WIKTY HAF TS
UNIVERSITAT

Stefan Sobernig

February 14, 2008

OpenACS and dotLRN Cenference / Guatemala / 2008 Sobernig — 1 /49

WIETSCHAFTS
UNIVERSITAT

Overview e

Introduction

Your first xosoap-enabled package
Your first SOAP provider

Your first SOAP consumer
Bibliography

Advanced Features

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 2 / 49

WIKTY HAF TS
UNIVERSTAT

r

OpenACS and dotLRN Cenference / Guatemala / 2008 Sobernig — 3 /49

WIETSCHAFTS
UNIVERSITAT

What is XOTcl SOAP aka xosoap?

e SOAP consumer and provider infrastructure, currently in release version 0.4.3
(February 2008).

e SOAP 1.1 compliance (SOAP 1.2 is work-in-progress); SOAP marshaler /
demarshaler on top of tdom.

e Auto-generation of WSDL 1.1 and, optionally, WS-I compliant interface
descriptions

e Support for various WSDL 1.1 marshaling styles: Rpc/Encoded, Rpc/Literal.
Document/Literal is work-in progress.

e Support for XML Schema primitive and composite types based on an extensible
type infrastructure.

e Framework interoperability: Designed to be compliant to SOAPBuilder
Interoperability Lab test suites, currently A + B.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 4 / 49

WIETSCHAFTS
UNIVERSITAT

What is the XOTcl Request Broker aka xorb?

e Generic brokerage Volter et al. [2005] infrastructure for OpenACS, based on
XOTcl and xotcl-core.

e Allows for plugging-in protocol extensions: currently SOAP support by xosoap.

e Based upon an object-oriented layer and extension to OpenACS service
contracts, allowing for a more agile use of contracts and implementations

e Allows for publishing existing Tcl and XOTcl code as remoting, e.g. SOAP,
services.

e Support for legacy code through "interface adapters”

e Generic extension mechanism through "interceptors”

e Fine-grain facilities for invocation access control

e Tight integration with XOTcl idioms

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 5 /49

Profile of this tutorial Y

e The tutorial is built around a demo OpenACS application package: xosoap-demo

e [ollowing a simple use case story, realised in the package, we are going
iIntroduce you to our broker Volter et al. [2005] infrastructure and their interfaces.

e Many drivers to this efforts: Applied ones from research projects, more
theory-driven motivation from my thesis project.

e In the scope of this tutorial, | won’t touch the generic framework, rather how to
use the SOAP protocol plugin (xotcl-soap) available.

e The objective to outline the fundamental steps to get you started using our
Infrastructure packages with minimum effort. The skeleton package is at your
disposal (see slide on Resources).

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 6 / 49

Our demo story

.LRN

WIETSCHAFTS
UNIVERSITAT

.LRN

\

Vienna University of Economics
(Learn@WU)

Harvest local
resource
collection

Search Package

Research
on the
"Marimba"

Contact
remote

Student sources

Digital
Library

OpenACS and dotLRN Conference / Guatemala / 2008

SOAP-based brokerage

|

Universidad Galileo

Harvest local
resource
collection

Handle search

request Search Package

Sobernig — 7 / 49

Resources needed

Edit - Revisions -Admin - Index

1 What is xorb (and its like)?

reader to xosoap. We strive to steadily extend this resource collection.

2 Getting started ...

L o flrct

For a general readi

may we direct you to the OpenACS developer for

To obtain the source code, you have the following opt http://alice.wu-wien.ac.at:8000/xorb-doc

/1 xorb //

+ Development version: browse svn + grab tarball | manual checkout
+ Most current release version (0.4.2): browse svn + grab tarball | *.apm | manual checkout

// xosoap //

+ Development version: browse svn + grab tarball | manual checkout
+ Most current release version (0.4.2): browse svn + grab tarball | *.apm | manual checkout

3 Features
// xorb 0.4.2 //

Generic Infrastructure for call abstractions, based on XOTcl and xotcl-core.

Allows for plugging-in protocol extensions: currently SOAP support by xosoap (see below).

Based upon an object-oriented layer and extension to OpenACS service contracts, allowing for a more agile use of contracts and implementations
Allows for publishing existing Tcl and XOTcl code as remoting, e.g. SOAP, services

Support for legacy code through "interface adapters”

Generic extension mechanism through "interceptors"

Several levels of publishing services through "invocation access policies"

Tight integration with XOTcl idioms (objects and classes)

I A Y

OpenACS and dotLRN Conference / Guatemala / 2008

xorb, the XO(Tcl) R(equest) B(roker), Is an infrastructure package for the web development toolkit OpenACS and

E plug-ins for xorb. So far, we have realised a feature-rich SOAP protocol plug-in referred to as xosoap, XO(Tcl)
distributed scenario. We restrict ourselves, for the moment, to the remoting capabilities and therefore introduce the

OpenACS-based frameworks that provides for generic means of call abstraction. Call abstraction, hereby, refers to Links

both distributed and non-distributed scenarios. In a non-distributed scenario, xorb is an object-oriented refinement of

the well established OpenACS facilities also referred to as 'service contracts'. In a distributed scenario, xorb provides | About us
a remoting infrastructure for OpenACS. xorb was designed in a protocol-agnostic manner, I.e. our primary intention

Is to provide support for a variety of remoting protocols. Protocol support is, therefore, realised in terms of protocol | About me
SOAP. [xoTa
The resource collection, in its current shape, aims at providing the fundamentals of using call abstractions in a IOpenACS

amples you might want to consult the manual. For specific

tional interaction,

Sobernig — 8 / 49

WIKTY HAF TS
UNIVERSTAT

r

OpenACS and dotLRN Cenference / Guatemala / 2008 Sobernig — 9/ 49

WIETSCHAFTS

Prerequisites / Create package structure (1) <

Add a New Package

Main Site : Site-Wide Administration : Package Manager : Add a New Package Package Manager >
Select a package key for your package. This is a unique, sh Create New Package ing only letters, numbers, and hyphens (e.g., address-book
for the address book package or photo-album for the Photo 1n a directory with this name.

Package Key: lxosoap-demo
Select a short, human-readable name for your package, e.g., "Address Book" or "Photo Album."
Package Name: XOTcl SOAP Demo Package
Please indicate the plural form of the package name, e.g. the plural form of 'Bboard' is 'Bboards.'
Package Plural: IXOTcI SOAP Demo Packages

Indicate whether this package is an application or a service. Applications are software intended for end-users, e.g. Bboard. Services are system-level software that extend
OpenACS to provide new system-wide functionality, e.g. Warkfla

Package Type: | Application ~|

» | Is your package part of the OpenACS Core that fo
OpenACS Core? you'd leave this box unchecked.

Singleton? | I~ Is your package a singleton package? Singleton packages Ca mo! attempts to create more instances of the singleton will return the currently created
instance. Singleton packages are appropriate for services that should not have muluplc mstanccs such as the ACS Kernel.

Auto-mount URI |xosoap-demo
The URI (name) under the main site where the package will automatically be mounted upon installation. This feature is typically only used by singleton packages.
Pick a canonical URL for your package. This should be a URL where the package can be downloaded.
Package URL: Ihttp://openacs.org/repository/apm/packageslxosoap—demo

Select an initial version number for the package. By convention, this is 0. 14 if you are just starting to create your package, or 4.0 if you are creating your package from ACS
4.0 code. The version number must fit the format of major number .minor number with an optional suffix of d for development, a for alpha, or b for beta.

Initial Version: |0.1

Pick a canonical URL for the initial version of the package. For now, the default will always be correct.

Package Key:

"xosoap-demo" part of the OpenACS Core development team, it would be best if

Version URL: Ihttp://openacs.orglrepository/download/apm/xosoap—demo—O.l.apm

Type a brief, one-sentence-or-less summary of the functionality of your package. In general, this should be similar to the text introducing the developer documentation. The
summary should begin with a capital letter and end with a period

anstrntor for the SOAP protocol plug-in of XO0Tcl Reguest
ro.

Summary: Broker.

Type a one-paragraph description of your package. This is probably analogous to the first paragraph in your package's documentation.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 10/ 49

WIRTSCHAFTS

Prerequisites / Create package structure (2)

u -
Y win

package-
procs.tcl

m?’

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —11/49

Prerequisites / Create package manager (1) g

/////////////////////////

: ::library" is a powerful alternative
to "ad_llbrary". Most importantly, it allows
to specify dependencies between library scripts
to circumvent the default lexicographic order
of evaluation.

H O H HF H H H

:xo::library doc {

Package infrastructure for the xosoap demonstrator
package.

@creation—date 2008—02—14
@author Stefan Sobernig
@cvs—id $1d$

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —12 /49

WIETSCHAFTS
UNIVERSITAT

Prerequisites / Create package manager (2)

#0000l
Declaring an application—specific
namespace is good practice

namespace eval ::demo {

#

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 13 /49

Prerequisites / Create package manager (3)

WIETSCHAFTS
UNIVERSITAT

10 rrrrrr
We define a package manager for our demo package.
Package managers are provided by the XOTcl Core
and act as convenient helpers when dealing with
OpenACS APM—style packages.

Our package manager class may be addressed as

”.:demo::Package”.

::xo::PackageMgr create Package \
—superclass ::xo::Package \
—pretty_name ”"XOTcl_SOAP.Demo.Package” \
—package_key ”xosoap—demo”

#0000
We provide a per—instance constructor which

may be used to specify initialisation behaviour
for instances of our Package Manager.

Package instproc init {} {
initialisation magic

OpenACS and dotLRN Conference / Guatemala / 2008

Sobernig — 14/ 49

WIETSCHAFTS
UNIVERSITAT

Common pitfalls

Is it important to consider the order of package initialisation when naming my new
packge, i.e. picking a package key?

e NO, XOTcl Core and xorb provide means to explicitly require package
dependencies, regardless of the lexicographic initialisation order.

Is it mandatory to use XOTcl Core package management, e.g. a package manager,
for my package?

e NO, but it facilitates your development task if the complexity starts to increase.
Is it mandatory to provide for a Tcl namespace for my package?

e Not necessarily, as the containing Tcl namespace does not convey any critical
semantics (from the perspective of XOTcl Core or xorb/xosoap) at this point.
However, it may be considered good practice. In the context of defining your
SOAP provider, the choice of namespace becomes an issue (see below).

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —15/49

WIKTY HAF TS
UNIVERSTAT

r

OpenACS and dotLRN Cenference / Guatemala / 2008 Sobernig — 16 /49

Provider / Our recipe oy

® To begin with, we provided for a library and
package environment for our provider code
to be hosted with (see above).

® Then, we look at devising an explicit inter-
face which stipulates the public behaviour of
our SOAP provider.

® Once defined, we look at realising the inter-
face as a provider-side specification object
(“service contract”).

e In addition, we have to provide a reference
implementation for the materialised inter-
face, a so-called “service implementation”. It
acts either as servant or provider-side proxy
for a servant.

e Finally, we look at some the requirement of
explicit deployment.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —17 /49

WIRTSCHAFTS

Provider / Create a provider library script (1)

provider-
procs.tcl

w@?’

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 18 /49

Provider / Create a provider library script (2) g

/////////////////////////

: ::library" is a powerful alternative
to "ad_llbrary". Most importantly, it allows
to specify dependencies between library scripts
to circumvent the default lexicographic order
of evaluation.

H O H HF H H H

:xo::library doc {
Library script hosting our SOAP provider

@creation—date 2008—02—14
@author Stefan Sobernig
@cvs—id $1d$

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —19/49

WIETSCHAFTS
UNIVERSITAT

Provider / Provide xorb in the package scope

VAV VAV A A AV A A A A A A A A A A AV A A A AV
Upon server initialisation, OpenACS packages are
sourced in their lexicographic order. Core packages
(e.g. acs—*, xotcl-core), however, have priority
and are processed before non-core ones. This allows
packages as ours to draw upon their code even at
initialisation time. Now, remember, our package

is named "xosoap-demo" which ranks before xorb
("xotcl-request-broker") and xosoap ("xotcl-soap").
Therefore, we have to explicitly require xorb
before declaring our SOAP provider by using
"::xo0::db::require package <package_key>".

Having explicitly required xorb, you may use facilities
residing in the "::xorb::*" namespace.

H OH HF H HEHHFHHEHHFH A H

.:X0::db::require package xotcl—request—broker

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 20/ 49

Provider / Sketch an explicit interface

WIETSCHAFTS
UNIVERSITAT

A conceptual sketch of the explicit interface embodied by our SOAP provider:

::demo::provider

<<interface>>
SearchService

+search(queryString:string):string

OpenACS and dotLRN Conference / Guatemala / 2008

Sobernig —21/49

WIETSCHAFTS
UNIVERSITAT

Provider / Providing for dedicated namespace

0 r
Declaring an provider—specific

namespace is >recommended< practice
namespace eval ::demo::provider {

namespace import ::xorb::x*

SOAP provider specification goes here

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 22/ 49

WIETSCHAFTS
UNIVERSITAT

Provider / Realise the Interface as Service Contract

/00000
1st step: Provide a specification of an >explicit<
interface. This may be achieved by instantiating
".:xorb::SericeContract”. This yields a special—purpose
XOTcl class object that represents the specification
for our demo SearchService.
ServiceContract SearchService —defines {
::xorb::Abstract search \
—arguments {
gqueryString:xsString
} —returns “returnValue:xsString” \
—description {
A generic interface that provides
a "search” operation to callers.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 23 /49

Provider / Provide an Implementation

WIETSCHAFTS
UNIVERSITAT

———

#0000

2nd step: Provide a sample implementation that

realises (implements) the above >explicit interface<
by re—using the OpenACS Search package infrastructure.
For this task, we create an object of type

".:xorb::Servicelmplementation”.

Servicelmplementation OpenACSSearchPackagelmpl \
—implements SearchService \
—using {
#0000
Method: search
Method search {
—queryString:required
o

This method takes the query string,

and performs the actual search by calling

the responsible Search package facility.
Jait

set result "A.rose.is.a.rose.is._a.rose”

#0000l

Here, we would need to ressemble the

behaviour of either search/www/search.tcl

<or> revert to using tsearch2::search, for

instance, directly

return $result

OpenACS and dotLRN Conference / Guatemala / 2008

Sobernig — 24/ 49

WIETSCHAFTS
UNIVERSITAT

Provider / Deploy Interface & Implementation

/00000
3rd step: Finally, you need to >deploy< both the
interface and its reference implementation by

sending a deploy () message. Deployment involves

a set of minor tasks, such as registering with the
Invoker and checks for interface conformity.
SearchService deploy

OpenACSSearchPackagelmpl deploy

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 25/ 49

WIETSCHAFTS

Provider / Excursus / OpenACS Service Contracts (1) oLy

Service Contracts realise an indirection layer as framework extension strategy:

Component/ Component/
Module Module
»
()
‘ Caller / Callee ‘ S
=
............................ Interface sssssssssssssssnssnsnnnnfiennnns)
T (Description)
Caller Proxy [WSS | ... Proxy e Callee Proxy
("Stub”, ...) . Proxy ("Skeleton”, ...)
A
Transport
Dispatch (Addressing, Lookup, ...)
Invocation
Call Abstraction Infrastructure

Conceptually, this has been labelled EXPLICIT INTERFACE Buschmann and Henney
[2003], at a more implementation level BRIDGE pattern Gamma et al. [1994].

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 26 / 49

WIETSCHAFTS

Provider / Excursus / OpenACS Service Contracts (2) e

The Search Package is a primary example for the use of service contracts:

Component/ Component/
Module Module
n
D
‘ Caller / Callee ‘ S
=
............................ Interface ssssssssssssnsnnnnsnnnnnflannnnn)
T (Description)
Caller Proxy | B | ... Proxy e Callee Proxy
("Stub", ...) . Proxy ("Skeleton", ...)
A
Transport
Dispatch (Addressing, Lookup, ...)
Invocation
Call Abstraction Infrastructure

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 27 /1 49

WIETSCHAFTS
UNIVERSITAT

Provider / Excursus / Tcl names and broker references

A key task of BROKERS, as xorb, is bridging between references or identifiers across
various scopes:

e The ultimate target reference (to the servant) managed by xorb, i.e. its INVOKER
IS ::demo::provider::OpenACSSearchPackagelmpl
e Xxosoap transliterates these into an URI scheme, according to the following rules:

o Default URI scheme: (site —node)/services/(tcl—qualifiers)/(object—name),
e.g. /xosoap/services/demo/provider/OpenACSSearchPackagelmpl

o The (tcl —qualifiers) fragment takes care of the ambiguity between top-level
(“global™) xorb and legacy OpenACS contracts or implementations:

o At the level of xorb and the service contracts, entity names “::myContract”
and “myContract” (as allowed for legacy ones) are logically distinct.

e The mapping into a URI would represent both by
/xosoap/services/myContract which would be a fundamental conflict.

e Therefore, there is a (configurable) default URI segment (default:“acs”) for
legacy items so we can address both. “myContract” becomes
/xosoap/services/acs/myContract

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 28/ 49

Provider / Excursus / Deployment

WIETSCHAFTS
UNIVERSITAT

... serves a couple of purposes

e \erify the consistency / correspondence of an implementation to the interface
description (service contract). Currently, we enforce a limited type of behavioural
containment.

e Introduces a stage life-cycle which differentiates between prototyping,
accomplishing, and publishing a provider.

e The process of deleting either a service contract or service implementation is
linked to the deployment call. As contracts/ implementations are persisted, one

need to remove the deploy call and then clear the back-end from the persisted
representations.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 29/ 49

WIETSCHAFTS
UNIVERSITAT

Provider / What to keep

e There are four steps involved:

1. Provide for dedicated Tcl Namespace, e.g. :: demo::provider

2. Create a ServiceContract class object, realising your interface sketch; e.g.
.- demo::provider::SearchService

3. Create a Servicelmplementation class object, realising your interface sketch;
e.g. ::demo::provider::OpenACSSearchPackagelmpl

4. Deploy the latter two ...

e There is some magic that turns Tcl qualified names in URIs for the scope of
Xosoap and vice versa ...

e Conceptually, XOTcl Request Broker and its plug-ins build upon OpeACS core
framework features (“service contracts”) and simply turn them inside-out!

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 30/ 49

Provider / Maintenance (1)

The xorb cockpit at /request-broker/admin

yourdomain Network

Main Site : XOTcl Reguest Broker : Administratios

ACS Service Contracts

::cognovis: : EchoProject

::demo: : provider: :SearchService

9
::prolix: :pms: : PMSService

9
::xorb::manual: : EchoService

9
::x0s0ap: :demo: : Soaplnterop2

i®

9

A
ab

FtsEngineDriver

UserData

auth password

auth registration

P
\
auth authentication P
P
P
Q

auth sync process

OpenACS and dotLRN Conference / Guatemala / 2008

Packagelmpl

ACS Service Contracts | | ACS Service Implejnentations |

Name<

::cognovis: : EchoProjectImpl

::demo: : provider: : OpenACSSearchPackageImpl

::prolix: :pms: : PMSServiceImpl

::xorb::manual: : EchoServiceImpl

::x0s0ap: :demo: : SoapInterop2GroupBImpl

AP e p e P

Maintenance:
“- Deletion
“- Bind/unbind

IMS Enterprise v 1pl

LocalFilesystem

content revision

pp PP

content template

B =2 = = = =

a« €6 6 &6 6 &6 &6 &6 &6 a @&

WIRTSCHAFTS
UNIVERSITAT

Ff =y

T
xannr,

WIEMN

Sobernig —31/49

Provider / Maintenance (2)

The xosoap view of deployed implementations at /xosoap/services

yourdomain Network

Main Site : xosoap

xosoap | 6 services deployed

::cognovis: : EchoProjectIn
::prolix::pms::PMSServiceImpl | wsdl
::x0soap: :demo::Soaplnterop2Impl | wsdl
::xosoap::demo::Soaplnterop2GroupBImpl | wsdl
::xorb::manual::EchoServiceImpl | wsdl

::demo::provider: :OpenACSSearchPackageImpl |
wsdl

hPackagelmpl

OpenACS and dotLRN Conference / Guatemala / 2008

WIRTSCHAFTS
UNIVERSITAT

Sobernig — 32/ 49

Provider / Auto-generation of interface description (WSDL)

WIRTSCHAFTS
UNIVERSITAT
. Y

S

WIEMN

Based on your in-memory specification of an explicit interface, xosoap generates

WSDL representations. Point your browser to e.g.
/xosoap/services/demo/provider/OpenACSSearchPackagelmpl?s=wsdI ...

- <wsdl:definitions name="__demo__provider™
- <wsdl:message name="searchInput">
<wsdl:part name="queryString" type="xsd:string"/>
</wsdl:message>
- <wsdl:message name="searchOutput">
<wsdl:part name="returnValue" type="xsd:string"/>
</wsdl:message>
- <wsdl:portType name="__demo__provider__SearchServicePortType">
- <wsdl:operation name="search">
<wsdl:input message="tns:searchInput"/>
<wsdl:output message="tns:searchOutput"/>
</wsdl:operation>
</wsdl:portType>
- <wsdl:binding name="__demo__provider__SearchServiceSoapBinding" type="tns:__demo__provider__SearchServicePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
- <wsdl:operation name="search">
<soap:operation soapA ction="https/tosalhost:8000/xo0soap/services/demo/provider/OpenACSSearchPackageImpl/search"/>
- <wsdl:input>

eference:
archPackagelmpl

</wsdl:input>
- <wsdl:output>
<soap:body namespace="http://localhost:8
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
- <wsdl:service name="__demo__provider__SearchService">
- <wsdl:documentation>
This is an auto-generated description for this contract. You can provide a more useful one by using ad_doc on the contract specification object.
</wsdl:documentation>
- <wsdl:port name="__demo__provider__SearchServicePort" binding="tns:__demo__provider__SearchServiceSoapBinding">
<soap:address location="http://localhost:8000/x0soap/services/demo/provider/OpenACSSearchPackageImpl"/>
</wsdl:port>
</wsdl:service> Q

</wsdl:definitions>

—dckagelmpl" use="literal"/>

OpenACS and dotLRN Conference / C

Sobernig — 33 /49

WIKTY HAF TS
UNIVERSTAT

r

OpenACS and dotLRN Cenference / Guatemala / 2008 Sobernig — 34/ 49

WIRTSCHAFTS

Consumer / Create a “WUI” script

consumer.tcl

w?c’

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 35/ 49

Consumer / Realise an explicit interface

While in the provider context, the explicit interface served as callee interface, it now
“In-forms” potential callers, i.e. CLIENT PROXIES ...

::demo::provider

<<interface>>
SearchService

+search(queryString:string):string

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 36 / 49

Consumer / Our recipe

S

e First, we provide a specific type
of CONTEXT OBJECT that conveys
two kinds of informations for our in-

tended remoting interaction:

1. Re-usable invocation informa-
tion
2. Invocation context information

e Second, the EXPLICIT INTERFACE,
e.g. SearchService, needs to be re-
alised for the consumer side.

e Parametrisation of call and perform-
iIng actual call.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 37/ 49

WIETSCHAFTS

Consumer / Prerequisites

[
Remember the package manager you created
initially in this demo package! Now it

is time to use it to contextualise requests
to this sample script hosting a consumer.

The call to initialize() resolves the current
package context and allows for specifying
parameter requirements on the debarking
requests.

H H HF HHFHHHH

::demo::Package initialize —ad.doc {

This is a sample W(eb) U(ser) I(nterface) script
that demonstrates creating a basic SOAP consumer
and handy XOTcl core features in this respect

@date 2008—02—14
@author Stefan Sobernig
@cvs—id $1d$

} —parameter {
{—queryString:required}
}

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 38 /49

WIETSCHAFTS

Consumer / A glue object

[
First, we provide for a "glue" object that
stores particular kind of invocation
information, i.e. endpoint address, but

is also carrier for invocation context
information, required in more complex
scenarios. Most importantly, the selection
of the kind of glue object determines

the remoting protocol used, ie.e SOAP.
"SoapGlueObject" resides in the
"::xosoap::client" namespace.

H H H HF HHHHHE R R

namespace import ::xosoap::client::*

set endpoint \
http: //localhost:8000/xosoap/services /demo/ provider/OpenACSSearchPackagelmpl

set glueObject [SoapGlueObject new \
—endpoint $endpoint\
—messageStyle ::xosoap::RpclLiteral]

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 39/ 49

WIETSCHAFTS

Consumer / a client proxy -y

[
Second, we realise the explicit interface
by providing a counterpart to the
ServiceImplementation ("skeleton") at the
provider side, a "client proxy". Therefore,
you need to import the habitants of
"::xorb::stub::*" namespace into the current
scope and create an object of type
"ProxyObject". Note that the previously
defined glueobject is passed by association
to the client proxy!

namespace import ::xorb::stub::x*

H H H HF HHHHHE R R

ProxyObject SearchServiceProxy —glueobject $glueObject

SearchServiceProxy ad_proc —returns xsString \
search {—queryString:xsString} \
{Implementation for the search operation} \

i

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 40/ 49

Consumer / The invocation T

#/ /70

Finally, we perform the invocation and

assign the invocation result to a local

Tcl variable that will populate the

consumer.adp template ...

set html [SearchServiceProxy search \
—queryString $queryString]

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig—41/49

WIETSCHAFTS

Consumer / Driving concepts

Context

Client Proxy Object

ProxyObiject SoapGlueObject

Invocation Invocation

Information context

Re-usable
invocation information

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —42 /49

WIETSCHAFTS
UNIVERSITAT

Consumer / Glue objects

e Encapsulate and organise request information needed at various layers and
stages.

e |t closely follows the idea of Context Objects as a strategy of argument passing.

e Using an object as a argument passing vehicle allows for:

o handling of a huge variety of heterogeneous argument information needed to
perform a call (protocol and transport layer).

o transformation of argument information during handling (streaming)

o a unspecified variety of clients to be served

e Glue objects are simply associated to objects, potentially turning them into client
proxies.

e Glue objects are aligned to OO concepts: Glue objects can be linked to classes
that provide them to their instances. Similarily, glue objects can be injected into
existing object hierarchies (class tree) by means of mixins.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 43/ 49

WIETSCHAFTS
UNIVERSITAT

Consumer / Client proxy

e The role of client proxies is to mimic the interface of 'remotely’ listening/ hosted
objects.

e Client proxies therefore represent the realisation of interface descriptions. They
are responsible to resolve a 'glue’ object, translate their interface description into
call information and pass the letter together with the glue object as actual
iInvocation data.

e ’glue’/’ad_glue’ as keywords are the instruments of declaring such a proxy
Interface

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 44/ 49

Client proxies in context

:xotcl::Object

cxotcl::Class

qnis
UIXIW

WIETSCHAFTS
UNIVERSITAT

... marshalling
... select transport protocol
.. transport provider

Request Transport
n| Requestor Handler : Provider
7
5
S
o il
&
3%
L

... protocol-plugin as mixin

... gather protocol infos from
proxy and reference objects
... assemble abstract request

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig — 45/ 49

WIKTY HAF TS
UNIVERSTAT

r

OpenACS and dotLRN Cenference / Guatemala / 2008 Sobernig — 46 / 49

WIETSCHAFTS

References e

e Markus Volter, Michael Kircher, and Uwe Zdun. Remoting Patterns: Foundations of Enterprise,
Internet and Realtime Distributed Object Middleware. Software Design Patterns. John Wiley &
Sons Ltd., Chichester, England, 2005

e Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software. Addison Wesley Professional Computing Series. Addison
Wesley, October 1994

e Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture — A System of Patterns. John Wiley & Sons Ltd.,
Chichester, England, 2000

® Our xorb/xosoap resource collection

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —47 /49

WIKTY HAF TS
UNIVERSTAT

r

OpenACS and dotLRN Cenference / Guatemala / 2008 Sobernig — 48/ 49

- WIRTSCHAFTS
Overview
Lraiine .

e Advanced indirection invocation interceptors
e Integrated exception and SOAP Fault handling

e Publishing legacy code: adapters available for Objects and Procedures.
e Rich variety of interfaces to use, ranging from close-to-XOTcl idioms to
special-purpose citizens.

See the authoritative manual for details.

OpenACS and dotLRN Conference / Guatemala / 2008 Sobernig —49 /49

