
```

```
</rdf:Description>
```

</rdf:RDF>

- XML Schema is used for describing the valid syntax of an XML document
- RDF Schema is used for describing differences between concepts (RDF Schema vocabulary: class, property, subclass, type,

Differences between XML and RDF

- XML focuses on syntax and document structure, RDF on semantic.
- RDF supports the creation of selfdescribing documents.
- RDF namespaces are part of tags providing a semantic identifier at an attribute level.
- RDF has its foundations in logic.
- RDF provides a "complete" Framework: graphical representation, XML serialization, triples.

Using XML and RDF to describe services

- Web Service Description Language (WSDL)
- SOAP: Remote Procedure Calls via Web
- Universal Description, Discovery and Integration (UDDI): white, yellow and green pages (uses WSDL and SOAP).
- DAML (Darpa Agent Markup Language) provides means for expressing knowledge of a service:
 - What does the service require?
 - How does it work?
 - How is it used?

Ontologies provide an explicit, formal specification of how to represent the objects, concepts and other entities that are assumed to exist in a domain and the relationships that hold among them.

Sample Ontology: African Wildlife

class-def animal class-def plant subclass-of NOT animal class-def tree subclass-of plant class-def branch slot-constraint is-part-of has-value tree class-def leaf slot-constraint is-part-of has-value branch class-def defined carnivore subclass-of animal slot-constraint eats value-type animal class-def defined herbivore subclass-of animal, NOT carnivore slot-constraint eats value-type plant OR (slot-constraint is-part-of has-value plant) class-def giraffe subclass-of herbivore slot-constraint eats value-type leaf class-def lion subclass-of animal slot-constraint eats value-type herbivore class-def tasty-plant subclass-of plant slot-constraint eaten-by has-value herbivore, carnivore

% animals are a class % plants are a class % that is disjoint from animals % trees are a type of plants % branches are parts of trees % leaves are parts of branches % carnivores are animals % that eat only other animals % herbivores are animals, but not carnivores % that eat only plants or parts of plants % giraffes are herbivores % and they eat leaves % lions are also animals % but they eat herbivores % tasty plants are plants that are eaten by

% both herbivores and carnivores

Decker, et al. 2000

Ontology Engineering

- ... develops and uses techniques for accumulating knowledge within reasonable size of stratified domains. The product of such a study is a catalog of the types of things that are assumed to exist (Sowa, 2000).
- Ontology discovery (Maedche and Staab, 2001) extends ontology-engineering environments by using semiautomatic ontology-construction tools.

How do Use Cases of the Semantic Web look like and how can we realize them?

Designing Smart Spaces for Learning and Teaching - Definition

- Smart Spaces are defined as peer-to-peer networks (spaces) that mediate learning and teaching services (e.g. delivery of courses or educational material)
- Take advantage of distributed, intelligent user profiling services in order to support the service and artefacts selection process.

Services for Learning and Teaching

Curriculum **Creation &** Management

Content **Development &** Acquisition Management

Learner **Acquisition &** Competence

Learning Delivery

Learner Assessment & Instructor **Evaluation**

Accreditation **Services**

> Curriculum **Evaluation Services**

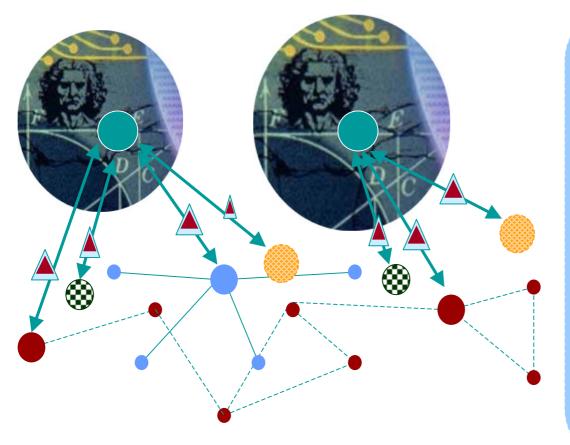
Development Tools, e.g. AuthorWare, PowerPoint, **RealPresenter**, **Ouest**

Content **Brokerage** LydiaLearn, Merlot, Universal

CRM Components of ERP Systems e.q. SAP **Virtual Campus**

Competence Management Systems, e.g. SABA Learning, Clixx

Learning Management Systems, e.q. Hyperwave ELS, **Lotus Learning** Space, WebCT, **Blackboard**


Collaborative Teaching Tools, e.g. **Isabel**

Learner **Assessment &** Certification **Services**

Evaluation Tools, e.g. Zoomerang

Platforms, e.g. The Gateway,

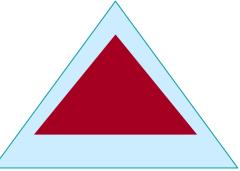
Interaction Scenarios within Smart Spaces

Nodes of Content Brokerage Network

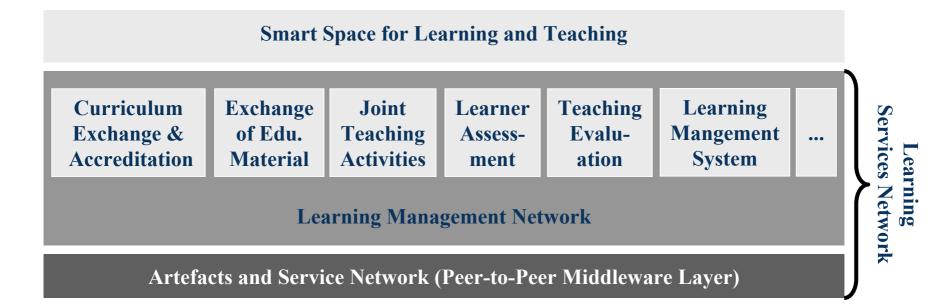
Network of Video Conferencing Devices

Assessment Services Site

Human Resources Management Systems



Smart Space for Learning & Teaching


Services delivering artefacts for learning

Artefacts involved

- Educational Material, e.g. case studies, text books, support material, simulations, ...
- Educational Activities, e.g. lectures, tutoring sessions, online courses, ...
- Accreditation and Assessment data of ed. activities and ed.material
- Learner profiles and personal development plans
- Instructor track records, …

Envisioning a Communication Framework

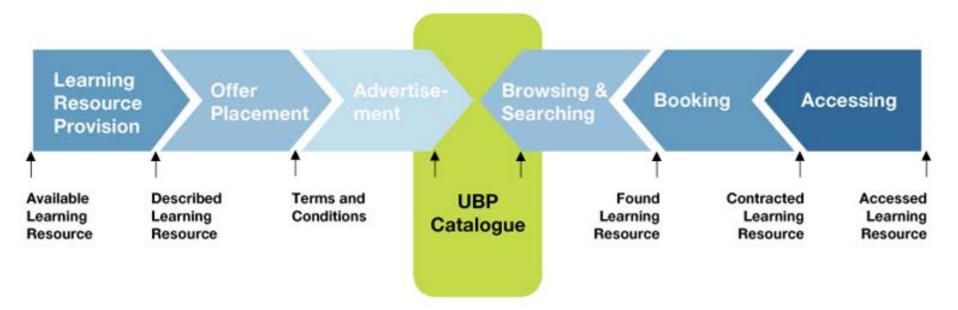
What is missing from a technical point of view?

- Mobile network connectivity
- Standards for all artefacts involved
- Ontologies for learning resources (ed. material + ed. activities)
- Ontologies for learning services

What is missing from a technical point of view?

- Standards for Peer-to-Peer integration providing peer authentication and communication (early research: http://edutella.jxta.org)
- Remote Query Interfaces for metadata repositories (early research: Nejdl, et al 2002)
- Replication of repositories describing artefacts descriptions (early research: Nejdl, et al 2002)

What is missing from the socio-economic point of view? - A Case Study from the Universal Project


Envisioning a Smart Space for Teaching

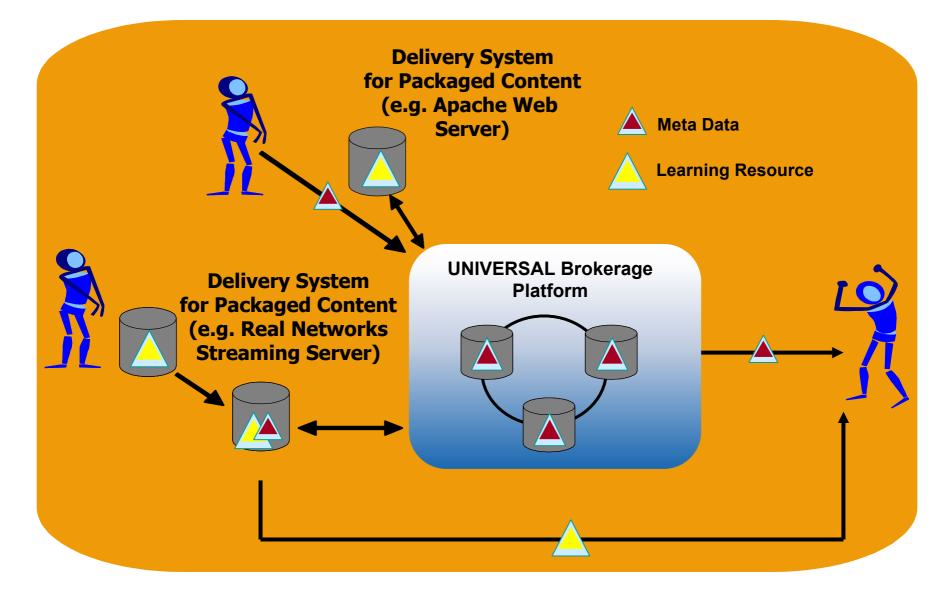
- Alternative Concepts: Electronic Education(al) Markets, Knowledge/Learning Media, Knowledge Warehouse/System, Digital Library for Learning Resources
- Examples: Edutella, Universal (http://www.istuniversal.org),
- Based on traditional Web technology: Gateway to Educational Material, Merlot, dSpace @ MIT, Virtual University @ Wirtschaftsuniversität Wien

The UNIVERSAL Value Chain Universal

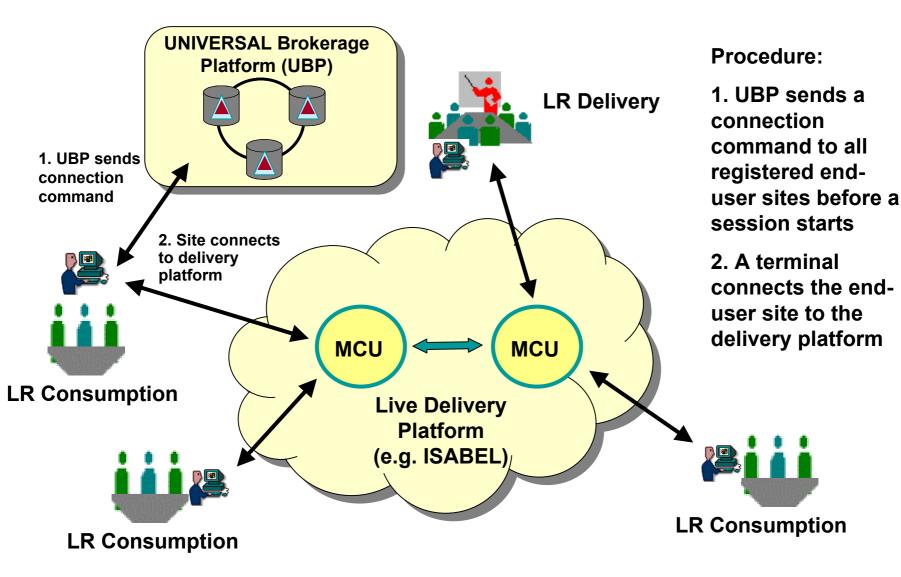
Why a smart space for teaching? Universal Benefits for the provider of learning resources

- Share the creativity of your work with others who might be desperately looking for exactly the kind of learning objects you have created;
- Get feedback from your learning object consumers, which will enable you to enhance your own material;
- **Gain reputation** in a growing community;
- Access new academic distribution channels;
- Encourage others to put material online, from which you might benefit as well.

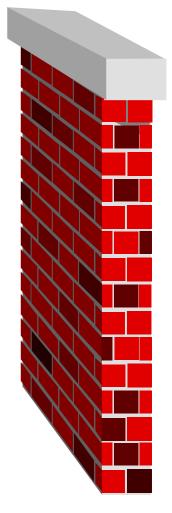
Benefits for the consumer of learning resources

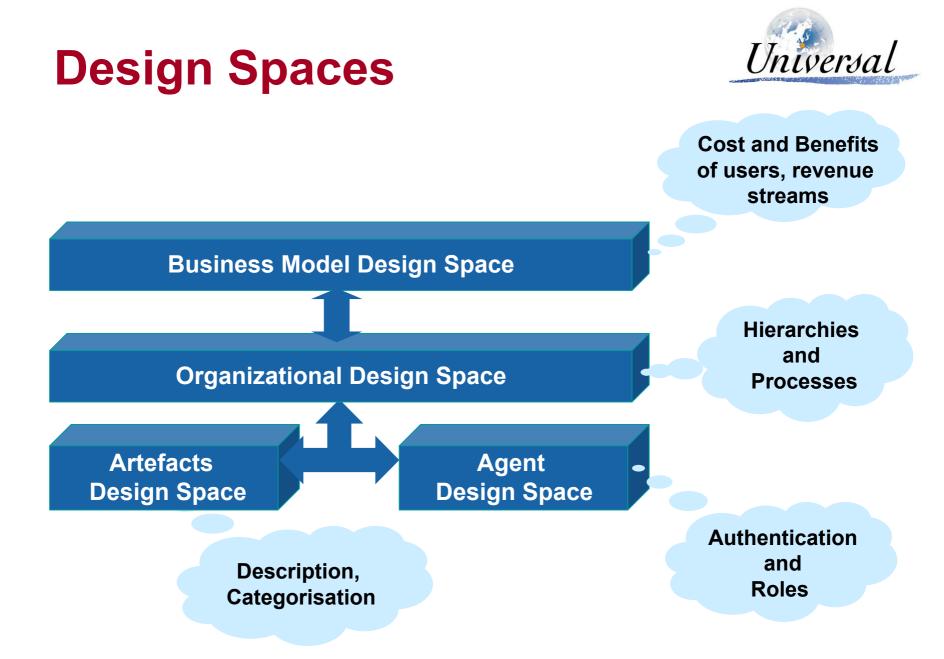

- Reuse existing material instead of paying the costly price of developing it on your own;
- Contribute to a community of scholars through interaction with instructors, experts and peers;
- Enhance quality teaching;
- Foster national and international academic alliances and exchanges;
- **Enable partnerships** between faculty members.

Universal


UNIVERSAL System Architecture I

UNIVERSAL System Architecture II




In the past users have been reluctant to use smart spaces:

- > 1998: STRIKE at York University;
- 2000: At the Virtual University of Wirtschaftsuniversität Wien only 48 References to Learning Resources were found (given that Wirtschaftsuniversität Wien offers 1.900 courses per semester);
- 2001: UNIVERSITAS 21 faculty and students boycott a smart space project among American and Australian Universities

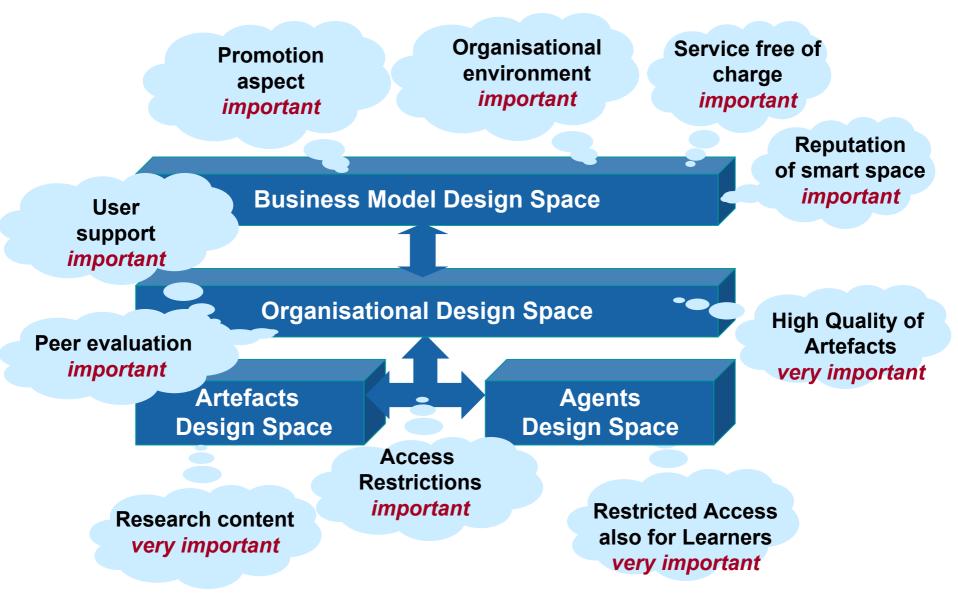
Socio-economic Research Question: What are success factors of smart spaces for teaching?

Methodology

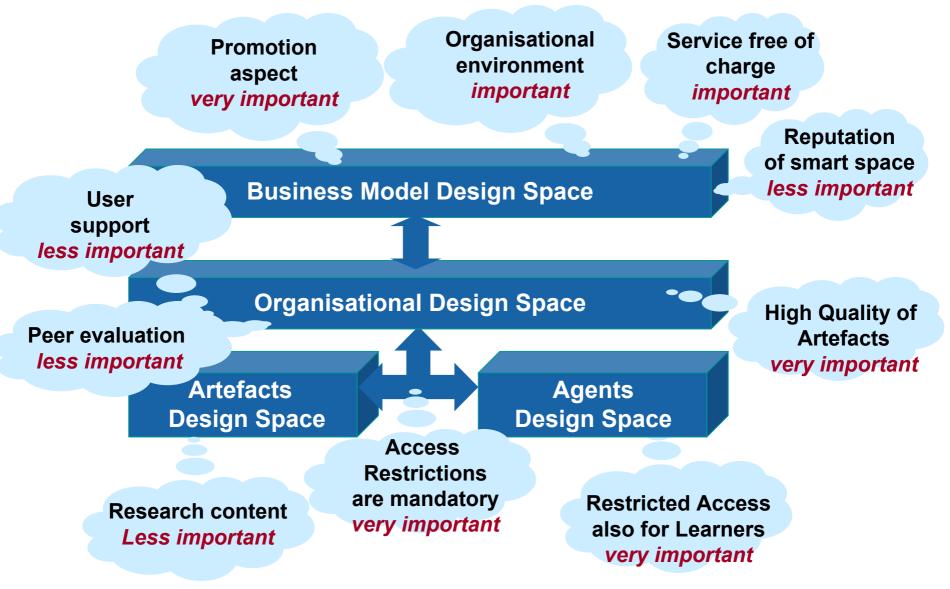
Interview technique

- **Telephone Interviews based on questionnaire**
- Survey population
 - Faculty of four European Business Schools:
 Wirtschaftsuniversität Wien, Universität St. Gallen,
 Universität zu Köln, HEC Paris
 - Weighted Random Sample of 127 faculty members

Fundamental Decision in Business Model Design Space


Community Model

Collaborative Design and Delivery of Learning Resources "Co-operate"


Transaction Model

External Acquisition and Distribution of Learning Resources "Buy"

Design of a Community Scenario

Design of a Commercial Scenario

Success Factors Relating to User Type

Supporter of Community Model (General interest: 70,9 %)

- Higher interest on exchanging research content
- Early adaptor
- Most likely not in a leading position
- Access restriction less important
- No willingness to pay for the service

Supporter of Transaction Model (General interest: 37,8 %)

- Less interested in exchanging research content
- Not an early adaptor
- Being represented in the smart space is important
- Access restriction very important
- Higher willingness to pay for the service

References 1/2

- T. Berners-Lee, J. Hendler and O. Lassila (2001). The semantic web. Scientific American, 284 (5), 34-43.
- T. Berners-Lee (2000). XML 2000 Conference.
- S. Decker, S. Melnik, F. Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann and I. Horrocks (2000). The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing, 2000 (Sept./Oct.), 63-74.
- S. Guth, G. Neumann and B. Simon (2001). UNIVERSAL -Design Spaces for Learning Media. In: R. H. Sprague (ed.), Proceedings of the 34th Hawaii International Conference on System Sciences.
- J. Hendler (2001). Agents and the Semantic Web. IEEE Intelligent Systems, 16 (2), 30-37.
- S. A. McIlraith, T. C. Son and H. Zeng (2001). Semantic Web Services. IEEE Intelligent Systems, 16 (2), 46-53.

References 2/2

- A. Maedche and S. Staab (2001). Ontology Learning for the Semantic Web. IEEE Intelligent Systems, 16 (2), 72-79.
- W. Nejdl, W. Siberski, B. Simon and J. Tane (2002). Modification Exchange Language for Distributed RDF Repositories. To appear in: Proceedings of 1st Int. Semantic Web Conference.
- W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, N. Ambjörn, M. Nilsson, M. Palmer and T. Risch (2002). EDUTELLA: A P2P Networking Infrastructure Based on RDF. Accepted for 11th World Wide Web Conference, Hannover.
- B. Simon (2001). E-Learning an Hochschulen: Erfolgsfaktoren und Gestaltungsräume von Wissensmedien. Eul, Lohmar, Köln.
- J. Sowa (2000). Knowledge Representation: Logical,
 Philosophical, and Computational Foundations. Brooks, Cole.