
OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 1 / 49

A Gentle Introduction to XOTcl SOAP

Stefan Sobernig

February 14, 2008

Overview

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 2 / 49

Introduction

Your first xosoap-enabled package

Your first SOAP provider

Your first SOAP consumer

Bibliography

Advanced Features

Introduction

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 3 / 49

What is XOTcl SOAP aka xosoap?

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 4 / 49

• SOAP consumer and provider infrastructure, currently in release version 0.4.3
(February 2008).

• SOAP 1.1 compliance (SOAP 1.2 is work-in-progress); SOAP marshaler /

demarshaler on top of tdom.

• Auto-generation of WSDL 1.1 and, optionally, WS-I compliant interface

descriptions
• Support for various WSDL 1.1 marshaling styles: Rpc/Encoded, Rpc/Literal.

Document/Literal is work-in progress.

• Support for XML Schema primitive and composite types based on an extensible

type infrastructure.

• Framework interoperability: Designed to be compliant to SOAPBuilder

Interoperability Lab test suites, currently A + B.

What is the XOTcl Request Broker aka xorb?

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 5 / 49

• Generic brokerage Völter et al. [2005] infrastructure for OpenACS, based on
XOTcl and xotcl-core.

• Allows for plugging-in protocol extensions: currently SOAP support by xosoap.

• Based upon an object-oriented layer and extension to OpenACS service

contracts, allowing for a more agile use of contracts and implementations

• Allows for publishing existing Tcl and XOTcl code as remoting, e.g. SOAP,
services.

• Support for legacy code through ”interface adapters”

• Generic extension mechanism through ”interceptors”

• Fine-grain facilities for invocation access control

• Tight integration with XOTcl idioms

Profile of this tutorial

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 6 / 49

• The tutorial is built around a demo OpenACS application package: xosoap-demo
• Following a simple use case story, realised in the package, we are going

introduce you to our broker Völter et al. [2005] infrastructure and their interfaces.

• Many drivers to this efforts: Applied ones from research projects, more

theory-driven motivation from my thesis project.

• In the scope of this tutorial, I won’t touch the generic framework, rather how to
use the SOAP protocol plugin (xotcl-soap) available.

• The objective to outline the fundamental steps to get you started using our

infrastructure packages with minimum effort. The skeleton package is at your

disposal (see slide on Resources).

Our demo story

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 7 / 49

Student

SOAP-based brokerage

Conduct research
on the "Marimba"

Vienna University of Economics
(Learn@WU)

Universidad Galileo

Research
on the

"Marimba"

Harvest local
resource
collection

Digital
Library

.LRN .LRN

Harvest local
resource
collection

Handle search
request

Contact
remote
sources

Search Package

Search Package

Resources needed

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 8 / 49

http://alice.wu-wien.ac.at:8000/xorb-doc

Your first xosoap-enabled package

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 9 / 49

Prerequisites / Create package structure (1)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 10 / 49

Package Manager >
Create New Package

Package Key:
"xosoap-demo"

Prerequisites / Create package structure (2)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 11 / 49

xosoap-
demo

tcl

www

sql

...

package-
procs.tcl

Prerequisites / Create package manager (1)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 12 / 49

/
"::xo::library" is a powerful alternative
to "ad_library". Most importantly, it allows
to specify dependencies between library scripts
to circumvent the default lexicographic order
of evaluation.

: : x o : : l i b r a r y doc {

Package i n f r a s t r u c t u r e for the xosoap demonstrator
package.

@creation−date 2008−02−14
@author Stefan Sobernig
@cvs−id Id

}

Prerequisites / Create package manager (2)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 13 / 49

/ / / / / / / / / / / / / / / / /
Dec lar ing an a p p l i c a t i o n−s p e c i f i c
namespace i s good p r a c t i c e . . .

namespace eval ::demo {

. . .

}

Prerequisites / Create package manager (3)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 14 / 49

/
We def ine a package manager for our demo package.
Package managers are provided by the XOTcl Core
and act as convenient he lpers when dea l ing wi th
OpenACS APM−style packages.
Our package manager c lass may be addressed as
” : :demo::Package ” .

: :xo: :PackageMgr create Package \
−superclass : :xo : :Package \
−pretty name ” XOTcl SOAP Demo Package ” \
−package key ”xosoap−demo”

/
We provide a per− instance c o n s t r u c t o r which
may be used to s p e c i f y i n i t i a l i s a t i o n behaviour
for ins tances o f our Package Manager.

Package i n s t p r o c i n i t {} {
i n i t i a l i s a t i o n magic

}

Common pitfalls

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 15 / 49

Is it important to consider the order of package initialisation when naming my new
packge, i.e. picking a package key?

• NO, XOTcl Core and xorb provide means to explicitly require package

dependencies, regardless of the lexicographic initialisation order.

Is it mandatory to use XOTcl Core package management, e.g. a package manager,

for my package?

• NO, but it facilitates your development task if the complexity starts to increase.

Is it mandatory to provide for a Tcl namespace for my package?

• Not necessarily, as the containing Tcl namespace does not convey any critical

semantics (from the perspective of XOTcl Core or xorb/xosoap) at this point.

However, it may be considered good practice. In the context of defining your

SOAP provider, the choice of namespace becomes an issue (see below).

Your first SOAP provider

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 16 / 49

Provider / Our recipe

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 17 / 49

• To begin with, we provided for a library and
package environment for our provider code
to be hosted with (see above).

• Then, we look at devising an explicit inter-
face which stipulates the public behaviour of
our SOAP provider.

• Once defined, we look at realising the inter-
face as a provider-side specification object
(“service contract”).

• In addition, we have to provide a reference
implementation for the materialised inter-
face, a so-called “service implementation”. It
acts either as servant or provider-side proxy
for a servant.

• Finally, we look at some the requirement of
explicit deployment.

Provider / Create a provider library script (1)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 18 / 49

xosoap-
demo

tcl

www

sql

...

provider-
procs.tcl

Provider / Create a provider library script (2)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 19 / 49

/
"::xo::library" is a powerful alternative
to "ad_library". Most importantly, it allows
to specify dependencies between library scripts
to circumvent the default lexicographic order
of evaluation.

: : x o : : l i b r a r y doc {

L i b r a r y scr ip t host ing our SOAP prov ide r

@creation−date 2008−02−14
@author Stefan Sobernig
@cvs−id Id

}

Provider / Provide xorb in the package scope

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 20 / 49

/
Upon server initialisation, OpenACS packages are
sourced in their lexicographic order. Core packages
(e.g. acs-*, xotcl-core), however, have priority
and are processed before non-core ones. This allows
packages as ours to draw upon their code even at
initialisation time. Now, remember, our package
is named "xosoap-demo" which ranks before xorb
("xotcl-request-broker") and xosoap ("xotcl-soap").
Therefore, we have to explicitly require xorb
before declaring our SOAP provider by using
"::xo::db::require package <package_key>".
Having explicitly required xorb, you may use facilities
residing in the "::xorb::*" namespace.

: : x o : : d b : : r e q u i r e package xotcl−request−broker

Provider / Sketch an explicit interface

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 21 / 49

A conceptual sketch of the explicit interface embodied by our SOAP provider:

::demo::provider

Package

<<interface>>
SearchService

+search(queryString:string):string

Provider / Providing for dedicated namespace

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 22 / 49

/ / / / / / / / / / / / / / / / /
Dec lar ing an p rov ide r−spec i f i c
namespace i s >recommended< p r a c t i c e

namespace eval : : d e m o : : p r o v i d e r {

namespace impor t : : x o r b : :∗

SOAP prov ide r s p e c i f i c a t i o n goes here . . .

}

Provider / Realise the Interface as Service Contract

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 23 / 49

/
1 s t s t e p : Provide a s p e c i f i c a t i o n of an >e x p l i c i t <
i n t e r f a c e . This may be achieved by i n s t a n t i a t i n g
” : : x o r b : : S e r i c e C o n t r a c t ” . This y i e l d s a special−purpose
XOTcl c lass ob jec t t h a t represents the s p e c i f i c a t i o n
for our demo SearchServ ice.

Serv iceCont rac t SearchService −defines {
: : x o r b : : A b s t r a c t search \

−arguments {
q u e r y S t r i n g : x s S t r i n g

} −returns ” r e t u r n V a l u e : x s S t r i n g ” \
−descr ip t ion {

A gener ic i n t e r f a c e t h a t prov ides
a ” search ” opera t ion to c a l l e r s .

}
}

Provider / Provide an Implementation

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 24 / 49

/
2nd s t e p : Provide a sample implementat ion t h a t
r e a l i s e s (implements) the above >e x p l i c i t i n t e r f a c e<
by re−using the OpenACS Search package i n f r a s t r u c t u r e .
For t h i s t a s k , we create an ob jec t o f type
” : : x o r b : : S e r v i c e I m p l e m e n t a t i on ” .

Serv iceImplementat ion OpenACSSearchPackageImpl \
−implements SearchService \
−using {

/ / / / / / / / / / / / /
Method: search
Method search {

−queryStr ing:required
} {

This method takes the query s t r i n g ,
and performs the ac tua l search by c a l l i n g
the respons ib le Search package f a c i l i t y .

} {
set r e s u l t ”A rose i s a rose i s a rose ”
/
Here, we would need to ressemble the
behaviour o f e i t h e r search /www/ s e a r c h . t c l
<or> r e v e r t to using t s e a r c h 2 : : s e a r c h , for
i n s t a n c e , d i r e c t l y . . .
return $ r e s u l t

}
}

Provider / Deploy Interface & Implementation

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 25 / 49

/
3 rd s t e p : F i n a l l y , you need to >deploy< both the
i n t e r f a c e and i t s re fe rence implementat ion by
sending a deploy () message. Deployment i nvo l ves
a set of minor t a s k s , such as r e g i s t e r i n g w i th the
Invoker and checks for i n t e r f a c e c o n f o r m i t y .

SearchService deploy
OpenACSSearchPackageImpl deploy

Provider / Excursus / OpenACS Service Contracts (1)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 26 / 49

Service Contracts realise an indirection layer as framework extension strategy:

Conceptually, this has been labelled EXPLICIT INTERFACE Buschmann and Henney

[2003], at a more implementation level BRIDGE pattern Gamma et al. [1994].

Provider / Excursus / OpenACS Service Contracts (2)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 27 / 49

The Search Package is a primary example for the use of service contracts:

Provider / Excursus / Tcl names and broker references

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 28 / 49

A key task of BROKERS, as xorb, is bridging between references or identifiers across
various scopes:

• The ultimate target reference (to the servant) managed by xorb, i.e. its INVOKER

is :: demo::provider::OpenACSSearchPackageImpl

• xosoap transliterates these into an URI scheme, according to the following rules:

◦ Default URI scheme: (site−node)/services/(tcl−qualifiers)/(object−name),

e.g. /xosoap/services/demo/provider/OpenACSSearchPackageImpl
◦ The (tcl−qualifiers) fragment takes care of the ambiguity between top-level

(“global”) xorb and legacy OpenACS contracts or implementations:

• At the level of xorb and the service contracts, entity names “::myContract”

and “myContract” (as allowed for legacy ones) are logically distinct.

• The mapping into a URI would represent both by
/xosoap/services/myContract which would be a fundamental conflict.

• Therefore, there is a (configurable) default URI segment (default:“acs”) for

legacy items so we can address both. “myContract” becomes

/xosoap/services/acs/myContract

Provider / Excursus / Deployment

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 29 / 49

... serves a couple of purposes

• Verify the consistency / correspondence of an implementation to the interface

description (service contract). Currently, we enforce a limited type of behavioural

containment.

• Introduces a stage life-cycle which differentiates between prototyping,

accomplishing, and publishing a provider.
• The process of deleting either a service contract or service implementation is

linked to the deployment call. As contracts/ implementations are persisted, one

need to remove the deploy call and then clear the back-end from the persisted

representations.

Provider / What to keep

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 30 / 49

• There are four steps involved:

1. Provide for dedicated Tcl Namespace, e.g. :: demo::provider

2. Create a ServiceContract class object, realising your interface sketch; e.g.

:: demo::provider::SearchService

3. Create a ServiceImplementation class object, realising your interface sketch;

e.g. :: demo::provider::OpenACSSearchPackageImpl
4. Deploy the latter two . . .

• There is some magic that turns Tcl qualified names in URIs for the scope of

xosoap and vice versa . . .

• Conceptually, XOTcl Request Broker and its plug-ins build upon OpeACS core

framework features (“service contracts”) and simply turn them inside-out!

Provider / Maintenance (1)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 31 / 49

The xorb cockpit at /request-broker/admin

SearchService OpenACSSearchPackageImpl

State monitor
Maintenance:

`- Deletion
`- Bind/unbind

Provider / Maintenance (2)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 32 / 49

The xosoap view of deployed implementations at /xosoap/services

OpenACSSearchPackageImpl

Auto-generated WSDL

Provider / Auto-generation of interface description (WSDL)

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 33 / 49

Based on your in-memory specification of an explicit interface, xosoap generates
WSDL representations. Point your browser to e.g.

/xosoap/services/demo/provider/OpenACSSearchPackageImpl?s=wsdl . . .

URI Reference:
OpenACSSearchPackageImpl

SearchService re-appears
in its role as "explicit interface"

Operation: "search"

Endpoint address

Your first SOAP consumer

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 34 / 49

Consumer / Create a “WUI” script

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 35 / 49

xosoap-
demo

tcl

www

sql

...

consumer.tcl

Consumer / Realise an explicit interface

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 36 / 49

While in the provider context, the explicit interface served as callee interface, it now
“in-forms” potential callers, i.e. CLIENT PROXIES . . .

::demo::provider

Package

<<interface>>
SearchService

+search(queryString:string):string

Consumer / Our recipe

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 37 / 49

• First, we provide a specific type
of CONTEXT OBJECT that conveys

two kinds of informations for our in-

tended remoting interaction:

1. Re-usable invocation informa-

tion
2. Invocation context information

• Second, the EXPLICIT INTERFACE,

e.g. SearchService, needs to be re-

alised for the consumer side.

• Parametrisation of call and perform-

ing actual call.

Consumer / Prerequisites

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 38 / 49

/

Remember the package manager you created

initially in this demo package! Now it

is time to use it to contextualise requests

to this sample script hosting a consumer.

The call to initialize() resolves the current

package context and allows for specifying

parameter requirements on the debarking

requests.

: :demo::Package i n i t i a l i z e −ad doc {

This i s a sample W(eb) U(ser) I (n te r face) scr ipt
t h a t demonstrates c r e a t i n g a bas ic SOAP consumer
and handy XOTcl core fea tu res i n t h i s respect . . .

@date 2008−02−14
@author Stefan Sobernig
@cvs−id Id

} −parameter {
{−querySt r ing: requ i red}

}

Consumer / A glue object

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 39 / 49

/

First, we provide for a "glue" object that

stores particular kind of invocation

information, i.e. endpoint address, but

is also carrier for invocation context

information, required in more complex

scenarios. Most importantly, the selection

of the kind of glue object determines

the remoting protocol used, ie.e SOAP.

"SoapGlueObject" resides in the

"::xosoap::client" namespace.

namespace impor t : : x o s o a p : : c l i e n t : :∗

set endpoint \
h t t p : / / l oca lhos t :8000 / xosoap / serv ices / demo/ p rov ide r / OpenACSSearchPackageImpl

set glueObject [SoapGlueObject new \
−endpoint $endpoint\
−messageStyle : : x o s o a p : : R p c L i t e r a l]

Consumer / a client proxy

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 40 / 49

/

Second, we realise the explicit interface

by providing a counterpart to the

ServiceImplementation ("skeleton") at the

provider side, a "client proxy". Therefore,

you need to import the habitants of

"::xorb::stub::*" namespace into the current

scope and create an object of type

"ProxyObject". Note that the previously

defined glueobject is passed by association

to the client proxy!

namespace impor t : : x o r b : : s t u b : :∗

ProxyObject SearchServiceProxy −glueobject $glueObject

SearchServiceProxy ad proc −returns xsS t r i ng \
search {−querySt r ing :xsSt r ing} \
{ Implementat ion for the search opera t ion} \
{}

Consumer / The invocation

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 41 / 49

/
Finally, we perform the invocation and
assign the invocation result to a local
Tcl variable that will populate the
consumer.adp template ...
set html [SearchServiceProxy search \

−queryStr ing $querySt r ing]

Consumer / Driving concepts

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 42 / 49

Invocation
Information

Invocation
context

Re-usable
invocation information

Client Proxy

ProxyObject

Context
Object

SoapGlueObject

Consumer / Glue objects

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 43 / 49

• Encapsulate and organise request information needed at various layers and
stages.

• It closely follows the idea of Context Objects as a strategy of argument passing.

• Using an object as a argument passing vehicle allows for:

◦ handling of a huge variety of heterogeneous argument information needed to

perform a call (protocol and transport layer).
◦ transformation of argument information during handling (streaming)

◦ a unspecified variety of clients to be served

• Glue objects are simply associated to objects, potentially turning them into client

proxies.

• Glue objects are aligned to OO concepts: Glue objects can be linked to classes

that provide them to their instances. Similarily, glue objects can be injected into
existing object hierarchies (class tree) by means of mixins.

Consumer / Client proxy

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 44 / 49

• The role of client proxies is to mimic the interface of ’remotely’ listening/ hosted
objects.

• Client proxies therefore represent the realisation of interface descriptions. They

are responsible to resolve a ’glue’ object, translate their interface description into

call information and pass the letter together with the glue object as actual

invocation data.
• ’glue’ / ’ad glue’ as keywords are the instruments of declaring such a proxy

interface

Client proxies in context

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 45 / 49

Bibliography

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 46 / 49

References

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 47 / 49

• Markus Völter, Michael Kircher, and Uwe Zdun. Remoting Patterns: Foundations of Enterprise,
Internet and Realtime Distributed Object Middleware. Software Design Patterns. John Wiley &
Sons Ltd., Chichester, England, 2005

• Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wesley Professional Computing Series. Addison
Wesley, October 1994

• Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture – A System of Patterns. John Wiley & Sons Ltd.,
Chichester, England, 2000

• Our xorb/xosoap resource collection

Advanced Features

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 48 / 49

Overview

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig – 49 / 49

• Advanced indirection invocation interceptors

• Integrated exception and SOAP Fault handling

• Publishing legacy code: adapters available for Objects and Procedures.

• Rich variety of interfaces to use, ranging from close-to-XOTcl idioms to

special-purpose citizens.

See the authoritative manual for details.

