
 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

3 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

Jan Mendling, Gustaf Neumann, Markus Nüttgens

Yet Another Event-driven Process Chain

Modeling Workflow Patterns with yEPCs

Abstract: The 20 workflow patterns proposed by van der Aalst et al. provide a comprehensive benchmark for

comparing process modelling languages. In this article, we discuss workflow pattern support of Event-Driven

Process Chains (EPCs). Building on this analysis, we propose three extensions to EPCs in order to provide for

workflow pattern support. These are the introduction of the so-called empty connector; inclusion of multiple

instantiation concepts; and a cancellation construct. As both the latter are inspired by YAWL, we refer to this new

class of EPCs as Yet Another Event-driven Process Chain (yEPC). Furthermore, we sketch how a transformation to

YAWL can be used to specify the semantics of yEPCs.

1 Motivation

The 20 workflow patterns gathered by van der

Aalst, ter Hofstede, Kiepuszewski and Barros

[AHKB03] are well suited for analyzing different

workflow languages: researchers can reference to

these control flow patterns in order to compare

different process modelling techniques. This is of

special importance considering the heterogeneity

of process modelling languages (see e.g.

[MNN04]). The patterns have been used to

analyze several workflow and business process

modelling languages in order to understand in how

far they are suited to express complex behaviour

in an intuitive manner. Building on the pattern

analysis and on the insight that no language

provides support for all patterns, van der Aalst

and ter Hofstede have defined a new workflow

language called YAWL [AH05]. YAWL takes

workflow nets [Aa97] as a starting point and adds

non-petri-nets constructs in order to support each

pattern (except implicit termination) in an intuitive

manner.

Besides Petri nets, Event-Driven Process Chains

(EPC) [KNS92] are another popular technique for

business process modelling. Yet, their focus is

rather related to semi-formal process docu-

mentation than formal process specification, e.g.,

the SAP reference model has been defined using

EPC business process models [KM94]. The debate

on EPC semantics (see e.g. [Ri00, NR02, ADK02])

has recently inspired the definition of a mathematical

framework for a formalization of EPCs in [Ki04]. As a

consequence, we argue that workflow pattern support

can also be achieved by starting with EPCs instead of

Petri nets. In this article, we define an extension to

EPCs that is called Yet Another EPC (yEPC). yEPCs can

be used to model all of the workflow patterns in an

intuitive manner. As such they contribute to closing

the gap between business process modelling with EPCs

and workflow modelling with YAWL.

Before this background, the article is structured as

follows. Section 2 will give a detailed workflow pattern

analysis of EPCs. This shows that EPCs are able to

capture several patterns, yet they fail to support state-

based patterns, multiple instantiation, and cancellation

patterns. Furthermore, we highlight the non-local

semantics of the EPC XOR join, and its implications for

workflow pattern support. In Section 3, we illustrate

three extensions of EPCs that are sufficient to provide

for direct support of the 20 workflow patterns. These

include the empty connector, a multiple instantiation

concept, and cancellation areas. Both the latter are

adopted from YAWL. As yEPCs and YAWL might appear

to be quite similar up to this point, we discuss

sophisticated differences between the two languages in

Section 4. These differences have to be reflected by a

suitable transformation algorithm from yEPCs to YAWL.

In Section 5, we present related research on

extensions of EPCs. Section 6 closes the article and

gives an outlook on future research.

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

4 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

2 Workflow Patterns and EPCs

EPCs are a modeling language to specify the

temporal and logical relationships between

activities of a business process [KNS92]. The

original EPC offers the following element types:

function type, event type, and connector type

which can be linked via control flow arcs (see

Figure 1). A function represents an activity that is

executed in a process. Events represent pre- and

post-conditions of functions. As a rule, functions

and events have to alternate. In contrast to Petri

Net-based process modeling languages, EPCs

allow multiple start events and multiple end

events. In EPCs there are three different kinds of

connectors: AND, XOR, and OR. They may be used

as either join connectors (multiple incoming, one

outgoing arc) or split connectors (one incoming,

multiple outgoing arcs). Even if there are

connectors in between functions and events, the

alternation rule must hold.

Furthermore, a distinction can be made between

function-event connectors and event-function

connectors. Considering this as well as the three

connector types AND, XOR, and OR, and splits and

joins, there are 12 possible kinds of connectors.

The AND split activates all subsequent branches in

concurrency while the XOR split defines a choice to

activate one of multiple branches. The OR split

triggers one, two or up to all of multiple branches

based on conditions. In both cases of the XOR and

OR split, the activation conditions are given in

events subsequent to the connector. Accordingly,

event-function-splits are forbidden with XOR and

OR as these activation conditions do not become

clear in the model. The AND join waits for all

incoming branches to complete, then it propagates

control to the subsequent EPC element. The

semantics of the OR join have been debated as

non-local – for an overview see e.g. [Ki04]. Non-

locality means that the OR join synchronizes all

incoming branches that are active. In order to do

so, it must be aware of which branches are still

active and which will never be active. In acyclic

process models such synchronization can be

achieved via dead-path-elimination which was also

proposed for EPCs [LNS98]. Yet, cycles cannot be

handled with this approach. For an approach to

resolve this problem, see [Ki04]. The XOR split

has also non-local semantics: if there is only one

branch active (which is the expected case) it

actives the subsequent EPC element. Yet, if there

are multiple branches active, it synchronizes them

and blocks [NR02]. EPCs offer two concepts for

defining decomposition of models: hierarchical

functions and process interfaces. A hierarchical

function allows pointing to another EPC process

that defines the behavior of the hierarchical function.

The linked EPC process can be regarded as a sub-

process in this context. The process interface defines a

point in an EPC process where another EPC process is

triggered. In contrast to a hierarchical function, this

triggered process does not return control back to the

process interface. In the following we illustrate how

EPCs can be used to model workflow patterns

[MNN05a]. For a more formal approach on EPC

semantics refer to Kindler [Ki04].

Figure 1: Symbols of the EPC notation

Workflow Pattern 1 (Sequence): Figure 2 shows an

EPC model for workflow pattern 1 (sequence). In EPCs

each activity or task is modelled as a so-called function

symbolized by rounded rectangles. Functions can be

separated via so-called events given as hexagons. As

events represent pre- and post-conditions for functions

the respective event must have occurred before a

subsequent function can be executed. In Figure 1

(Workflow Pattern 1) function A triggers an event that

is the pre-condition of function B.

Workflow Pattern 2 (Parallel Split): EPCs define a

restriction on the number of incoming and outgoing

arcs of events and functions. Each function must have

exactly one incoming and one outgoing arc, each

event at most one incoming and one outgoing arc. In

order to allow for complex routing of control flow so-

called connectors are introduced. A connector may

have one incoming and multiple outgoing arcs (split)

or multiple incoming and one outgoing arc (join).

Figure 2 (Workflow Pattern 2) illustrates how the AND

split connector is applied to achieve control flow

behaviour as defined by the parallel split pattern. That

means after function A all the three subsequent

functions B, C, and D are activated to be executed

concurrently. The connector is represented by a circle.

The and-symbol ∧ indicates its type. Connectors have

no influence on the alternation of events and

functions. This means, for example, that an event is

always followed by a function no matter if there are

no, one, or more connectors between them.

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

5 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

Figure 2: Workflow Patterns 1-5 as EPC models

Workflow Pattern 3 (Synchronization): Figure 2

(Workflow Pattern 3) shows the AND connector as a

join. Each of the functions B, C, and D have to be

completed before E can be executed. The AND join

synchronizes the parallel threads of execution just as

described by the synchronization pattern. The symbols

for AND split and AND join are the same. They can

only be distinguished by the cardinality of incoming

and outgoing arcs.

Workflow Pattern 4 (Exclusive Choice): Pattern 4

(exclusive choice) describes a point in a process where

a decision is made to continue with one of multiple

alternative branches. This situation can be modelled

with the XOR split connector of EPCs, compare

Figure 2 (Workflow Pattern 4). After function A has

completed, a decision is taken to continue with one of

functions B, C, and D.

Workflow Pattern 5 (Simple Merge): Figure 1 (Work-

flow Pattern 5) shows the XOR join that precisely

captures the semantics of pattern 5. There has been a

debate on the non-local semantics of the XOR join.

While Rittgen [Ri00] and Van der Aalst [Aa99]

proposes a local interpretation, recent research agrees

upon non-local semantics (see e.g. [NR02,Ki04]). This

means that the XOR join is only allowed to continue

when one of the functions B, C, and D has finished,

and it is not possible that the other functions will ever

be executed. Accordingly, EPC's XOR join works

perfect when used in an XOR block started with an

XOR split, but may block e.g. when used after an OR

split depending on whether more than one branch has

been activated. Regarding this non-local semantics it is

similar to a synchronizing merge (see workflow pattern

7) but with the difference that it blocks when further

process folders may be propagated to the XOR join. In

contrast to this, pattern 5 (simple merge) defines a

merge without synchronization, but building on the

assumption that the joined branches are mutually

exclusive. The XOR join in YAWL [AH05] can

implement such behaviour with local semantics: when

one of parallel activities is completed the next activity

after the XOR join is started. But when the assumption

does not hold, i.e., when another of the parallel

activities has finished the activity after the XOR join is

activated another time, and so forth. This observation

allows two conclusions. First, there is a fundamental

difference between the semantics of the XOR join in

EPCs and YAWL: the XOR join in EPCs has non-local

semantics and blocks if there are multiple paths

activated; the XOR join in YAWL has local semantics

and propagates each incoming process token without

ever blocking. Accordingly, the YAWL XOR join can

also be used to implement pattern 8 (multiple merge).

Second, as the XOR join in EPCs has non-local

semantics, there is no mechanism available to model

workflow pattern 8 with EPCs.

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

6 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

Figure 3: Workflow Patterns 6, 7, 10, and 11 as

EPC models

Workflow Pattern 6 (Multiple Choice): Figure 3

(Workflow Pattern 6) gives an EPC model for multiple

choices using the OR split connector. This connector

activates multiple branches based on conditions.

Workflow Pattern 7 (Synchronizing Merge): The OR

join connector depicted in Figure 3 (Workflow Pattern

7) synchronizes multiple paths of execution as

described in the synchronizing merge pattern. The OR

join has both in EPCs and in YAWL non-local

semantics. This means that function E can only be

executed when all concurrently activated branches

have completed. This is different to workflow pattern 3

(synchronization) where all branches have to

complete, no matter if they have been activated or

not. Accordingly, the OR join in Figure 3 needs to

consider not only if functions B, C, or D have been

completed, but also if there is the chance that they

can potentially be activated in the future. If this is the

case, the OR join has to wait until an execution of

these functions is no longer possible or until they have

completed.

Workflow Pattern 10 (Arbitrary Cycles): EPCs also

provide for direct support of workflow pattern 10.

Arbitrary cycles are explicitly allowed in EPCs. Yet, one

needs to be aware that arbitrary cycles in conjunction

with uncontrolled entrances via OR join or XOR join

connectors may lead to EPC process models with so-

called unclean semantics [Ki03]. Furthermore, it is not

allowed to have cycles composed of connectors only

[NR02]. Figure 3 (Workflow Pattern 10) gives an

example of a cycle with two entrance connectors at the

top.

Workflow Pattern 11 (Implicit Termination): Implicit

termination is also supported by EPCs [Ru99]. Figure 3

(Workflow Pattern 11) gives the example of an EPC

process fragment with multiple end events. EPCs do

not terminate before all activities have completed or

process folders are locked in non-local XOR joins or

AND joins [Ru99]. As a consequence, the model of

Figure 3 is equivalent to a model that synchronizes

these three end events with an OR join connector to

only one new end event.

Altogether, workflow patterns 1 to 7, 10, and 11 are

supported by EPCs [MNN05a]. In the following, we

introduce extensions to EPCs in order to provide for

additional modelling support of workflow patterns 5

(simple merge), 8 (multiple merge), 9 (discriminator),

12-15 (multiple instantiation), 16 (deferred choice), 17

(interleaved parallel routing), 18 (milestone), and 19-

20 (cancellation).

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

7 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

3 Workflow Patterns and yEPCs

In order to align EPCs for direct support of

workflow patterns, different extensions have to be

added. In this section we introduce three mea-

sures that suffice to provide for direct modelling

support of all workflow patterns in EPCs. These

measures include the introduction of the so-called

empty connector; an inclusion of multiple in-

stantiation concepts; and the introduction of a

cancellation concept (see Figure 4 and [MNN05b]).

Furthermore, it should be mentioned that these

modifications have no impact on the validity of

existing EPC models. This means that valid EPCs

according to the definitions in [KNS92, NR02,

Ki03] are still valid with respect to this new class

of EPCs. We refer to this extended class as Yet

Another EPC (yEPCs) with the letter y as a

reference to YAWL, the workflow language that

inspired this research.

Figure 4: Symbols of the yEPC notation

3.1 The Empty Connector

EPCs cannot represent state-based workflow

patterns. This shortcoming can be resolved by

introducing a new connector type that we refer to

as the empty connector. This connector is

represented by a circle, just like the other

connectors, but without any symbol inside.

Semantically, the empty connector represents a

join or a split without imposing a rule. We will

illustrate its behaviour by giving yEPCs that use

this empty connector to model workflow patterns

16, 8, 17, and 18. In the following we interpret

events similar to states. Note that the association

of EPC events with states follows most research

contributions on EPC formalization (see e.g.

[KNS92, Ru99, Ri00, NR02]). Kindler, who uses

arcs to represent states of an EPCs [Ki03],

mentions that his choice was motivated rather by

a straight forward presentation of his ideas than

by semantic considerations. The tokens that

capture the state of an EPC are called process

folders or just folder [Ru99, NR02]. In this

context, empty connectors allow to put folders on

an event from multiple sources (empty join) and

consume folders from multiple successors of an

event (empty split).

Workflow Pattern 8 (Multiple Merge): Figure 5

(Workflow Pattern 8) shows a process model for the

multiple merge. As we have argued in the previous

section, there is only non-local support in EPCs for the

simple merge pattern due to the semantics of the EPC

XOR join connector. Accordingly, the XOR join cannot

be used to model the multiple merge pattern. The

empty join connector can be used to fix this problem.

It represents that after each completion of B, C, or D a

new folder is added to the pre-condition event of E.

Yet, it needs to be mentioned that a design choice has

to be made between a multiset state representation as

described e.g. in [NR02] and a simple set

representation as specified in e.g. [Ki03]. The multi-

set variant would consume further folders of C and D

even if B had been executed and E not yet started.

The simple set semantics would block incoming folders

until the execution of E had consumed the folder on

the event. The same mechanism can be used to

implement workflow pattern 5 (simple merge) with

non-local semantics, yet assuming that there is only

one folder that can arrive.

Figure 5: Workflow Patterns 8 and 16 as yEPC models

Workflow Pattern 16 (Deferred Choice): Figure 5

illustrates the application of the empty split connector

to represent the deferred choice. After function A has

completed, a folder is added to the subsequent event.

The empty split represents that this folder may be

picked up by any of the subsequent functions.

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

8 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

Accordingly, the input pre-conditions of all three

functions B, C, and D are satisfied. Yet, the first of

these functions to be activated consumes the

folder and by this means deactivates the other

functions.

Workflow Pattern 17 (Interleaved Parallel

Routing): Empty connectors can also be used for

other state-based workflow patterns. Figure 6

shows the process model of pattern 17

(interleaved parallel routing) following the ideas

presented in [AHKB03]. The event at the centre of

the model manages the sequential execution of

functions B and C in arbitrary order. It

corresponds to the “mutual exclusion place

(mutex)” introduced in [AHKB03]. The AND split

after function A adds a folder to this mutex event

via an empty connector. The AND joins before the

functions B and C consume this folder and put it

back to the mutex event afterwards. Furthermore,

they consume the individual folders in pre-B and

pre-C, respectively. These events control that each

function of B and C is executed only once. After

both have been executed, there are folders in post-B,

post-C, and mutex. Accordingly, E can be started. In

[Ro95] sequential split and join operators are

proposed to describe control flow behaviour of

workflow pattern 17. Yet, it is no clear what the formal

semantics of these operators would be when these

operators are not used pair wise.

Workflow Pattern 18 (Milestone). Figure 6 shows the

application of empty connectors for the modelling of

workflow pattern 18. The event between A and B

serves as a milestone for D. This means that D can

only be executed if A has completed and B has not yet

started. This model exploits the newly introduced

empty connector to model such behaviour: if B is

started before D, the milestone is expired and D can

no longer be executed. If D is started before E, a

folder is put to the subsequent event to D which

implies that B and E can then be started. Thus, the

introduction of the empty connector allows for a

straight-forward modelling of workflow patterns 8 and

16 to 18.

Figure 6: Workflow Patterns 17 and 18 as yEPC models

3.2 Multiple Instantiation

The lack of support for multiple instantiation has

been discussed for EPCs before (see e.g. [Ro02]).

For yEPC we adopt the respective concept from

YAWL [MNN05b]. In the notation, multiple in-

stantiation is represented by drawing the respective

EPC symbol with double line. In this context, it is

helpful to define sub-processes in order to model

complex blocks of activities that can be executed

multiple times as a whole. Traditionally, there are two

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

9 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

different kinds of sub-processes in EPCs: functions

with a so-called hierarchy relation represented by

a function symbol with a second function symbol

in the background [NR02, MN04] and process

interfaces symbolized by a function with an event

in the background [KT98, MN04]. The first one,

the hierarchical function, can be interpreted as a

synchronous call to the sub-process. After the

sub-process has completed, navigation continues

with the next function subsequent to the

hierarchical function. The process interface can be

regarded as an asynchronous spawning off of a

sub-process. There is no later synchronization

when the sub-process completes.

Workflow Pattern 12 (Multiple Instantiation with-

out Synchronization): Figure 7 (Workflow Pattern

12) shows a model fragment including a process

interface. Process interfaces can be regarded as a

short-hand notation for a hierarchical function that

is followed by an end event. The figure illustrates

how workflow pattern 12 (multiple instantiation

without synchronization) can be modelled using a

process interface. The double lines indicate that

the function may be instantiated multiple times.

The variables min and max define the minimum

and maximum cardinality of instances that may be

created. The required parameter specifies an

integer number of instances that have to be

finished in order to complete the multiple instance

function. The creation variable may take the

values static or dynamic which specify whether

further instances may be created at run-time

(dynamic) or not (static).

Figure 7: Workflow Patterns 12-15

Workflow Pattern 13-15 (Multiple Instantiation with

Synchronization): Figure 7 (Workflow Patterns 13-15)

gives a model fragment of a simple function that may

be instantiated multiple times (indicated by the

doubled lines). Furthermore, a hierarchical function

can also be specified to supports multiple instantiation.

In contrast to the process interface the multiple

instances are synchronized and the subsequent event

is not triggered before all instances have completed.

3.3 Cancellation

Cancellation patterns have not yet been discussed for

EPCs. We adopt the concept of YAWL [MNN05b].

Cancellation areas (symbolized by a lariat) may

include functions and events. The end of the lariat has

to be connected with a function. When this function

completes, all functions and events in the lariat are

cancelled. Cancellation can be used to model workflow

patterns 9, 19, and 20.

Workflow Patterns 19-20 (Cancel Activity, Cancel

Case): Figure 8 (Workflow Patterns 19-20) shows the

modelling notation of the cancellation concept. It

specifies that when function B has completed, function

A and the event are cancelled. This concept can

further be used to implement workflow pattern 20, the

cancellation of a whole case.

A B

B

C

D

E

Workflow Pattern 19-20: Cancellation

Workflow Pattern 9: Discriminator

Figure 8: Workflow Patterns 9, 19-20

Workflow Pattern 9 (Discriminator): Furthermore, the

cancellation concept can be combined with the

deferred choice to model the discriminator. Figure 8

(Workflow Pattern 9) shows a respective model

fragment. The functions B, C, and D may be executed

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

10 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

concurrently. When the first of them is completed

the subsequent event is triggered. This allows

function E to start. The completion of E leads to

cancellation of all functions in the cancellation

context that still might be active.

4 Differences between yEPC

and YAWL

Both yEPC and YAWL offer quite similar primitives

to model the 20 workflow patterns. Yet, there are

some sophisticated differences that will be dis-

cussed in this section.

Figure 9: YAWL notation

Figure 9 gives an overview of YAWL and its

notation. A YAWL process model includes exactly

one input and one output condition to denote start

and end of a process. Activities of a process are

represented via tasks. Tasks can contain join and

split rules of type AND, OR, and XOR. The XOR

join has local semantics propagating all incoming

tokens; the other rules have equal semantics as

the respective EPC connectors. Tasks are

separated by conditions which are the YAWL

analogue to places in Petri nets. If two tasks are

connected by an arc, the arc represents an implicit

condition. Furthermore, a task can be decomposed

to a sub-process. The cancellation and the multiple

instantiation concept as explained before for

yEPCs is adopted from YAWL.

Although yEPCs and YAWL are very similar, there

are four differences which we illustrate by the help

of Figure 10. The first difference is related to

connectors. As connectors are independent

elements in an EPC, it is allowed to build so-called

connector chains, i.e. paths of two or more

consecutive connectors. In Figure 9 there are

three connector chains: an XOR join followed by

an empty split between the start events and

functions 1 and 2, and two starting with an XOR

join followed by an AND split and an AND join

between functions 3 to 6 and the respective end

events. In YAWL splits and joins are only allowed

as part of tasks. Accordingly, there is nothing like

a connector chain in YAWL. The second difference

stems from multiple start and end events. An EPC

can include alternative start events. Multiple end

events represent implicit termination: the triggering of

an end event does not terminate the process as long

as there is another path still active. In YAWL there is

only one start condition and one end condition. The

third difference is related to state representation. EPC

events represent an eventuated state that can trigger

a set of activities [KNS92]. Though this definition

might suggest a direct mapping of events to YAWL

conditions (the YAWL equivalent to places in Petri

nets), there is a problem of alternative event-function

and function-event connectors. In Figure 9 there is an

event-function AND split after function 1 and event 1.

On the other hand, the AND split after function 2 is

given as a function-event split. This second alternative

could be mapped element-wise to YAWL, the first one

not. Accordingly, EPC events are related to states, but

they do not directly match conditions in YAWL. Finally,

the XOR join of EPCs has non-local semantics while the

YAWL XOR join has local semantics. This means that

the EPC XOR join blocks if there is more than one

incoming branch active. In Figure 9 the XOR join after

function 4 and 5 cannot deadlock, because both

functions are exclusive due to the empty split

upstream.

START A START B

Function 2Function 1

Event 1

Event 2 Event 3

Function 3 Function 4 Function 5 Function 6

END BEND A

Figure 10: Example yEPC

Multiple Start and End Events: yEPC start and end

events are easy to transform if there is only one start

and only one end. In this case the yEPC start event

maps to a YAWL input condition and the end event to a

YAWL output condition. If there are multiple start

events, they have to be bundled: the one YAWL input

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

11 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

condition is followed by an empty task with an OR-

split rule. Each yEPC start event is then mapped to

a YAWL condition that is linked as a successor with

the YAWL OR split (see Figure 11). Analogously,

each of multiple yEPC end events is mapped to a

YAWL condition which are all connected with an

OR join of an empty task that leads to the one

YAWL output condition. Note that some EPCs of

the SAP Reference Model have several start

events. Applying this transformation rule makes

these models difficult to analyze, because 2|n|

states have to be considered with n being the

amount of EPC start events. In this case, graph

reduction rules could be applied in order to get

compacter models. Yet, this issue is beyond the

scope of this article.

Figure 11: Mapping of Multiple Start Events

Connector Chains: Joins and splits are first class

elements of yEPCs while in YAWL they are part of

tasks. As a consequence, there may be the need

to introduce empty tasks only to map a connector.

This is in particular the case with connector

chains. Figure 12 illustrates how a connector chain

is transformed. If the post-event successor of a

join connector is not a function, an additional

empty task is required to include the join rule. If

the pre-event predecessor of a split connector is

not a function, an additional empty task has to

include the split rule. If a join connector is

followed by a split, they are combined into one

empty task. Otherwise, split and joins are

combined with the pre-event predecessor function

or the post-event successor function, respectively.

Figure 12: Mapping of Connector Chains

State Representation: As mentioned above, events

cannot be identified with states directly. For the

transformation the yEPC process graph can be

traversed and it can be taken advantage of the

fact that YAWL does not enforce an alternation of

tasks and conditions. Basically, events can be ignored

that are not start or end events (see Figure 13).

Therefore, most states of the generated YAWL process

model are associated with implicit conditions.

Figure 13: State Representation in yEPC and YAWL

XOR Join: Basically, in a mapping to YAWL the EPC

XOR join could be mapped to an OR join with non-local

semantics or an XOR join with local semantics. The

latter is the better choice, because it allows a mapping

back from YAWL to EPC without loss of semantics. This

choice is also supported by the semantics of both XOR

joins. Although the yEPC XOR join has non-local

semantics leading to a deadlock if there are multiple

incoming branches active and the YAWL XOR-join

propagates each incoming token, the intended

behaviour is the same, i.e. to continue after one of

alternative branches has completed. Furthermore, in

case of a deadlock in the yEPC the corresponding

YAWL-net is most likely to show incorrect behaviour in

terms of not being sound (for soundness of YAWL

models see [AH05]).

5 Related Work

The workflow patterns proposed by [AHKB03] provide

a comprehensive benchmark for comparing different

process modelling languages. A short workflow pattern

analysis of EPCs is also reported in [AH05], yet it does

not discuss the non-local semantics of EPCs XOR join.

In this article, we highlighted these semantics as a

major difference between YAWL and EPCs.

Accordingly, we propose the introduction of the empty

connector in order to capture workflow pattern 8

(multiple merge). There is further research discussing

notational extensions to EPCs. In Rittgen [Ri00] a so-

called XORUND connector is proposed to partially

resolve semantic problems of the XOR join connector.

Motivated by space limitations of book pages and

printouts, Keller and Teufel introduce process

interfaces to link EPC models on different pages

[KT98]. We adopt process interfaces in this paper to

model spawning off of sub-processes. Rosemann

[Ro95] proposes the introduction of sequential split

and join operators in order to capture the semantics of

workflow pattern 17 (interleaved parallel routing).

While the informal meaning of a pair of sequential split

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

12 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

and join operators is clear, the formal semantics of

each single operator is far from intuitive. As a

consequence, we propose a state-based

representation of interleaved parallel routing

inspired by Petri nets. Furthermore, Rosemann

introduces a connector that explicitly models a

decision table and a so-called OR1 connector to

mark branches that are always executed [Ro95].

Rodenhagen presents multiple instantiation as a

missing feature of EPCs [Ro02]. He proposes

dedicated begin and end symbols to model that a

branch of a process may be executed multiple

times. Yet, this notation does not enforce that a

begin symbol is followed by a matching end

symbol. As a consequence, we adopt the multiple

instantiation concept of YAWL that permits

multiple instantiation only for single functions or

sub-processes, but not for arbitrary branches of

the process model.

6 Summary and Future

Research

In this article, we have discussed workflow pattern

support of Event-driven Process Chains (EPC). As

EPCs fail to support state-based patterns as well

as multiple instantiation and cancellation patterns,

we have proposed yEPCs as an extension to EPCs.

yEPCs introduce empty connectors, multiple

instantiation parameters and cancellation areas.

Therefore, yEPCs are able to support the modelling

of all 20 workflow patterns in an intuitive manner.

Both yEPCs and YAWL are quite similar, not only

concerning the fact that both allow for com-

prehensive modelling of the workflow patterns1,

but also their modelling primitives are similar. Yet,

there are still differences between yEPCs and

YAWL: yEPCs allow multiple start and end events,

yEPCs may include connector chains, state repre-

sentation of yEPCs needs further investigation,

and the XOR joins of both languages have

different semantics. In future research, we aim to

define a formal mapping from yEPCs to YAWL. This

will be implemented as a transformation program

from EPC Markup Language (EPML) [MN05] to the

XML format of YAWL. With this transformation

program, YAWL analysis tools will be accessible for

EPC models.

References

[Aa97] van der Aalst,W. M. P.: Verification ofWorkflow

Nets. In: Azéma, P.; Balbo, G., eds.: Application and

1 Note that YAWL does not support the implicit termination pattern.

Theory of Petri Nets 1997. volume 1248 of Lecture Notes

in Computer Science. pp. 407–426. 1997.

[Aa99] van der Aalst, W.M.P.: Formalization and Verification of

Event-driven Process Chains. Information and Software

Technology 41 (1999) 639-650.

[ADK02] van der Aalst, W. M. P., Desel, J., und Kindler, E.: On

the semantics of EPCs: A vicious circle. In: M. Nüttgens;

F. J. Rump, eds.: Proc. of the 1st GI-Workshop on

Business Process Management with Event-Driven Process

Chains (EPK 2002), Trier, Germany. pp. 71–79. 2002.

[AH05] van der Aalst, W. M. P.; ter Hofstede, A. H. M.: YAWL:

Yet Another Workflow Language. Information Systems.

30(4):245–275. 2005.

[AHKB03] van der Aalst,W. M. P.; ter Hofstede, A. H. M.;

Kiepuszewski, B.; Barros, A. P.: Workflow Patterns.

Distributed and Parallel Databases. 14(1):5–51. July

2003.

[Ki03] Kindler, E.: On the semantics of EPCs: A framework for

resolving the vicious circle (Extended Abstract). In: M.

Nüttgens, F. J. Rump, eds.: Proc. of the 2nd GI-Workshop

on Business Process Management with Event-Driven

Process Chains (EPK 2003), Bamberg, Germany. pp. 7–

18. 2003.

[Ki04] Kindler, E.: On the semantics of EPCs: Resolving the

vicious circle. In: J. Desel; B. Pernici; M. Weske, eds.:

Business Process Management, 2nd International

Conference, BPM 2004. volume 3080 of Lecture Notes in

Computer Science. pp. 82–97. Springer Verlag. 2004.

[KM94] Keller, G.; Meinhardt, S.: SAP R/3 Analyzer. Business

process reengineering based on the R/3 reference model.

SAP AG. 1994.

[KNS92] Keller, G.; Nüttgens, M.; Scheer, A. W.: Semantische

Prozessmodellierung auf der Grundlage

“Ereignisgesteuerter Prozessketten (EPK)”. Technical

Report 89. Institut für Wirtschaftsinformatik Saarbrücken.

Saarbrücken, Germany. 1992.

[KT98] Keller, G.; Teufel, T.: SAP(R) R/3 Process Oriented

Implementation: Iterative Process Prototyping. Addison-

Wesley. 1998.

[LNS98] P. Langner, C. Schneider, and J. Wehler. Petri Net

Based Certification of Event driven Process Chains. In J.

Desel; M. Silva, eds.: Application and Theory of Petri

Nets, volume 1420 of Lecture Notes in Computer Science,

pp. 286-305, 1998.

[MN04] Mendling, J.; Nüttgens, M.: Exchanging EPC Business

Process Models with EPML. In: Nüttgens, M.; Mendling, J.,

eds.: Proceedings of the 1st GI Workshop XML4BPM –

XML Interchange Formats for Business Process

Management at 7th GI Conference Modellierung 2004,

Marburg Germany. pp. 61–80. March 2004.

[MN05] J. Mendling; M. Nüttgens. EPC Markup Language

(EPML) - An XML-Based Interchange Format for Event-

Driven Process Chains (EPC). Technical Report JM-2005-

03-10, Vienna University of Economics and Business

Administration, Austria, 2005.
[MNN04] Mendling, J.; Neumann, G.; Nüttgens, M.: A

Comparison of XML Interchange Formats for Business

Process Modelling. In: Proceedings of EMISA 2004 –

Information Systems in E-Business and E-Government.

LNI. 2004.

[MNN05a] Mendling, J.; Neumann, G.; Nüttgens, M.: Towards

Workflow Pattern Support of Event-Driven Process Chains

 Enterprise Modelling and Information Systems Architectures

 Volume X, Issue X, Month 200X

13 Jan Mendling, Gustaf Neumann, Markus Nüttgens, Yet Another Event-driven Process Chain

(EPC). In: Nüttgens, M.; Mendling, J., eds.: Proc. of

the 2nd GI Workshop XML4BPM - XML for Business

Process Management at BTW 2005, Karlsruhe,

Germany, pp. 23-38, March 2005.

[MNN05b] Mendling, J.; Neumann, G.; Nüttgens, M.: Yet

Another Event-Driven Process Chain. In: W.M.P. van

der Aalst et al.: Proceedings of the 3rd International

Conference on Business Process Management (BPM

2005), volume 3649 of Lecture Notes in Computer

Science, Nancy, France, September 2005, pp. 428-

433.

[NR02] Nüttgens, M.; Rump, F. J.: Syntax und Semantik

Ereignisgesteuerter Prozessketten (EPK). In: J.

Desel; M.Weske, eds.: Promise 2002 - Proceedings

of the GI-Workshop, Potsdam, Germany. volume 21

of Lecture Notes in Informatics. pp. 64–77. 2002.

[Ri00] Rittgen, P.: Quo vadis EPK in ARIS? Ansätze zu

syntaktischen Erweiterungen und einer formalen

Semantik. WIRTSCHAFTSINFORMATIK. 42(1):27–35.

2000.

[Ro02] Rodenhagen, J.: Ereignisgesteuerte Prozessketten

- Mulit-Instantiierungsfähigkeit und referentielle

Persistenz. In: M. Nüttgens, F. J. Rump, eds.: Proc.

of the 1st GI Workshop on Business Process

Management with Event-Driven Process Chains (EPK

2002). Trier, Germany, pp. 95–107. 2002.

[Ro95] Rosemann, M.: Erstellung und Integration von

Prozeßmodellen – Methodenspezifische Gestaltungs-

empfehlungen für die Informationsmodellierung. PhD

thesis. Westfälische Wilhelms-Universität Münster.

1995.

[Ru99] Rump, F. J.: Geschäftsprozessmanagement auf

der Basis ereignisgesteuerter Prozessketten -

Formalisierung, Analyse und Ausführung von EPKs.

Teubner Verlag. 1999.

Jan Mendling

Information Systems and New Media
Vienna University of Economics and Business

Administration
Augasse 2-6
A-1090 Vienna
Austria
jan.mendling@wu-wien.ac.at

Prof. Dr. Gustaf Neumann

Information Systems and New Media
Vienna University of Economics and Business

Administration
Augasse 2-6
A-1090 Vienna
Austria
neumann@wu-wien.ac.at

Prof. Dr. Markus Nüttgens

Business Information Systems
University of Hamburg
Von-Melle-Park 9
D-20146 Hamburg
Germany
markus.nuettgens@wiso.uni-hamburg.de

