
Deriving Role Engineering Artifacts from
Business Processes and Scenario Models

Anne Baumgrass, Mark Strembeck
Institute of Information Systems, New Media Lab

Vienna University of Economics and Business
(WU Vienna), Austria

{firstname.lastname}@wu.ac.at

Stefanie Rinderle-Ma
Workflow Systems and Technology

Faculty of Computer Science
University of Vienna, Austria

stefanie.rinderle-ma@univie.ac.at

ABSTRACT

Scenario-driven role engineering is a systematic approach to engi-

neer and maintain RBAC models. Such as every engineering pro-

cess, this approach heavily depends on human factors and many of

the corresponding engineering tasks must be conducted manually.

However, based on the experiences we gained from our projects

and case studies, we identified several tasks in role engineering that

are monotonous, time-consuming, and can get tedious if conducted

manually. These tasks include the derivation of candidate RBAC

artifacts from business processes and scenario models. In this pa-

per, we present an approach to automatically derive role engineer-

ing artifacts from process and scenario models. While our general

approach is independent from a specific document format, we es-

pecially discuss the derivation of role engineering artifacts from

UML activity models, UML interaction models, and BPMN col-

laboration models. In particular, we use the XMI (XML Metadata

Interchange) representation of these models as a tool- and vendor-

independent format to identify and automatically derive different

role engineering artifacts.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Access

Controls; K.6.5 [Management of Computing and Information

Systems]: Security and Protection

General Terms

Security

Keywords

Role Engineering, RBAC, UML, BPMN, XMI

1. INTRODUCTION
In recent years, role-based access control (RBAC) [8, 9, 22] –

together with various extensions – has developed into a de facto

standard for access control. In the context of RBAC, roles model

different job-positions and scopes of duty within a particular

organization or within an information system. Scenario-driven

role engineering is a systematic approach for defining customized

RBAC models, including roles, role-hierarchies, permissions, and

constraints [23, 24, 26]. Since its first publication in 2002 [18],

we gained many experiences with scenario-driven role engineering

and the approach has been adopted by a number of consulting

firms and international projects (see, e.g., [5, 15]).

1.1 Scenario-driven Role Engineering
In scenario-driven role engineering, we use scenario and pro-

cess models as a primary communication and engineering vehicle.

We model usage scenarios of an information system and use the

respective scenario and process models to derive permissions. In

general, a scenario describes a possible or actual action and event

sequence (see, e.g., [13]). Thus, to perform a certain scenario, a

subject needs to be equipped with the exact number of permissions

that are needed to complete each step of the respective scenario.

After deriving the permissions, we therefore group the scenarios

to form tasks and work profiles. These work profiles serve as pre-

liminary roles and are an important step toward the definition of a

customized RBAC model (for details see [18, 23, 24, 26]). Figure

1 shows the main relations between role engineering artifacts and

corresponding RBAC model artifacts.

*

*

** *

* 1..* *

juniorRoleseniorRole

RoleSubject
owner role permissionowner

mutualExclusive

1..*

0..* *

mutualExclusive

0..*

Scenario

Task Work Profile

Step

1..*

1..*

1

0..1source

Permission

1..*

source 1..*

0..*performs performs

RBAC model artifacts

Role engineering artifacts

** derived from derived from

*

*

*

Figure 1: Role engineering and RBAC artifacts [24]

Such as every engineering process, the process of role engineer-

ing significantly depends on human factors. For this reason, many

steps of the process cannot be automated (or at most partially).

However, based on the experiences we gained from our role engi-

neering projects and case studies (see Section 4), we identified sev-

eral tasks in role engineering that are monotonous, time-consuming

and can get tedious if conducted manually. These tasks include the

derivation of candidate RBAC artifacts from scenario and process

models. In this paper, we are especially concerned with the deriva-

tion of role engineering artifacts from UML activity, UML interac-

tion, and BPMN collaboration models.

1.2 Approach Synopsis
In order to ease scenario-driven role engineering, we aim to au-

tomate the derivation of role engineering artifacts from different

types of scenario and process descriptions. In general, scenario and

ms
Textfeld
 This is an extended version of the paper published as: A. Baumgrass, M. Strembeck, S. Rinderle-Ma: Deriving Role Engineering Artifacts
 from Business Processes and Scenario Models, In: Proc. of the 16th ACM Symposium on Access Control Models and Technologies
 (SACMAT), Innsbruck, Austria, June 2011
 In the extended version, we reinserted the text that we had to cut from the paper due to the page restrictions for the conference version.

process models can be defined in a wide variety of (modeling) lan-

guages, such as Unified Modeling Language (UML) activity and

interaction models, event-driven process chains (EPCs), Business

Process Model and Notation (BPMN) models, or via the Business

Process Execution Language (BPEL). To automate the derivation

of role engineering artifacts, we therefore chose an approach that is

independent of the language which is used to define the scenarios

and processes. In particular, we first assess the respective (model-

ing) language and specify a mapping between modeling language

artifacts and role engineering artifacts. This mapping especially

results in an integrated meta-model (see Figure 2). Based on this

integrated meta-model we built a tailored analyzer component that

extracts role engineering artifacts from corresponding scenario and

process models.

generated

from

based on

Role engineering

meta model

Integrated

meta model

Machine-readable

format

based on

based on

Modeling language

meta model

Model

(meta model instance)

based on
derive

parse

Model (instance) level

Meta model level Software platform

Analyzer

component

Candidate

Role engineering

artifacts

Figure 2: Generic approach for the automated derivation of

role engineering artifacts from scenario and process models:

conceptual overview

Thereby, our approach is independent of a certain modeling lan-

guage or format. However, a detailed and dedicated investigation

of different modeling languages is essential since modeling lan-

guage meta models partly differ with respect to the representation

of relevant artifacts (see Sections 2 and 3).

In this paper, we describe the derivation of role engineering arti-

facts from UML activity and interaction models as well as BPMN

collaboration models. In particular, we use the XML Metadata In-

terchange (XMI) [20] representation of these models as a tool- and

vendor-independent format to identify and derive different candi-

date role engineering artifacts.

The remainder of this paper is structured as follows. In Section

2, we give an overview of the different UML and BPMN models,

and show how we use them for scenario and process modeling in

the role engineering context. Subsequently, Section 3 presents our

approach for the automated derivation of role engineering artifacts

from the corresponding scenario and process models. Next, Section

4 discusses the practical relevance of our approach. Section 5 gives

an overview of related work, and Section 6 concludes the paper.

Moreover, we use Appendix A and B to further discuss additional

aspects concerning BPMN models.

2. USING UML AND BPMN FOR SCENA-

RIO AND PROCESS MODELING
UML is a de facto standard for the definition of software-based

systems. In scenario-driven role engineering, we use UML

activity and interaction models as standard means to visualize

scenario and process models (see also [24]). Moreover, in recent

years BPMN emerged as a new standard for the definition of pro-

cess models that was quickly adopted in both research and industry.

2.1 UML Activity Models
Activity models specify processes and define the control and ob-

ject flow between different actions. Figure 3 shows an excerpt of

the UML2 meta-model that depicts selected elements of activity

models (see [21]). In Section 3.1, we will use some of these activ-

ity elements to derive role engineering artifacts.

0..1

+activity

+node * +partition

+inPartition

+edge*

*

+edge*

0..1

*

+activity

0..1

+inPartition

*+node

*

+target1 +incoming *

+source

1

+outgoing

*

0..10..1

+ /input

+ /output

*

*
Pin

ObjectNode

Activity

Partition

InputPin

OutputPin

Action

ActivityNode

Activity

ActivityEdge

ActivityParameterNode

ControlFlowObjectFlow

Figure 3: Selected elements of UML2 activity models

The left-hand side of Figure 4 shows the example of a simple

credit application process modeled as UML activity diagram. An

activity model may include (sub)partitions, and each partition may

have a name. Partitions can be used to group actions that have

common characteristics, for example the execution of all actions

in a partition by the same actor. The example from Figure 4 in-

cludes three partitions using the so called swimlane notation (see

[21]), the partitions are named "Credit Application Web-Frontend",

"Bank Clerk A", and "Bank Clerk B".

Activity models have a token semantics, similar (but not equal)

to petri nets. In general, two different types of tokens can travel

in an activity model. Control tokens are passed along control flow

edges and object tokens are passed along object flow edges (for

details see [21]). To model object flows between actions, one uses

corresponding object nodes. Pins are a specific type of object node

and are visualized as small rectangles that are attached to action

symbols. For example, in Figure 4 we have an object flow between

the two actions "Negotiate contract" and "Approve contract". The

object flow connects the two pins attached to the respective actions

and accepts object tokens of type "Contract".

Each edge may be associated with a so called "guard" condition.

The guard determines if a particular token is allowed to travel along

the respective edge. A decision node is represented by a diamond-

shaped symbol and has one incoming and multiple outgoing edges.

A merge node is represented by a diamond-shaped symbol and has

multiple incoming and one outgoing edge.

The right-hand side of Figure 4 shows an excerpt of the XMI rep-

resentation of the activity model depicted on the left-hand side. The

XML Metadata Interchange (XMI) specification (see [20]) defines

an interchange and storage format and (among other things) allows

for the transformation of graphical UML models to a generic (tool-

and vendor-independent) model representation. Each element in an

XMI document has an identifier defined through the xmi:id at-

tribute. Via this identifier elements can reference other elements

(see below). For demonstration purposes, Figure 4 highlights two

areas of the activity model and the corresponding XMI representa-

tion, in particular:

• In the XMI representation, activity partitions are defined via a

group element with the xmi:type attribute set to uml:Activ-

ityPartition. Nodes/elements included in a partition are ref-

Credit

application

[else]

Credit application process

[Check passed]

[else] Contract

Contract

[approved]

[Form Ok]

[else]

Check credit
worthiness

Negotiate
contract

Approve
contract

C
re

d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

Reject
application

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

 xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA01">

 <packagedElement xmi:type="uml:Activity" xmi:id="AC01"

 name="Modified Credit application process">

 <node xmi:type="uml:ActivityParameterNode" xmi:id="PN01"

 name="Credit application" outgoing="OF01"/>

 ...

 <node xmi:type="uml:OpaqueAction" xmi:id="OA03" name="Negotiate contract"

 incoming="CF07" inPartition="AP01">

 <outputValue xmi:type="uml:OutputPin" xmi:id="OP01" name="Contract" outgoing="OF02"/>

 </node>

 <node xmi:type="uml:OpaqueAction"
 xmi:id="OA04" name="Approve contract"
 outgoing="CF11" inPartition="AP02">
 <inputValue xmi:type="uml:InputPin" xmi:id="IP02"
 name="Contract" incoming="OF02"/>
 </node>
 ...

 <edge xmi:type="uml:ObjectFlow" xmi:id="OF02" source="OP01" target="IP02"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF07" source="DN03" target="OA03"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF11" source="OA04" target="MN02"/>

 ...

 <group xmi:type="uml:ActivityPartition" xmi:id="AP01"
 name="Bank Clerk A"
 node="DN01 OA02 DN02 MN01 MN02 OA03"/>

 <group xmi:type="uml:ActivityPartition" xmi:id="AP02" name="Bank Clerk B" node="OA04 DN03"/>

 ...

 </packagedElement>

</uml:Package>

Credit
application

Check
application form

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A

Figure 4: Example of an UML2 activity model and its XMI representation

erenced via the node attribute. For example, in Figure 4 the

partition with name "Bank Clerk A" includes the nodes DN01,

OA02, DN02, MN01, MN02, and OA03 1.

• Actions are defined as node of the activity model and include an

xmi:type attribute that specifies the corresponding action type.

The action highlighted on the right-hand side of Figure 4 is of

type uml:OpaqueAction and has the name "Approve contract".

The inPartition attribute references the id of the activity par-

tition that includes the respective action (see also Figure 3). In

this example, the "Approve contract" action is included in parti-

tion AP02 (short for "Activity Partition 02") named "Bank Clerk

B". Moreover, this action is connected to an InputPin that has

the name "Contract".

• Input pins as well as output pins (see Figure 3) are defined as

subelements of the action they are attached to. Input pins are in-

cluded in an inputValue element and their xmi:type is set

to uml:InputPin (see Figure 4). Likewise, output pins are

outputValue elements of the type uml:OutputPin.

2.2 Refining/Concretizing ActivityModels via
Interaction Models

While activity models describe the control flows and object flows

between different actions on a higher abstraction level, interaction

models are used to define the interactions of different actors in de-

tail. Figure 5 shows an excerpt of the UML2 meta-model that de-

picts selected elements of interaction models (see [21]). In Section

3.1, we will use some of these interaction elements to derive role

engineering artifacts.

In particular, interaction models describe a sequence of messages

that are send between different lifelines. Here, a lifeline represents

an actor that is participating in a particular interaction. In general,

an actor may be a human user or a technical (software-based) sys-

tem. UML includes different (sub)types of interaction models (see

[21]). In scenario-driven role engineering, we especially use UML

sequence diagrams to model interactions and to specify the actions

modeled in an activity model in detail (see also [24]). The right-

hand side of Figure 6 shows an example of a sequence diagram

which describes the "Check credit worthiness" action from Figure

4 in detail.

The Interaction from Figure 6 includes three lifelines, represent-

ing a "Bank Clerk", a (sub)system called "CustomerMgmt" and a

(sub)system called "CustomerRating". Each message send between

the lifelines defines a particular act of communication and is mod-

eled via a directed edge pointing from the message sender’s lifeline

1DN = Decision Node, MN = Merge Node, OA = Opaque Action

+ receive
Event

+ sendEvent

1 +interaction

+enclosingInteraction

* +message * +lifeline

+covered

+coveredBy

+finish

1

+start

*

*

0..1 0..1

0..1 0..1

0..2

0..1+message

*

*

+fragment*

0..1

1

1 +covered

*

1 +interaction

MessageOccurrence

Specification

Message

End

Message Lifeline

Interaction

Interaction

Fragment

Occurence

Specification

Execution

Specification

Figure 5: Selected elements of UML2 interaction models

to the message receiver’s lifeline. In UML, the start and end of

the directed edges representing a message are called MessageEnds

and define a so called MessageOccurrenceSpecification (see Fig-

ure 5), i.e. the occurrence of a respective send or a receive event on

the corresponding lifeline. Asynchronous messages have an open

arrow head, synchronous messages have a filled arrow head, and

reply messages are drawn as a dashed line with an open arrow head

(see Figure 6). Moreover, so called "execution specifications" spec-

ify the execution of a certain behavior or command within a life-

line (i.e. the execution of a behavior by the corresponding actor).

ExecutionSpecifications are represented by thin rectangles on the

lifeline, and may be nested/overlapping. Thus, execution specifica-

tions define when an actor (represented via a lifeline) is busy.

Moreover, interaction models may include CombinedFragments.

A combined fragment models an interaction fragment which oc-

curs in case a certain condition becomes true. In general, different

types of CombinedFragments exist, e.g. to model alternative behav-

iors, optional behavior, loops, or breaking scenarios (for details see

[21]). The example from Figure 6 includes a CombinedFragment

modeling an optional behavior (indicated by the "opt" operator in

the upper left corner of the fragment) that is executed if the "[deci-

sion is positive]" condition in the CombinedFragment evaluates to

true.

The left-hand side of Figure 6 shows an excerpt of the XMI rep-

resentation of the interaction model depicted on the right-hand side.

For demonstration purposes, Figure 6 highlights three areas of the

interaction model and the corresponding XMI representation. In

particular, the highlighted areas include the following elements:

• In the XMI representation, lifelines are defined via a life-

line element with the respective xmi:type attribute set to

sd Check credit worthiness

: CustomerMgmt : CustomerRatingBank Clerk

getCustomerProfile(id)

profileLookup(id)

profilereturn profile

assess profile

make decision

[decision is positive]opt

getCustomerRating(id)

assembleRating(id)

ratingreturn rating chart

assess rating chart

make decision

decision

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

 xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA02">

 <packagedElement xmi:type="uml:Interaction" xmi:id="IA01" name="Check credit worthiness">

 <lifeline xmi:type="uml:Lifeline" xmi:id="LL01"
 name="Bank Clerk" coveredBy="MO01 MO07
 MO09 ..."/>

 <lifeline xmi:type="uml:Lifeline" xmi:id="LL02"
 name=": CustomerMgmt" coveredBy="MO03 MO02
 MO04 MO06 MO05 MO08 BE01 BE03 BE04"/>
 ...

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO01" covered="LL02"

 message="ME01"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO02" covered="LL01"

 message="ME01"/>

 ...

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE03" covered="LL02"

 start="MO04" finish="MO05"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE04" covered="LL02"

 start="MO03" finish="MO06"/>

 ...

 <message xmi:type="uml:Message" xmi:id=
 "ME01" name="getCustomerProfile(id)"
 messageSort="asynchCall" receiveEvent="MO02"
 sendEvent="MO01"/>

 <message xmi:type="uml:Message" xmi:id="ME02" name="profileLookup(id)" receiveEvent="MO03"

 sendEvent="MO04"/>

 ...

 </packagedElement>

</uml:Package>

Credit

application

[else]

Credit application process

[Check passed]

[else] Contract

Contract

[approved]

[Form Ok]

[else]

Check credit

worthiness

Negotiate

contract

Approve contract

C
re

di
t A

pp
lic

at
io

n
W

eb
-F

ro
nt

en
d

Credit

application

Reject

application

Check

application form

B
an

k
C

le
rk

 B
B

an
k

C
le

rk
 A

Credit application process

Figure 6: Example of an UML2 interaction model and its XMI representation

uml:Lifeline. Moreover, each lifeline includes a coveredBy

attribute which contains id-references to the occurrence speci-

fications of this particular lifeline. In the topmost highlighted

area from Figure 6, the lifeline with name "Bank Clerk" is

covered by a number of message occurrences ("MO01, MO07,

MO09, . . . ")2.

• A Message is defined via a message element with the corre-

sponding xmi:type attribute set to uml:Message. Moreover,

the sendEvent and receiveEvent attributes refer to the re-

spective MessageOccurrenceSpecifications (see also Figure 5)

that define the start and end points of a certain message. In the

example from Figure 6, the message with name "getCustomer-

Profile(id)" connects the sendEvent "MO01" (which is covered

by the lifeline "Bank Clerk") and the receiveEvent "MO02"

(which is covered by the lifeline "CustomerMgmt").

2.3 BPMN Collaboration Models
BPMN2 provides three diagram types named Process, Col-

laboration, and Choreography respectively (for details see [19]).

For our purposes, we especially focus on BPMN collaboration

diagrams which model interactions between different entities (so

called Participants).

Figure 7 shows an excerpt of the BPMNmeta-model that depicts

selected elements of BPMN collaboration models. In Section 3.2

we will use some of these elements to derive role engineering ar-

tifacts. Figure 8 shows an example of a descriptive BPMN model.

In Appendix A, we additionally show a corresponding extended

common executable BPMN model.

In a collaboration a participant is responsible for the execution

of the process enclosed in a so called pool. In BPMN processes

group the flow or sequence of different process steps. The steps

within a process are categorized and organized via Lanes encap-

sulated by a LaneSet, whereas each lane can consist of sub-lanes

to further partition the included process steps (for details see [19]).

In version 2.0, BPMN introduces process modeling conformance

classes to simplify the interchange between modelers and develop-

ers [19]. Below, we use the descriptive conformance class and the

common executable conformance class. The Descriptive Confor-

mance class allows to establish a high-level understanding between

modelers. The Common Executable Conformance class enables

a detailed definition of the corresponding processes (see also Ap-

pendix A) .

Figure 8 shows our credit application example modeled via a

BPMN model using the descriptive conformance class. It includes

one Pool named "Bank Company" consisting of the three lanes

2MO = Message Occurrence

FlowElement

DataAssociation

+targetRef

1

1

0..1

1..*1

* *

+sourceRef

*

*

0..1

0..1

0..1

0..1

*

*
*

*
**

*

*

*

*

0..1

1

11

1

*

*

1

1

*

0..1

*

**

+targetRef

+sourceRef

+incoming+outgoing

+participantRef

+participantRef

+partnerRoleRef +partnerEntityRef

+participants

+dataOutputs

+dataInputs

* *

0..10..1

+dataOutputAssociations+dataInputAssociations

+ioSpecification

0..1

+process

+resources

+resources

*

+participant

+processRef

1 +collaboration

+collaboration+messageFlows

+targetRef+sourceRef

+flowElements

+container

+flowElementContainer

+laneSets
+childLaneSet

+parentLane

+/lanes

+flowNodesRef

*

+lanes
1 +laneSet

+resourceRef

0..1 *

0..1

*

+messageRef

+messageFlow

1..*

1..*

+outputSets

+/outputSetRefs

1

+dataOutputRefs

*

1

1..*

1..*+inputSets

+/inputSetRefs

*

+dataInputRefs

ItemAwareElement

FlowElement

Container

LaneSet

Lane

DataOutput

Association

DataInput

Association

SequenceFlow

FlowNode

InputOutput

Specification

DataInput

InputSet

DataObject

Event Gateway Activity

SubProcess Task

DataOutput

OutputSet

Resource

RoleResource

PartnerEntityPartnerRole

Participant ProcessInteractionNode

CollaborationMessageFlow

Message

Figure 7: Selected elements of BPMN 2.0 collaboration models

named "Credit Application Web-Frontend", "Bank Clerk A", and

"Bank Clerk B".

While BPMN tasks are atomic process steps, subprocesses can

be broken down to a finer level of detail. In Figure 8, the process

step "Check credit worthiness" represents a collapsed subprocess,

while all other steps in this figure are tasks. The control flow in a

process is defined via events and gateways. Gateways coordinate

the direction and choices of the process flow, while events can di-

rectly affect this flow. Our example process shows five exclusive

Gateways (diamonds), a Start Event (circle) to indicate where to

begin the process and a End Event (circle with thick line) to indi-

cate where the path of the process will end. So called Data Objects

are used to store and convey items during process execution. Data

Associations model how data is extracted from a data object into a

task. In particular, this is done via the DataInput included in a task’s

InputSet. Similarly, a newly created data object is extracted from a

task’s DataOutput in the respective OutputSet (see also Figure 7).

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:xmi="http://schema.omg.org/spec/XMI" xmlns:bpmnxmi="http://www.omg.org/spec/BPMN/20100524/MODEL-XMI" xmi:version="2.0">

 <bpmnxmi:Definitions id="DEF01" targetNamespace="http://www.omg.org/bpmn20" expressionLanguage="http://www.w3.org/1999/XPath" typeLanguage="http://www.w3.org/2001/XMLSchema">

 <rootElements xmi:type="bpmnxmi:Process" name="Credit Application Process" id="PR01">

 ...

 <laneSets xmi:type="bpmnxmi:LaneSet" id="LS01" name="Bank">

 <lanes xmi:type="bpmnxmi:Lane" id="LA01" name="Credit Application Web-Frontend" flowNodeRefs="SE01 EE01 TA01 TA04 TA05 "/>

 <lanes xmi:type="bpmnxmi:Lane" id="LA02" name="Bank Clerk A"
 flowNodeRefs="EG01 EG02 EG03 EG04 EG05 SP01 TA02"/>
 <lanes xmi:type="bpmnxmi:Lane" id="LA03" name="Bank Clerk B" flowNodeRefs="TA03 "/>

 </laneSets>

 <flowElements xmi:type="bpmnxmi:DataObject" name="Credit application" id="DO01" isCollection="false"/>

 <flowElements xmi:type="bpmnxmi:EndEvent" id="EE01" name="" incoming="SF14 SF15"/>

 <flowElements xmi:type="bpmnxmi:ExclusiveGateway" id="EG01" name="Form Ok?" outgoing="SF03 SF04 " incoming="SF02" gatewayDirection="Diverging" default="SF04"/>

 <flowElements xmi:type="bpmnxmi:DataObject" isCollection="false" name="Contract" id="DO02"/>

 <flowElements xmi:type="bpmnxmi:Task" outgoing="SF09" incoming="SF08" startQuantity="1"
 isForCompensation="false" name="Negotiate contract" id="TA02" completionQuantity="1">
 <dataOutputAssociations xmi:type="bpmnxmi:DataOutputAssociation" targetRef="DO02"
 id="DOA02" sourceRef="Out02" />
 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS02">

 <inputSets xmi:type="bpmnxmi:InputSet" id="IS02"/>

 <outputSets xmi:type="bpmnxmi:OutputSet" id="OS02" dataOutputRefs="Out02"/>

 <dataOutputs xmi:type="bpmnxmi:DataOutput" id="Out02" name="Output Negotiate contract"
 isCollection="false"/>
 </ioSpecification>

 </flowElements>
 <flowElements xmi:type="bpmnxmi:Task" id="TA03" name="Approve contract" outgoing="SF10 " incoming="SF09" isForCompensation="false" startQuantity="1" completionQuantity="1">

 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS03">

 <inputSets xmi:type="bpmnxmi:InputSet" id="IS03" dataInputRefs="In03"/>

 <outputSets xmi:type="bpmnxmi:OutputSet" id="OS03"/>

 <dataInputs xmi:type="bpmnxmi:DataInput" id="In03" name="Input Approve contract" isCollection="false"/>

 </ioSpecification>

 <dataInputAssociations xmi:type="bpmnxmi:DataInputAssociation" id="DIA03" targetRef="In03" sourceRef="DO02"/>

 </flowElements>

 </rootElements>

 </bpmnxmi:Definitions>

</xmi:XMI>

Check
application

form

Check credit
worthiness

Reject
application

Approve
contract

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A
C

re
d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

B
a

n
k Form Ok Negotiate

contract

Check passed approved

Contract

Credit

application

Figure 8: Example of a BPMN 2.0 collaboration model in descriptive conformance class and its XMI representation

In our example the data object "Credit application" is connected to

the task "Check application form" via a Data Input Association. A

data object that is passed from one task to another can be attached

directly to the sequence flow connecting these tasks. In Figure 8,

this visualization option is shown for the data object "Contract".

The right-hand side of Figure 8 shows an excerpt of the XMI

representation of the BPMN 2.0 collaboration model depicted on

the left-hand side3.

For demonstration purposes, Figure 8 highlights three areas of

the BPMN model and the corresponding XMI representation. In

particular, the highlighted areas include the following elements:

• Lanes partitioning the process are defined via lanes elements

with the xmi:type attribute set to bpmnxmi:Lane. Each flow

node that belongs to this lane is referenced by its id in the flow-

NodeRefs attribute. For example, the lane named "Bank Clerk

A" includes the flow nodes EG01, EG02, EG03, EG04, EG05,

SP01, TA024.

• Data Objects are defined as flowElementswith the xmi:type

attribute set to bpmnxmi:DataObject. Figure 8 shows the XMI

representation of the data object "Contract".

• Elements describing the flow in a process are also defined as

flowElements. These elements are flow nodes and sequence

flows (see also Figure 7). Figure 8 shows the XMI representation

of the "Negotiate contract" task as flowElements element of

the type bpmnxmi:Task.

• Data associations between data objects and tasks are defined as

subelement of a task. They are either defined as dataOutput-

Associations or dataInputAssociations. Figure 8 shows

that the "Contract" data object is related to "Negotiate contract"

as output and to "Approve contract" as input. In Figure 8 the

"Contract" data object is referenced via its id "DO02" (short for

"Data Object 02") in the dataOutputAssociations element

of the "Negotiate contract" task.

3. DERIVING ROLE ENGINEERING AR-

TIFACTS FROM PROCESS AND SCE-

NARIO MODELS
In this section, we show how we derive role engineering artifacts

from the XML Metadata Interchange (XMI) [20] representation of

UML activity, UML interaction, and BPMN collaboration models.

3The transformation to XMI from BPMN is conducted via a XSLT
document that is provided as part of BPMN specification (see [19]).
4EG=Exclusive Gateway, SP=Sub-Process, TA=Task

However, note that the role engineering artifacts derived from

the XMI documents are only candidate artifacts and are subject to

a subsequent selection and/or refinement performed by human role

engineers. This means that after the role engineering artifacts are

fed into the role engineering tool they can be renamed or deleted

(see, e.g., [23]). For example, a certain candidate artifact can be

deleted if two different artifacts refer to the same role engineering

entity, as it may be the case with two candidate roles "Bank Clerk

A" and "Bank Clerk B" which will most likely refer to a single role

called "Bank Clerk".

In particular, a special-purpose XMI Analyzer component trans-

forms XMI model representations to candidate role engineering ar-

tifacts. Figure 9 depicts a structural overview of this XMI Analyzer

while Figure 10 depicts the different steps of this transformation.

refine/

concretize

generated

from

Modeling tool

Parser

DOM Engine

XML Processor

DOM Tree

access

Generator

use

Runtime model

manage

use

generate

Role engineering

tool

XMI Analyzer

XMI representation

Scenario/Process

model R
o

le
 e

n
g

in
e

e
rin

g
 to

o
l

Figure 9: Deriving role engineering artifacts from scena-

rio/process models: Structural overview

The XMI Analyzer uses a XML processor to parse the respec-

tive XML document and generate a corresponding DOM tree (see

[2, 11, 12]). The DOM tree is an in-memory representation of the

respective XML document and makes the corresponding document

content accessible to software components. The Generator com-

ponent then accesses the DOM tree to derive/extract role engineer-

ing artifacts and feeds them into a role engineering tool (such as

the xoRET tool [23]). In turn, the role engineering tool produces

a corresponding runtime model and provides an interface for hu-

man users (role engineers) to further manipulate/refine the respec-

tive role engineering artifacts and to build a tailored RBAC model

(see also [23, 24]).

Table 1 gives an overview what role engineering artifacts can

be derived from the XMI representation of UML2 and BPMN

2.0 models. The details of this derivation are described in the

following sections.

Scenario catalog

Scenario catalog

XMI documents

XMI documents

DOM Tree RE artifacts

RE artifacts

Assignment

relations

Constraint

catalog

Permission

catalog

Role

catalog

DOM Tree

RE artifacts

RE artifacts

[change runtime model]

M
o

d
e
li
n

g
 t

o
o

l
X

M
I
A

n
a
ly

z
e
r

Role engineering tool

Scenario

catalog

DOM Tree
DOM Tree

Model (new)

scenarios

Generate XMI

representation

Generate

DOM Tree

Derive role engineering

artifacts

Derive role engineering

artifact relations

Define customized

RBAC model

Figure 10: Deriving role engineering artifacts from scena-

rio/process models: Task sequence

Table 1: Model elements to derive role engineering artifacts

from UML2 and BPMN 2.0 models in XMI representation

xmi:Type attribute Role engineering artifacts

UML Activity

Diagram

ActivityPartition Candidate ROLE

OpaqueAction Candidate PERMISSION and

Candidate OPERATION

OutputPin Candidate OBJECT

InputPin Candidate OBJECT

UML Interaction

Diagram

Lifeline Candidate ROLE or

Candidate OBJECT

Message Candidate PERMISSION and

Candidate OPERATION

BPMN

Descriptive

Collaboration

Model

Lane Candidate ROLE

Participant Candidate ROLE

Task Candidate PERMISSION and

Candidate OPERATION

DataObject Candidate OBJECT

Message Candidate OBJECT

BPMN Common

Executable

Collaboration

Model

Resource Candidate ROLE

PartnerEntity Candidate ROLE

PartnerRole Candidate ROLE

Task with

implementation attribute

Candidate OBJECT

3.1 Deriving Role Engineering Artifacts from
UML Models

Figure 11 shows the integrated meta-model for the derivation of

role engineering artifacts from UML activity and interaction mod-

els. In particular, it indicates which UML model elements are used

to derive corresponding role engineering artifacts: In a nutshell, we

use ActivityPartitions and Lifelines to identify candidate roles, Pins

and Lifelines to identify candidate objects, as well as Actions and

Messages to identify candidate operations.

3.1.1 Derivation from Activity Models

Figure 12 shows an example of how we use the XMI represen-

tation of activity models to identify role engineering artifacts. In

particular, Figure 12 highlights an excerpt of Figure 4 and shows

what role engineering artifacts can be derived from the correspond-

ing XMI representation. In general, the following derivation rules

are applied (see also Figures 2, 9, 10, and 11, as well as Table 1):

*

*

R
o

le
 e

n
g

in
e

e
ri

n
g

a
rt

if
a

c
ts

A
c

ti
v

it
y

 m
o

d
e

l

a
rt

if
a

c
ts

In
te

ra
c

ti
o

n
 m

o
d

e
l

a
rt

if
a

c
ts describes

owner permission

1..* *

includes

0..1

*

1

0..*

**

*

*

0..*describes

derived from derived from

derived from

1

0..*

0..*

11

0..*

0..1

0..1

0..1 0..1
**

derived fromderived fromderived from

0..*

Candidate

Role

Candidate

Permission

Candidate

Object

Candidate

Operation

PinAction

Activity

Partition

Lifeline

Message

Figure 11: Derivation of role engineering artifacts from UML

activity and interaction models: Integrated meta-model

• We use group elements of the type uml:ActivityPartition

to identify candidate roles. These candidate roles are then as-

sociated with the candidate permissions that are derived from

actions included in the respective ActivityPartition. For exam-

ple, the activity partition with name "Bank Clerk B" is used to

derive a corresponding candidate role (see Figure 12).

• We use node elements of type uml:OpaqueAction to iden-

tify candidate operations. Moreover, the name of the respec-

tive action is also used to determine the name of the correspond-

ing permission candidate. In Figure 12, we can thus use the

uml:OpaqueAction with name "Approve contract" to derive

the corresponding artifacts.

• We use inputValue elements with the uml:InputPin type

and outputValue elements with the uml:OutputPin type

to identify candidate objects. The candidate objects are then

associated with the candidate operation that is identified from

the corresponding action defined as node element of type

uml:OpaqueAction (see also Figure 11). For instance, from

Figure 12 we can derive the "Contract" candidate object for

action "Approve contract" from the respective input pin.

In addition to the role engineering artifacts described above, we

can also derive candidate mutual exclusive constraints (ME) from

activity models. Mutual exclusive constraints enforce conflict of

interest policies (see, e.g., [1, 3, 7, 25]). Conflict of interest arises

as a result of the simultaneous assignment of two mutual exclu-

sive tasks or roles to the same subject. In general, we use group

elements of the type uml:ActivityPartition to identify candi-

date ME constraints. In particular, we assume that the actions in-

cluded in different activity partitions must be executed by different

actors. For instance, in the example from Figure 4 we can derive

a candidate ME constraint on the actions "Negotiate contract" and

"Approve contract". In the further course of the role engineering

process, we would further refine this candidate ME constraint into

a dynamic ME constraint on the corresponding permissions defined

for the "Bank Clerk" role. This means, each user assigned to the

"Bank Clerk" role owns both permissions and can, in principle, per-

form both tasks. However, due to the dynamic ME constraint on the

respective permissions one always needs two different individuals

acting in the "Bank Clerk" role to complete the credit application

process (as it is reflected in the graphical model via two different

swimlanes labeled "Bank Clerk A" and "Bank Clerk B").

Contract

Contract

Negotiate

contract

Approve

contract
B

a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A

Credit application process

Role engineering artifacts

Approve contract
(Candidate Permission)

Bank Clerk B
(Candidate Role)

Contract
(Candidate Object)

Approve contract
(Candidate Operation)

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

 xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA01">

 <packagedElement xmi:type="uml:Activity" xmi:id="AC01"

 name="Modified Credit application process">

 <node xmi:type="uml:ActivityParameterNode" xmi:id="PN01"

 name="Credit application" outgoing="OF01"/>

 ...

 <node xmi:type="uml:OpaqueAction" xmi:id="OA03" name="Negotiate contract"

 incoming="CF07" inPartition="AP01">

 <outputValue xmi:type="uml:OutputPin" xmi:id="OP01" name="Contract" outgoing="OF02"/>

 </node>

 <node xmi:type="uml:OpaqueAction"
 xmi:id="OA04" name="Approve contract"
 outgoing="CF11" inPartition="AP02">
 <inputValue xmi:type="uml:InputPin" xmi:id="IP02"
 name="Contract" incoming="OF02"/>
 </node>
 ...

 <edge xmi:type="uml:ObjectFlow" xmi:id="OF02" source="OP01" target="IP02"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF07" source="DN03" target="OA03"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="CF11" source="OA04" target="MN02"/>

 ...

 <group xmi:type="uml:ActivityPartition" xmi:id="AP01" name="Bank Clerk A"

 node="DN01 OA02 DN02 MN01 MN02 OA03"/>

 <group xmi:type="uml:ActivityPartition" xmi:id="AP02"
 name="Bank Clerk B" node="OA04 DN03"/>
 ...

 </packagedElement>

</uml:Package>

Credit

application

[else]

Credit application process

[Check passed]

[else] Contract

Contract

[approved]

[Form Ok]

[else]

Check credit

worthiness

Negotiate

contract

Approve contract

C
re

d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

Credit

application

Reject

application

Check

application form

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A

Figure 12: Example for the derivation of role engineering artifacts from activity models

3.1.2 Derivation from Interaction Models

Figure 13 shows an example how we use the XMI representa-

tion of interaction models to identify role engineering artifacts. In

particular, Figure 13 highlights an excerpt of Figure 6 and shows

what role engineering artifacts can be derived from the respective

XMI representation. In general, the following derivation rules are

applied (see also Figures 2, 9, 10, and 11, as well as Table 1):

• We use message elements to identify candidate operations

and candidate permissions. Moreover, the receiveEvent

and sendEvent attributes are used to determine the respective

candidate object and the corresponding candidate role (see

below).

• We use lifeline elements to identity candidate roles and can-

didate objects:

– We derive a candidate role if one of the sendEvents cov-

ered by the respective lifeline is part of a messagewhich is

received by another lifeline. For instance, in Figure 13 the

sendEvent of the message with name "getCustomerPro-

file(id)" is covered by the "Bank Clerk" lifeline, while the

receiveEvent of this message is covered by the "Cus-

tomerMgmt" lifeline. Therefore, we derive a candidate

role from the "Bank Clerk" lifeline.

– We derive a candidate object if one of the receiveEvents

covered by a lifeline is part of an message element which

was sent by another lifeline. In the example from Figure

13, we therefore derive a candidate object from the "Cus-

tomerMgmt" lifeline, because it receives the "getCustom-

erProfile(id)" message from the "Bank Clerk" lifeline5.

Because interaction models concretize and/or refine activity

models, they are a valuable source to identify role engineering

artifacts that cannot be derived from more abstract activity models.

3.2 Deriving Role Engineering Artifacts from
BPMN Collaboration Models

Figure 14 shows the integrated meta-model for the derivation of

role engineering artifacts from BPMN collaboration models. In

5Note that a candidate role as well as a candidate object may be
derived from the very same lifeline in case the respective lifeline
is both a sender and a receiver of messages. However, this is per-
fectly in sync with the typical object/component-based nature of
today’s software systems where different objects/components are
connected and mutually invoke each others methods/procedures.

particular, it indicates what BPMN model elements are used to de-

rive corresponding role engineering artifacts: We use participants

and lanes to identify candidate roles. Tasks are used to identify

candidate operations, and Messages, Data Objects as well as the

implementation of a task are used to identify candidate objects. All

elements related to participants and lanes, such as resource, sub-

lanes, PartnerRole and PartnerEntity are used to further refine can-

didate roles and to identify candidate role-hierarchies (for details

see Appendix B).

Role engineering artifacts

BPMN model artifacts

Candidate Role

LaneSet

Task

DataObject

owner permission

1..* *

*

0..1

0..1
**

Participant

Lane

0..1

*

Process

0..*

executes

create/use/
manipulate

sends/receives

partitions

contains

contains

implements

Message

derived
from

derived
from

derived
from

derived
from

performs

Candidate Role hierarchy

performs

*

0..*

0..1

*

0..*

0..*

0..*

0..*

0..*

0..1

*

contains
*

*

*

*

*

0..1

0..1

*

sends/receives
*

*

*

Implementation

1

*

*

0..*

11 1

0..1

1 1 1 1 1 1

0..1

*

*

1

0..*

* *

representsrepresents

derived
from

* *0..1
containsPartnerEntity

PartnerRole

Candidate

Object

create/use/
manipulate

derived
from

Candidate

Permission

Candidate

Operation

Resource

Figure 14: Derivation of role engineering artifacts from BPMN

collaboration models: Integrated meta-model

Figure 15 shows an example of how we identify role engineering

artifacts from the XMI representation of BPMN collaboration

models in the descriptive conformance class. In particular,

Figure 15 highlights an excerpt of Figure 8 and shows what role

engineering artifacts can be derived from the corresponding XMI

representation. In general, the following derivation rules are

applied (see also Figures 2, 9, 10, and 14, as well as Table 1):

: CustomerMgmt
Bank Clerk

getCustomerProfile(id)

profileLookup(id)

sd Check_credit_worthiness

: CustomerMgmt : CustomerRatingBank Clerk

getCustomerProfile(id)

profileLookup(id)

profilereturn profile

assess profile

make decision

[decision is positive]opt

getCustomerRating(id)

assembleRating(id)

ratingreturn rating chart

assess rating chart

make decision

decision

Check Credit Worthiness

<?xml version="1.0" encoding="UTF-8"?>

<uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="PA02">

 <packagedElement xmi:type="uml:Interaction" xmi:id="IA01" name="Check credit worthiness">

 <lifeline xmi:type="uml:Lifeline" xmi:id="LL01" name="Bank Clerk"
 coveredBy="MO01 MO07 MO09 ..."/>
 <lifeline xmi:type="uml:Lifeline" xmi:id="LL02" name=": CustomerMgmt"
 coveredBy="MO03 MO04 MO05 MO06 MO08 BE01 BE03 BE04 MO02"/>
 ...

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO01" covered="LL02" message="ME01"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO02" covered="LL01" message="ME01"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO03" covered="LL02" message="ME02"/>

 <fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO04" covered="LL02" message="ME02"/>

 ...

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE01" covered="LL02" start="MO01" finish="MO08"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE02" covered="LL01" start="MO02" finish="MO26"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE03" covered="LL02" start="MO04" finish="MO05"/>

 <fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="BE04" covered="LL02" start="MO03" finish="MO06"/>

 ...

 <message xmi:type="uml:Message" messageSort="asynchCall" xmi:id="ME01"
 name="getCustomerProfile(id)" sendEvent="MO01" receiveEvent="MO02"/>
 <message xmi:type="uml:Message" xmi:id="ME02" name="profileLookup(id)" receiveEvent="MO03" sendEvent="MO04"/>

 </packagedElement>

</uml:Package>

Role engineering artifacts

getCustomerProfile(id)
(Candidate Operation)

CustomerMgmt
(Candidate Object)

Bank Clerk
(Candidate Role)

getCustomerProfile(id)
(Candidate Permission)

Figure 13: Example for the derivation of role engineering artifacts from interaction models

Role engineering artifacts

Negotiate contract
(Candidate Operation)

Contract
(Candidate Object)

Bank Clerk A
(Candidate Role)

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:xmi="http://schema.omg.org/spec/XMI"

 xmlns:bpmnxmi="http://www.omg.org/spec/BPMN/20100524/MODEL-XMI" xmi:version="2.0">

 <bpmnxmi:Definitions id="DEF01" targetNamespace="http://www.omg.org/bpmn20" expressionLanguage="http://www.w3.org/1999/XPath"

 typeLanguage="http://www.w3.org/2001/XMLSchema">

 <rootElements xmi:type="bpmnxmi:Process" id="PR01" name="Credit Application Process">

 ...

 <laneSets xmi:type="bpmnxmi:LaneSet" id="LS01" name="Bank">

 <lanes xmi:type="bpmnxmi:Lane" id="LA01" name="Credit Application Web-Frontend" flowNodeRefs="SE01 EE01 TA01 TA04 TA05 "/>

 <lanes xmi:type="bpmnxmi:Lane" id="LA02" name="Bank Clerk A"
 flowNodeRefs="EG02 SP01 EG03 EG04 EG05 EG01 TA02"/>
 <lanes xmi:type="bpmnxmi:Lane" id="LA03" name="Bank Clerk B" flowNodeRefs="TA03 "/>

 </laneSets>

 <flowElements xmi:type="bpmnxmi:DataObject"
 id="DO02" name="Contract" isCollection="false"/>

 <flowElements xmi:type="bpmnxmi:Task" outgoing="SF09"
 isForCompensation="false" name="Negotiate contract" id="TA02"
 incoming="SF08" startQuantity="1" completionQuantity="1">
 <dataOutputAssociations xmi:type="bpmnxmi:DataOutputAssociation"
 targetRef="DO02" id="DOA02" sourceRef="Out02" />
 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS02">

 <inputSets xmi:type="bpmnxmi:InputSet" id="IS02"/>

 <outputSets xmi:type="bpmnxmi:OutputSet" id="OS02" dataOutputRefs="Out02"/>

 <dataOutputs xmi:type="bpmnxmi:DataOutput" id="Out02" name="Output Negotiate contract" isCollection="false"/>

 </ioSpecification>

 </flowElements>
 <flowElements xmi:type="bpmnxmi:Task" id="TA03" name="Approve contract" outgoing="SF10 " incoming="SF09"

 isForCompensation="false" startQuantity="1" completionQuantity="1">...</flowElements>

 </rootElements>

 </bpmnxmi:Definitions>

</xmi:XMI>

Approve
contract

B
a

n
k
 C

le
rk

 B
B

a
n

k
 C

le
rk

 A

B
a

n
k

Negotiate
contract

Contract

Check

application

form

Check credit

worthiness

Reject

application

Approve

contract

Approve

application

B
a
n
k
 C

le
rk

 B
B

a
n
k
 C

le
rk

 A
C

re
d
it
 A

p
p
lic

a
ti
o
n

W
e
b
-F

ro
n
te

n
d

B
a
n
k

Form Ok Negotiate

contract

Check passed
approved

Contract

Credit
application

Negotiate contract
(Candidate Permission)

Credit application process

Figure 15: Example for the derivation of role engineering artifacts from collaboration models in descriptive conformance class

• We use lanes elements to derive candidate roles. Tasks, in-

cluding their input and output, are used to derive corresponding

candidate permissions. For example, the "Bank Clerk A" lane

shown in Figure 15 results in such a candidate role.

• We use flowElements of the type bpmnxmi:Task to derive

candidate operations. Moreover, the name of the respective task

element is also used to determine the name of the correspond-

ing permission candidate. For example, in Figure 15 we see the

"Negotiate contract" candidate permission and candidate opera-

tion.

• We use flowElements of the bpmnxmi:DataObject type to

derive candidate objects. We use the data associations (either

bpmnxmi:DataOutputAssociation or bpmnxmi:Data-

InputAssociation) of a data object to associate the candidate

objects with the corresponding candidate permission. In the

example, we can derive the candidate object "Contract" for the

candidate permission "Negotiate contract" (see Figure 15).

Similar to UML activity models (see Section 3.1), we can also

derive candidate mutual exclusion constraints (ME) from BPMN

collaboration models. In BPMNmodels, we use the lanes element

to identify candidate ME constraints. In particular, we assume that

the tasks included in different lanes have to be executed by different

actors. In the example from Figure 8 we can derive such a candidate

ME constraint for the "Negotiate contract" and "Approve contract"

tasks.

In general, the derivation rules presented above are valid for

BPMN collaboration models of all conformance classes. Moreover,

models in the common executable conformance class are more de-

tailed and can further concretize a BPMN collaboration model.

Thereby, these more detailed models can be used to further refine

the automated derivation of role engineering artifacts, similar to

the refinement of activity models via interaction models discussed

in Section 3.1. Because of the page restrictions, we moved the

derivation rules and examples for BPMN models in the common

executable conformance class to Appendix A and B.

4. PRACTICAL RELEVANCE AND DIS-

CUSSION
Since its first publication in June 2002, numerous consulting

firms and international projects have adopted the scenario-driven

role-engineering process. The most visible of which is probably

the Health Level 7 (HL7) role-engineering process defined by the

US National Healthcare RBAC Task Force (see [5]). Among other

things, the task force applied this process to produce HL7 RBAC

healthcare scenarios and a HL7 RBAC healthcare permission cat-

alog. In addition to such international projects, we are continu-

ously conducting role engineering projects and gained many expe-

riences in this area (see, e.g., [15, 18, 23, 24]). For example, in

2008 we conducted a role engineering project with the Austrian

Federal Ministry of Finance6, in 2009 we conducted a correspond-

ing case study with the German branch of ABB7, in 2009/10 we

were involved in a rights management project with Ernst & Young8,

and currently we are conducting a role engineering project with the

Vienna City Municipality9. In each of these (as well as in other)

6http://english.bmf.gv.at/
7http://www.abb.com/
8http://www.ey.com/
9http://www.wien.gv.at/ma14/

projects we received requests for an extended automation support

of different role engineering tasks. In particular, these requests re-

vealed the demand for an automation support of the monotonous

derivation of role engineering artifacts from scenario and process

models.

The automatically derived candidate artifacts serve as input for

the definition of a customized RBAC model for the respective or-

ganization or information system. However, note that the candi-

date artifacts are subject to a subsequent selection and refinement

by human role engineers and domain experts. This is because an

automated derivation is well-suited to derive a first version of the

respective candidate artifacts, yet it cannot produce a set of tai-

lored, integrated, and non-redundant role engineering artifacts. For

example, the subsequent refinement aims to identify redundancies

resulting from the automatic derivation such as the "Bank Clerk

A" and "Bank Clerk B" candidate roles which will most likely be

combined into a single "Bank Clerk" role (see Section 3). Nev-

ertheless, although the candidate artifacts require a subsequent re-

finement, the automated derivation facilitates a monotonic and thus

error-prone task, and thereby significantly eases the tasks of human

role engineers.

5. RELATED WORK
Role mining is related to role engineering and aims to derive

RBAC policy sets from permissions and role definitions that exist

in the software systems of an organization. In [14], Kuhlmann et

al. apply data mining techniques to detect patterns in a set of ac-

cess rights. Subsequently, they use these patterns to derive candi-

date roles combined with business (organizational and functional)

information. In [10], Frank et al. present an approach for hybrid

role mining. In particular, they first review preexisting business in-

formation to determine their relevance for the role mining process.

Afterwards, they include the preexisting business information, such

as the organizational hierarchy or job descriptions, in the role cre-

ation step of role mining. Colantonio et al. [4], present a similar

approach to use business information in a role mining approach.

The approach is applied to identify the roles that are to be included

in a candidate role set. Molloy et al. [17] applied role mining tech-

niques to identify roles with semantic meaning. In case subject-to-

permission relations are the only information available, they apply

formal concept analysis to find roles. If certain user-attribute infor-

mation is also available (e.g. job positions, departments, or job re-

sponsibilities) they propose to derive roles from such user-attribute

expressions. Our approach is complementary to role mining ap-

proaches and can be used in combination with role mining.

Similar to our approach, Wolter et al. derive access control poli-

cies from BPMN 1.0 models in the domain of Web Services [27].

They provide authorization constraint artifacts as extension for the

BPMN meta-model. These constraints can be assigned to groups,

lanes, and respective activities to define separation of duty and

binding of duty constraints. To automate the extraction of secu-

rity policies from process models, they propose a mapping from

selected meta-model entities of BPMN and XACML (eXtensible

Access Control Markup Language). XSLT is applied to automate

the generation of enforceable XACML policies.

Fernandez and Hawkins [6] suggested an early approach to de-

termine role rights from use cases. In particular, they propose to

extend the textual description of use cases in order to define se-

curity requirements for use cases. Authorization rules are then de-

rived from the specifications defined in the use case descriptions. In

addition, they complement the use case descriptions with scenario

diagrams to discover role rights. In [16], Mendling et al. intro-

duced an approach to extract RBAC models from BPEL (Business

Process Execution Language) processes. The approach integrates

BPEL and RBAC on the meta-model level and describes how cer-

tain RBAC artifacts can be automatically derived from BPEL pro-

cesses. Similar to the approach presented in this paper, the ap-

proach from [16] can be used to automate steps of the role engi-

neering process.

Our work complements the contributions mentioned above by

providing an approach for the automated derivation of role engi-

neering artifacts from UML activity models, UML interaction mod-

els and BPMN collaboration models. In principle, it can be com-

bined with each of the above mentioned approaches.

6. CONCLUSION
The scenario-driven role engineering process provides a system-

atic approach to engineer and maintain customized RBAC models.

In recent years, we gained many experiences which resulted in an

evolutionary enhanced role engineering process and a much better

understanding of related activities and artifacts. In addition to our

own projects and case studies, scenario-driven role engineering is

used by several consulting firms and in international projects (see

Section 4).

Such as every engineering process, the role engineering process

depends significantly on human factors and cannot be completely

automated. However, the automated derivation of role engineer-

ing artifacts from scenario and process models can significantly

ease role engineering tasks. In particular, the automation of certain

role engineering steps can help to facilitate monotonic and thereby

error-prone tasks. In this paper, we presented an approach to de-

rive role engineering artifacts from UML activity models, UML

interaction models and BPMN collaboration models. However, our

general approach for the derivation of role engineering artifacts is

based on meta-model integration and is therefore independent of

the UML, BPMN, or any other modeling language (see Section

1.2).

Human role engineers as well as domain experts from the respec-

tive organization can adapt and refine the derived candidate role

engineering artifacts in order to specify a tailored RBAC model.

Furthermore, to ease the work of role engineers and to reduce ambi-

guities in the derived role engineering artifacts, we recommend the

following simple modeling guidelines for UML and BPMN: a) the

name of an UML interaction model should be identical to the name

of the action it refines; b) the names of subjects and objects should

be consistent across the models (i.e. in UML the same subject or

object is always referenced via the same identifier string or id, such

as the "CustomerMgmt" sub-system or the "Bank Clerk" actor from

our example) c) a clear understanding of lanes in a model should be

defined, since BPMN leaves the meaning of lanes up to the model-

ers and d) the usage of PartnerRoles, PartnerEntities and Resources

across all BPMN models for participants, lanes and tasks should be

accurately defined.

In our future work, we will further investigate how we can de-

rive different types of candidate constraints (such as context con-

straints, see [26]) from UML and BPMN models. In addition, we

are currently investigating the options to combine the derivations

from scenario and process models based on different languages to

automatically propose a candidate RBAC model. Moreover, we

plan to investigate further options to integrate role engineering and

related role mining and process mining approaches.

7. REFERENCES
[1] G. J. Ahn and R. Sandhu. Role-Based Authorization

Constraints Specification. ACM Transactions on Information

and System Security (TISSEC), 3(4), November 2000.

[2] V. Apparao, S. Byrne, M. Champion, and et. al. Document

Object Model (DOM) Level 1 Specification. available at:

http://www.w3.org/TR/1998/REC-DOM-Level-1-

19981001/, October 1998. W3 Consortium

Recommendation.

[3] D. Clark and D. Wilson. A Comparison of Commercial and

Military Computer Security Policies. In Proc. of the IEEE

Symposium on Security and Privacy, April 1987.

[4] A. Colantonio, R. Di Pietro, A. Ocello, and N. V. Verde. A

Formal Framework to Elicit Roles with Business Meaning in

RBAC Systems. In Proc. of the 14th ACM Symposium on

Access Control Models and Technologies (SACMAT), June

2009.

[5] E. Coyne and J. Davis. Role Engineering for Enterprise

Security Management. Artech House, 2008.

[6] E. B. Fernandez and J. C. Hawkins. Determining Role Rights

from Use Cases. In Proc. of the 2nd ACM Workshop on

Role-Based Access Control (RBAC), NY, USA, 1997.

[7] D. Ferraiolo, J. Barkley, and D. Kuhn. A Role-Based Access

Control Model and Reference Implementation within a

Corporate Intranet. ACM Transactions on Information and

System Security (TISSEC), 2(1), February 1999.

[8] D. Ferraiolo and D. Kuhn. Role-Based Access Controls. In

Proc. of the 15th National Computer Security Conference

(CSC), October 1992.

[9] D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role-Based

Access Control, Second Edition. Artech House, 2007.

[10] M. Frank, A. P. Streich, D. A. Basin, and J. M. Buhmann. A

Probabilistic Approach to Hybrid Role Mining. In Proc. of

the 16th ACM Conference on Computer and

Communications Security (CCS), 2009.

[11] A. L. Hors, P. L. Hegaret, L. Wood, and et. al. Document

Object Model (DOM) Level 2 Core Specification. available

at: http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-

20001113/, November 2000. W3 Consortium

Recommendation.

[12] A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol, J. Robie,

M. Champion, and S. Byrne. Document Object Model

(DOM) Level 3 Core Specification, Version 1.0. available at:

http://www.w3.org/TR/DOM-Level-3-Core, April 2004. W3

Consortium Recommendation.

[13] M. Jarke, X. Bui, and J. Carroll. Scenario Management: An

Interdisciplinary Approach. Requirements Engineering

Journal, 3(3/4), 1998.

[14] M. Kuhlmann, D. Shohat, and G. Schimpf. Role Mining -

Revealing Business Roles for Security Administration using

Data Mining Technology. In Proc. of the 7th ACM

Symposium on Access Control Models and Technologies

(SACMAT), NY, USA, 2003.

[15] S. Kunz, S. Evdokimov, B. Fabian, B. Stieger, and

M. Strembeck. Role-Based Access Control for Information

Federations in the Industrial Service Sector. In Proc. of the

18th European Conference on Information Systems (ECIS),

June 2010.

[16] J. Mendling, M. Strembeck, G. Stermsek, and G. Neumann.

An Approach to Extract RBAC Models from BPEL4WS

Processes. In Proc. of the 13th IEEE International

Workshops on Enabling Technologies: Infrastructures for

Collaborative Enterprises (WETICE), June 2004.

[17] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino,

S. Calo, and J. Lobo. Mining roles with semantic meanings.

In Proc. of the 14th ACM Symposium on Access Control

Models and Technologies (SACMAT), pages 21–30, NY,

USA, 2008. ACM.

[18] G. Neumann and M. Strembeck. A Scenario-driven Role

Engineering Process for Functional RBAC Roles. In Proc. of

7th ACM Symposium on Access Control Models and

Technologies (SACMAT), June 2002.

[19] OMG. Business Process Modeling Notation (BPMN).

available at: http://www.omg.org/spec/BPMN/2.0/, January

2011. Version 2.0, formal/2011-01-03, The Object

Management Group.

[20] MOF 2.0 / XMI Mapping Specification. available at:

http://www.omg.org/technology/documents/formal/xmi.htm,

December 2007. Version 2.1.1, formal/2007-12-01, The

Object Management Group.

[21] OMG Unified Modeling Language (OMG UML):

Superstructure. available at:

http://www.omg.org/technology/documents/formal/uml.htm,

February 2009. Version 2.2, formal/2009-02-02, The Object

Management Group.

[22] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.

Role-Based Access Control Models. IEEE Computer, 29(2),

February 1996.

[23] M. Strembeck. A Role Engineering Tool for Role-Based

Access Control. In Proc. of the 3rd Symposium on

Requirements Engineering for Information Security (SREIS),

August 2005.

[24] M. Strembeck. Scenario-Driven Role Engineering. IEEE

Security & Privacy, 8(1), January/February 2010.

[25] M. Strembeck and J. Mendling. Generic Algorithms for

Consistency Checking of Mutual-Exclusion and Binding

Constraints in a Business Process Context. In Proc. of the

18th International Conference on Cooperative Information

Systems (CoopIS), Lecture Notes in Computer Science

(LNCS), Vol. 6426, Springer Verlag, October 2010.

[26] M. Strembeck and G. Neumann. An Integrated Approach to

Engineer and Enforce Context Constraints in RBAC

Environments. ACM Transactions on Information and

System Security (TISSEC), 7(3), August 2004.

[27] C. Wolter, A. Schaad, and C. Meinel. Deriving XACML

Policies from Business Process Models. In M. Weske,

M. Hacid, and C. Godart, editors, Web Information Systems

Engineering, WISE 2007 Workshops, volume 4832 of

Lecture Notes in Computer Science, pages 142–153.

Springer Berlin / Heidelberg, 2007.

APPENDIX

A. REFINING MODELS VIA THE BPMN

COMMON EXECUTABLE CONFOR-

MANCE CLASS
For BPMN models defined in the common executable confor-

mance class (see [19]) we can define further details concerning the

execution of a collaboration. Participants can represent a specific

PartnerEntity (e.g. an organization) or a more general PartnerRole

(e.g. a customer). For example, in Figure 16 the PartnerRole "Cus-

tomer" is represented by the participant "Bank Customer". More-

over, resources can be referenced via a task, a process, or both.

Such a resource can be a human user, who will perform (or is re-

sponsible for) a certain task or process. In particular, a person who

claims a task and works on this task is the PotentialOwner of this

task. Figure 16 shows "First Credit Reviewer" as potential owner

of the "Check application form" task.

Furthermore, tasks are differentiated into various types. A Send-

Task is designed to send messages to external participants, while

a ReceiveTask is designed to receive messages from external par-

ticipants. The corresponding messages are transferred via message

flows. UserTasks and ManualTasks are performed by a human user.

Moreover, UserTasks are performed with the assistance of an ar-

bitrary business process execution engine or software application,

while ManualTasks are performed without tool support. The use of

services is defined in a ServiceTask. For example, such a task can

be executed by a web service as shown in Figure 16 for the service

task "Check application form" which is implemented by the "Credit

Application Web-Frontend" service.

Message flows are drawn as dashed single line and define a com-

munication between participants. A message can be used to extend

a message flow, to model the content passed from one participant

to another. In Figure 16 the messages "Credit application request",

"Credit application rejection" and "Credit application acceptance"

are visualized as message flows (visualized via an envelope symbol

on the message flow).

For demonstration purposes, Figure 16 highlights seven areas of

the executive model and the corresponding XMI representation. In

particular, the highlighted areas include the following elements:

• Participants in a collaboration are defined via the par-

ticipants element with the xmi:type attribute set to

bpmnxmi:Participant. Figure 16 highlights the XMI

representation of participant "Bank Customer".

• Participant types are defined as rootElements with the

xmi:type set to bpmnxmi:PartnerRole or bpmnxmi:

PartnerEntity. In Figure 16, the partner role "Customer"

is defined for the participant "Bank Customer".

• A message exchanged between participants in a message

flow is defined via a rootElements element with the

xmi:type attribute set to bpmnxmi:Message. A message

is referenced by the messageRef attribute in the message

flow element. The message flow highlighted in Figure 16

references the message "Credit application request" via its id

"ME01" (short for "Message 01"). Moreover, for a message

flow the involved entities are identified via the targetRef

and sourceRef attributes of the message flow element. In

Figure 16, the "Credit application request" message is send

from the participant "Bank Customer" (sourceRef attribute

set to "PA02" (short for "Participant 02")) to the lane "Bank

Clerk A". In the XMI representation, a start event with the id

"SE01" (short for "Start Event 01") is included in the "Bank

Clerk A" lane and "SE01" is referenced via the targetRef

attribute of the corresponding message flow element.

• The implementation supporting a specific task can be defined

via the implementation attribute of the respective task. In

our example, the "Check application form" service task is im-

plemented via the "Credit Application Web-Frontend".

• A resource is defined as rootElements element with

the xmi:type attribute set to bpmnxmi:Resource. The

potential owner of an executing resource is included via

the subelement resources of the task. For example, the

resource "First Credit Reviewer" with the id "RS01" (short

for "Resource 01") owns the service task "Check credit

application form" referenced though the potential owners

resourceRef attribute.

B. DERIVING ROLE ENGINEERING

ARTIFACTS FROM BPMN COLLABO-

RATION MODELS IN COMMON EXE-

CUTABLE CONFORMANCE CLASS
Figure 17 shows an example of how we use the XMI represen-

tation of collaboration models in common executable conformance

class to identify candidate role engineering artifacts. In particu-

lar, Figure 17 depicts an excerpt of Figure 16 and shows what role

engineering artifacts can be derived from the corresponding XMI

representation. In particular, the derivation rules for models in the

common executable conformance class are used to refine the candi-

date artifacts derived from BPMNmodels in the descriptive confor-

mance class (see Section 3.2). In general, the following derivation

rules are applied (see also Figures 2, 9, 10, and 14, as well as Table

1):

• We use the participants element to derive candidate roles.

For example, the participant "Bank Customer" results in a

candidate role (see Figure 17).

• We use resources defined as rootElements of the bpmn-

xmi:Resource type to derive candidate roles. If a resource

performs a task (referenced within the resources element

of the task) we assign the respective candidate permission di-

rectly to the corresponding candidate role. In addition, we

also derive a candidate inheritance relation between the can-

didate roles. In the example from Figure 17, we derive the

candidate role "First Credit Reviewer" for the candidate per-

mission "Check credit application form". Further, we de-

rive a candidate inheritance relation from candidate role "First

Credit Reviewer" to candidate role "Bank Clerk A".

• We use rootElements of the bpmnxmi:PartnerRole or

bpmnxmi:PartnerEntity types to derive further candidate

roles. Moreover, we can also use these elements to derive can-

didate inheritance relations between the newly derived roles

and the candidate role derived from a participant element (see

above). In the example from Figure 17, we derive the part-

ner role "Customer" as candidate junior-role of the candidate

senior-role "Bank Customer".

• We use the implementation attribute from a task to de-

rive candidate objects for the respective candidate permission.

For instance, in Figure 17 we derive the candidate permis-

sion "Check application form" including the candidate object

called "Credit Application Web-Frontend".

• We use messages between participants defined as rootEle-

ments of the bpmnxmi:Message type to derive candidate ob-

Check

application form
getCustomer-

Profile(id)

getCustomer-

Rating(id)

Reject credit

application

Approve credit

application

Approve

contract

Negotiate

contract

Make

decision

Check credit

worthiness

Id

Profile Rating

a
c
c
e

p
t

re
fu

s
e

Check passedForm Ok approved

B
a
n
k
 C

le
rk

 A
B

a
n
k
 C

le
rk

 B

B
a
n
k
 C

o
m

p
a
n
y

B
a
n
k
 C

u
s
to

m
e
r

Credit

application

Credit application

request

Credit application

rejection

Credit application

acceptance

Contract

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:bpmnxmi="http://www.omg.org/spec/BPMN/20100524/MODEL-XMI"

 xmlns:xmi="http://schema.omg.org/spec/XMI" xmi:version="2.0" ... >

 <bpmnxmi:Definitions id="DEF01" targetNamespace="http://www.omg.org/bpmn20">

 <laneSets xmi:type="bpmnxmi:LaneSet" id="LS01" name="Bank">

 <lanes xmi:type="bpmnxmi:Lane" id="LA02" name="Bank Clerk A"
 flowNodeRefs="SP01 EE04 EG05 EG02 EG03 TA05 TA07
 SE01 EE03 TA08 EG04 EG01 TA01"/>

 </laneSets>

 <rootElements xmi:type="bpmnxmi:Resource" id="RS01"
 name="First Credit Reviewer"/>

 <flowElements xmi:type="bpmnxmi:ServiceTask" outgoing="SF12 "
 incoming="SF09" name="Check application form"
 id="TA01" implementation="Credit Application Web-Frontend">
 <resources xmi:type="bpmnxmi:PotentialOwner" resourceRef="RS01"
 id="PO01"/>
 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS01">...</ioSpecification>

 <dataInputAssociations xmi:type="bpmnxmi:DataInputAssociation" id="DIA01"

 targetRef="In01" sourceRef="DO01"/>

 </flowElements>
 <flowElements xmi:type="bpmnxmi:StartEvent" id="SE01" outgoing="SF09 ">

 <eventDefinitions xmi:type="bpmnxmi:MessageEventDefinition" id="MED01" messageRef="ME01"/>

 </flowElements>

 <flowElements xmi:type="bpmnxmi:DataObject" name="Credit application" id="DO01" isCollection="false"/>

 <rootElements xmi:type="bpmnxmi:Message" id="ME01"
 name="Credit application request"/>
 <rootElements xmi:type="bpmnxmi:Collaboration" id="COLL01" name="Credit Application Collaboration">

 <messageFlows xmi:type="bpmnxmi:MessageFlow"
 targetRef="SE01" id="MF01" sourceRef="PA02" messageRef="ME01"/>

 ...

 <participants xmi:type="bpmnxmi:Participant" id="PA02"
 name="Bank Customer" processRef="PR02"/>
 </rootElements>

 <rootElements xmi:type="bpmnxmi:PartnerRole" id="PART02"
 name="Customer" participantRef="PA02"/>
 <rootElements xmi:type="bpmnxmi:Process" name="Customer" id="PR02"/>

 </bpmnxmi:Definitions>

</xmi:XMI>

Figure 16: Example of a BPMN 2.0 collaboration model in common executable conformance class and its XMI representation

Role engineering artifacts

Credit Application

Web-Frontend
(Candidate Object)

First Credit Reviewer
(Candidate Role)

Bank Clerk A
(Candidate Role)

Credit application

request
(Candidate Object)

Customer
(Candidate Role)

Bank Customer
(Candidate Role)

Candidate Permission

Candidate Permission

Check credit

application form
(Candidate Permission)

Check credit

application form
(Candidate Operation)

Check

application formB
a
n
k
 C

le
rk

 A

B
a
n
k
 C

u
s
to

m
e
r

Credit

application

Credit application

request

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:bpmnxmi="http://www.omg.org/spec/BPMN/20100524/MODEL-XMI"

 xmlns:xmi="http://schema.omg.org/spec/XMI" xmi:version="2.0" ... >

 <bpmnxmi:Definitions id="DEF01" targetNamespace="http://www.omg.org/bpmn20">

 <laneSets xmi:type="bpmnxmi:LaneSet" id="LS01" name="Bank">

 <lanes xmi:type="bpmnxmi:Lane" id="LA02" name="Bank Clerk A"
 flowNodeRefs="SP01 EE04 EG05 EG02 EG03 TA05 TA07
 SE01 EE03 TA08 EG04 EG01 TA01"/>

 </laneSets>

 <rootElements xmi:type="bpmnxmi:Resource" id="RS01"
 name="First Credit Reviewer"/>

 <flowElements xmi:type="bpmnxmi:ServiceTask" outgoing="SF12 "
 incoming="SF09" name="Check credit application form"
 id="TA01" implementation="Credit Application Web-Frontend">
 <resources xmi:type="bpmnxmi:PotentialOwner" resourceRef="RS01"
 id="PO01"/>
 <ioSpecification xmi:type="bpmnxmi:InputOutputSpecification" id="IOS01">...</ioSpecification>

 <dataInputAssociations xmi:type="bpmnxmi:DataInputAssociation" id="DIA01"

 targetRef="In01" sourceRef="DO01"/>

 </flowElements>
 <flowElements xmi:type="bpmnxmi:StartEvent" id="SE01" outgoing="SF09 ">

 <eventDefinitions xmi:type="bpmnxmi:MessageEventDefinition" id="MED01" messageRef="ME01"/>

 </flowElements>

 <flowElements xmi:type="bpmnxmi:DataObject" name="credit application" id="DO01" isCollection="false"/>

 <rootElements xmi:type="bpmnxmi:Message" id="ME01"
 name="Credit application request"/>
 <rootElements xmi:type="bpmnxmi:Collaboration" id="COLL01" name="Credit Application Collaboration">

 <messageFlows xmi:type="bpmnxmi:MessageFlow"
 targetRef="SE01" id="MF01" sourceRef="PA02" messageRef="ME01"/>

 ...

 <participants xmi:type="bpmnxmi:Participant" id="PA02"
 name="Bank Customer" processRef="PR02"/>
 </rootElements>

 <rootElements xmi:type="bpmnxmi:PartnerRole" id="PART02"
 name="Customer" participantRef="PA02"/>
 <rootElements xmi:type="bpmnxmi:Process" name="Customer" id="PR02"/>

 </bpmnxmi:Definitions>

</xmi:XMI>

Check credit

application
getCustomer-

Profile(id)

getCustomer-

Rating(id)

Reject credit

application

Approve credit

application

Approve

contract

Negotiate

contract

Make

decision

Check credit

worthiness

Id

Profile Rating

a
c
c
e

p
t

re
fu

s
e

Check passedForm Ok approved

B
a

n
k
 C

le
rk

 A
B

a
n

k
 C

le
rk

 B

B
a

n
k

B
a

n
k
 C

u
s
to

m
e

r

Credit

application

Credit application

request

Credit application

rejection

Credit application

acceptance

Contract

Credit application process

Figure 17: Example for the derivation of role engineering artifacts from collaboration models in common executable conformance

class

jects. For example, in Figure 17 the message "Credit applica-

tion request" is both a candidate object of the candidate roles

"Bank Customer" and "Bank Clerk A".

In addition to the role engineering artifacts described above, we

can further derive candidate constraints from the definitions of spe-

cial events in the BPMN common executable conformance class.

For example, from a timer-event, for which a specific time-date or

cycle can be set to trigger the start, interruption or end of a process

or activity (for further details see [19] [page 262]).

