A Pattern Language for Service-based
Platform Integration and Adaptation

Ioanna Lytra!, Stefan Sobernig?, Huy Tran!, Uwe Zdun'

'Faculty of Computer Science 2Institute for IS and New Media
University of Vienna, Austria WU Vienna, Austria
Email: firstname.lastname @univie.ac.at Email: stefan.sobernig @wu.ac.at

Often software systems accommodate one or more software platforms on top of which various
applications are developed and executed. Different application areas, such as enterprise resource
planning, mobile devices, telecommunications, and so on, require different and specialized plat-
forms. Many of them offer their services using standardized interface technologies to support
integration with the applications built on top of them and with other platforms. The diversity of
platform technologies and interfaces, however, renders the integration of multiple platforms chal-
lenging. In this paper, we discuss design alternatives for tailoring heterogeneous service platforms
by studying high-level and low-level architectural design decisions for integrating and for adapt-
ing platforms. We survey and organize existing patterns and design decisions in the literature as a
pattern language. With this pattern language, we address the various decision categories and inter-
connections for the service-based integration and the adaptation of applications developed based
on software platforms. We apply this pattern language in an industry case study.

1 Introduction

A software platform is a unified foundation on top of which applications can be developed and exe-
cuted. Software platforms are an important organizational strategy to achieve software reuse in soft-
ware development at a large scale. Platform-driven software reuse reaches out beyond systematic code
reuse (e.g., through component orientation) and involves reusing use cases, software tests, documented
design decisions (e.g., design documents), and development procedures (e.g., continuous application
integration, release management, testing approaches; see [GMA12]). As a software artifact, a soft-
ware platform abstracts from details inside and underneath the platform and thereby eases application
development and maintenance.

Many software systems that are developed today are based on one or more software platforms.
For instance, an online shopping portal will rely on an enterprise resource planning (ERP) platform
such as SAP R/3 for receiving and processing purchase orders and a warehouse system for managing
large inventories of goods. Other examples of software platforms include platforms for steel plant
control, telecommunication platforms such as Mobicents', data storage platforms such as Amazon’s
S32, social network platforms such as the Facebook Platform?, and mobile platforms such as Google’s
Android* or Apple’s iOS>. This short and non-exhaustive list of platform examples illustrates that
different application areas require different and specialized platforms.

As in many other areas, software platforms follow the current trend towards offering their services
using standardized interface technologies such as Web Services [CCMWO01]. With this trend comes the

"ttp://www.mobicents.org
http://aws.amazon.com/s3
*https://developers.facebook.com
*http://www.android.com
Shttp://www.apple.com/ios



growing requirement for the integration over these specialized service platforms. If the current trend
towards offering platforms through service-based interfaces continues, we will see a large ecosystem
of heterogeneous service-based platforms emerging in the near future. However, the increasing spe-
cialization in the applications domains of software platforms, as well as the diversity of technologies
for platform development and of platform interfaces leads to open challenges regarding the integration
of multiple platforms.

In the context of platform integration, the heterogeneity of service platforms with respect to their
functional and non-functional properties often leads to several alternative ways of successfully tailor-
ing, adapting, and integrating platforms. In other words, software architects and developers are usually
confronted with numerous design decisions at different levels of abstraction and at different levels of
granularity when designing a platform integration solution.

This paper aims at addressing challenges regarding offering platforms as services and integrating
multiple heterogeneous platforms. In particular, we will address the problems how to offer the func-
tions of a (legacy) platform using a service-based interface and how to tailor and to combine multiple
platforms into a unified service platform. For this, we introduce a pattern language targeting high-level
and low-level design decisions for integrating and adapting platforms using services. This pattern lan-
guage is addressed to software architects and designers as well as software developers that deal with
the problem of designing unified service platforms over heterogeneous platforms —often owned by
third-party vendors— to be used as the basis for developing new applications.

So far, a substantial amount of patterns have been described covering many aspects of service-
based integration and adaptation. However, those patterns have been presented with a different focus,
such as general software design [GHIV94], software architecture [BMR 100, AZ05], distributed sys-
tem design [BHS07a], enterprise application architecture [Fow03], messaging [HWO04], remoting mid-
dleware [VKZ05], service-oriented systems [HZ09], service design [Dail2] and process-driven SOA
[HZ12]. The contribution of this paper is to survey and to organize the existing patterns and design
decisions in a comprehensive pattern language for the service-based integration and adaptation of plat-
forms. With this, this paper primarily addresses software architects who face the challenge to design, to
realise, and to deploy a service-based integration architecture for software platforms. As a secondary
audience, developers of client applications, which are built from the integrated platforms, can consult
this pattern language to evaluate the impact of the underlying integration architecture (and the design
decisions embodied therein) on the observed non-functional properties (e.g., QoS properties such as
execution timings, distributed exception state) observed for their applications.

The remainder of the paper is structured as follows. Section 2 provides the problem statement
and the background on service-based platform integration. In Section 3, we illustrate an industry case
study as a motivating example. The actual pattern language is then presented in detail in Section 4.2. To
demonstrate their applicability, the pattern language is applied to our motivating example in Section 5.
We discuss the related work in Section 6 and conclude in Section 7.

2 Service-based Platform Integration: Background and Problem
Statement

We consider a software platform a collection of software sub-systems, like communication middleware
and databases, and interfaces which together form a reusable infrastructure for developing a set of
related software applications. The functional and non-functional properties of a service platform and
its interfaces vary with the requirements of the application area in which the platform is deployed.
To build a concrete application by reusing software artifacts in a platform, the platform lays out a
customization and configuration process on top of its interfaces [GMA12].

In a service-based software platform, software platforms expose their interfaces in terms of ser-



vices which provide the programming models for developing platform-based applications. Platform
customization and configuration usually involves adaptations of service interfaces (e.g., interface ag-
gregation) and/or service implementations (e.g., service specialization and substitution) as well as
forms of service composition (e.g., batched service execution, service chaining, or process-driven ser-
vice orchestration). Platforms are then integrated by applications via their exported platform services.

When looking at multiple service-based platforms, the exported services and their interfaces are
heterogeneous in terms of the middleware technologies, the transport protocols, the programming lan-
guages, and the programming models (e.g., remote procedure calls, document-centric services) used.
In addition, platform service interfaces change over time and platform services are substituted for oth-
ers (e.g., service specialization, service substitution [RRST08]). Applications using platforms must
cope with the heterogeneity of the platforms they integrate, as well as with interface changes. At the
same time, (groups of) applications exhibit different requirements on the same set of platform services;
and may change in these requirements over time. For instance, applications might require functionally
tailored interfaces (e.g., operation subsets, aggregated operations and aggregated operation data) and
different interface capabilities for separate application groups based on their QoS requirements or on
different authorization levels.

Application Application Application
Service-based Service-based
L o o Integration Platform Integration Platform
Application Application Application (Domain 1) (Domain 2)
Platform Platform
Direct Use of a Platform Using a Platform via Service-based Integration
Platforms

Figure 1: Service-based Platform Integration

If this platform heterogeneity and the characteristic integration requirements were fully anticipated
(for example, by analyzing the platform domains using a domain engineering approach), software
platforms would be developed in terms of software product lines [GMA12] and platform integration
would turn into an issue of developing multi software product lines [RS10]. In this paper, however,
we are interested in integration scenarios involving software platforms which were not necessarily
designed as product lines and, most importantly, which were not designed to be integrated with one
another (e.g., by using product line engineering techniques such as code generation or component
weaving).

A strategy to deal with previously unanticipated platform integration is service-based platform
integration. In such an integration strategy, applications should strive for programming towards stable,
service-based interfaces that hide technology, protocol, language, and programming model dependen-
cies as far as possible. Some platforms already offer a suitable service-based platform integration inter-
face to their platform-driven applications, but in most cases such interfaces are not available (consider,
e.g., legacy platforms). Service-based platform integration addresses situations like the one depicted
on the left-hand side of Figure 1: The client applications developed on top of a software platform
have direct dependencies to the services offered by the platform. Service-based platform integration
changes this situation then to the one depicted on the right-hand side of the figure, where an intermedi-
ate abstraction layer hides the details of the platform underneath. Thus, an application is developed on
top of a service-based integration platform which integrates services from one or more platforms. With
such an integration platform in place, client applications with changing requirements on the platform
services, on the one hand, and platforms exposing changing platform services, on the other hand, can



be effectively shielded from each other.

An intermediate platform has an additional benefit, illustrated in Figure 1: Applications from dif-
ferent domains can be programmed against different service-based integration platforms, each offering
a domain-specific view on the platform abstractions. For instance, consider developing applications for
Android. The integration platform could provide different views on the Android platform, with each
view exposing selected Android API chunks for, e.g., business applications, Web applications, 2D and
3D games, and so on. The integration platform could provide a stable view over different versions of
the Android SDK.

Such a design also offers the advantage of rendering the underlying platforms exchangeable. For
example, an abstraction layer can be provided in a way that similar script code can run both on Android
and 10S. In this example, this is possible provided that a scripting engine running on both platforms is
used.

Application

Service-based Integration Platform

l |} |}

Platform Platform Platform

Figure 2: Service-based Platform Integration for Multiple Platforms

In addition to the abstraction of platforms and their interfaces, this paper also considers the prob-
lem of integrating multiple platforms and their platform services into one and the same application.
This problem is schematically illustrated in Figure 2. Consider an online shopping portal that relies
on an enterprise resource planning (ERP) platform such as SAP R/3 for receiving and processing
purchase orders and a warehouse system for managing large inventories of goods. In a service-based
integration platform, we could select only those services of the two platforms that are relevant to the
online shopping portal and present them in an integrated fashion. We could offer them through the
different communication channels needed for the online shopping portal, but not offered by the legacy
platforms. Internally, the service-based integration platform would perform all necessary tasks of inte-
grating, adapting, and routing messages for the two backend platforms.

3 Motivating Example

To illustrate the problem of service-based platform integration and adaptation, we present an example
from a case study on industry automation performed in the context of the EU FP7 project INDENICAS.
In this case study, there are three heterogeneous platforms: a Warehouse Management System (WMS),
a Yard Management System (YMS), and a Remote Maintenance System (RMS). An operator appli-
cation utilizes the services provided by these three platforms. The YMS manages the scheduling and
the coordination procedure for trucks which is needed for the loading and unloading of the goods.
The WMS handles the storage of the goods (or storage bins) into racks via conveyor systems. The
RMS system is connected to the warehouse to monitor every incident occurring in the warehouse and

Shttp://www.indenica.eu



the yard. An operator application uses the services exposed by the domain-specific integrating virtual
platform (VSP). This intermediate platform integrates the services of the three backend platforms. All
the interactions between the integrated platforms as well as between the operator application and the
three platforms are performed through the VSP. Figure 3 illustrates a single scenario covered by our
case study, presented as a sequence diagram. This scenario addresses unloading storage bins onto the
racks in the warehouse. When a loaded truck arrives at the yard, the operator gets notified and requests
a free dock for the truck. After receiving a free dock, the operator communicates with the personal
and coordinates the redirection of the truck to the assigned dock for its unloading. Upon finishing the
unloading, a notification is sent to the operator.

To enable the operator application to use the services of the three platforms through an integration
platform, many architectural decisions regarding the adaptation and the integration of the heteroge-
neous interfaces as well as the routing of the information between the operator application and the
platforms must be made. In this paper, we study the design alternatives that must be considered when
software architects and developers are confronted with the platform integration problem. In the next
section, we describe the pattern language for service-based platform integration and adaptation in de-
tail.

YMS WMS RMS Operator
Portal
| | | ]
H } } truckArrived(truckID)

] ]
} ‘ i getFreeDock
I ]
} } dockiD Ca.II people to
} ,,,,,,,,,,,,, - _— = drive truck to
| dock
|

‘ .
P . o
! initiateVoiceCall(userID) initiateVoiceCall(locationID)
|
; endCall(userID) endCall(locationID)
|
|
! 1
| |
™ ! truckReady(truckiD) Call people
i

_| tostart

initiateVoiceCall(userID) unloading

o1
initiateVoiceCall(locationID)

endCall(userID) endCall(locationID)

VSP
(translates invocations into invocations to the target platforms)

startUnloading(truckID)

oop(# binsy

store(trucklID,unitID)

storeStarted(unitID)

registerStorageUnit(unitiD)

storagelD

searchAndReserveSljitableBinLocation(unitlD, storagelD)

|
transportStorageToReservedBinLocation(unitID,storagelD),
T

unitStored(unitID,storagelD)

unloadingFinished(dockID)

truckLeft(truckID)

Figure 3: Integration Scenario in a Warehouse



4 Pattern Language for Service-based Platform Integration and
Adaptation

4.1 Pattern Language Overview

In this section, we describe a pattern language for service-based platform integration and adaptation.
This pattern language documents interconnected design decisions by drawing from existing pattern
material, such as patterns for general software design [GHIV94], software architecture [BMR 100,
AZ05], distributed system design [BHSO07a], enterprise application architecture [Fow03], messaging
[HWO04], remoting middleware [VKZ05], service-oriented systems [HZ09], service design [Dail2],
and process-driven SOA [HZ12].

We introduce an overview of the main categories of design decisions documented in our pattern
language in Figure 4. The direction of the arrows implies follow-on decisions. Arrows in both di-
rections imply that the decisions can be made in parallel. In our pattern language, we consider the
following architectural decision categories: Adaptation and Integration, Interface Design, Communi-
cation Style and Communication Flow.

The Adaptation and Integration category collects design decisions regarding the integration of
platform services into a service-based integration platform and their interface and protocol adaptation,
if required. The Interface Design category mainly covers design decisions regarding the design of the
exported interface(s) of the service-based integration platform. Decisions in the categories Adaptation
and Integration can be performed in parallel to decisions in the Interface Design category. These cat-
egories mainly concern developing components and interfaces for connecting applications, platforms,
and the service-based integration platform.

The Communication Style category comprises design decisions that must be taken for each dis-
tributed component connection. These decisions relate to options for connecting two components (e.g.,
blocking and non-blocking component interaction styles). These decisions reside at a lower level of
abstraction than the decisions of the two previous categories.

The Communication Flow category describes additional decisions that must be considered in case
the service-based integration platform introduces more complex communication flows than simple
forwarding from an exported interface to imported interfaces. For instance, such decisions relate to
handling the aggregation or the splitting of the messages on their way through a service-based integra-
tion platform.

Adaptation and
Integration

Interface Design

Communication Style Communication Flow

Figure 4: Overview of Pattern language for Platform Integration

4.2 Integration and Adaptation

The simplest case of integrating a platform into an application is to directly invoke the platform ser-
vices from the application code. However, often we would like to avoid direct invocations in order to



T ST =\ can be used to offer a
is a variant of ( \ i ion i
—  PROXY K , REMOTE configuration mten‘ac_e to.make
\ ] { PROXY the proxy maintainable
N ___7 N s
used if
interface
adaptation is
needed used to offer a configuration
ST T ST T T T T T . Iinterface, which supports P ahmiie ‘———\\
| oBcT is avariant of | \ maintaining the adapter \{ COMPONENT |
£ | INTEGRATION ADAPTER } I
\ ADAPTER \ ! | CONFIGURATOR
N ____7 N __ 7/ N __ s
used for supporting
] multiple protocols
used for supporting
multiple protocols l/’ N
|
3 PROTOCOL PLUG-IN |

Figure 5: Platform Integration and Adaptation Patterns

support abstraction or stable interfaces as motivated in Section 2. In addition, often simple direct invo-
cations are not enough, as the integration logic should introduce extra functionality, such as logging,
monitoring, indirecting, or adapting the platform access. Such situations are discussed in this section.

In case that the interfaces offered by the platform are compatible to each other and the extra func-
tionality needed does not change the invocation flow, the PROXY pattern [GHJV94] can be used to
indirect the service invocations, to perform additional tasks on the invocation data, to select and to
access the actual platform services. If extra functionality such as logging, monitoring or access control
is needed and this does not change the invocation flow the functionality can be handled using a PROXY
between the platform services and the application.

PROXY

Problem There are situations in which a client does not or can not access a platform service
directly, but wants still to interact with it. A surrogate or placeholder for an object to control the
access to the service is needed.

Solution A PROXY acts as the intermediary between the client and the target. The PROXY has the
same interface as the target. The PROXY holds a reference to the target and can forward requests
to the target.

Decision Drivers A PROXY is used whenever there is a need for a more versatile or sophisticated
reference to an object than a simple pointer. It introduces a level of indirection when accessing
an object. It also supports creation of objects on demand. In the context of platform integration, it
can be used to introduce extra functionality or control, but it does not change the interface of the
invoked service or the invocation flow.

Direct invocations vs. proxy-based platform integration are illustrated in Figure 6. In this simple,
schematic example, the PROXIES introduce extra functionality for monitoring the invocation flow from
the application to the platform. From the viewpoint of the application, they essentially introduce a new
platform abstraction, in this paper called the service-based integration platform.



c
=]
.g Application{'
= Component
Qo
<
£
g Proxy E‘ Proxy E‘
T ©
o
< @ c
= L oo
3 Appllcatnon{' 9 ’§ ] ]
= Component = Monitor
a 59
< | n £
N7 \\
€ Platform E‘ Platform E‘ Platform E‘ € Platform E‘ Platform E‘ Platform E‘
o Service Service Service o Service Service Service
s s
o o
Direct Invocations Proxy-Based Platform Integration

Figure 6: Direct Invocations vs. Proxy-based Platform Integration

In many cases, applications and platforms are residing in different process or machine contexts.
Hence, invocations must cross the process or machine boundary. In such cases, we can apply the remote
variant of the PROXY pattern, the REMOTE PROXY [SSRB00a, BHS07a]. In the platform integration
context, the REMOTE PROXY resides in the service-based integration platform and connects application
and platform. The schematic illustration on the right hand side of Figure 6 also applies to REMOTE
PROXIES, but the arrows depict remote invocations instead of local invocations.

REMOTE PROXY

Problem As in the PROXY pattern, we need to access an object through a placeholder for another
object to control access to it. In addition, the object and its client are residing in different process
or machine contexts.

Solution A REMOTE PROXY is a PROXY that connects two objects in different process or machine
contexts. Usually, communication middleware is used to cross the process or machine boundary.

Decision Drivers The REMOTE PROXY has the same decision drivers as the PROXY pattern plus
the need for integration of distributed applications and platforms.

In addition to simple integration, service-based platform integration requires coping with the di-
versity of the interfaces that these platforms expose. Calling a remote interface directly or through
a PROXY is not always possible, for instance, because the interfaces offered by a platform may not
offer exactly what the calling application expects. Using the original interface might be possible, but
we need to take into account that usually the applications are tightly coupled with their interfaces and
implementations. Changing the interfaces of a platform is a possible solution. But, firstly, an interface
change is tedious and error-prone, and, secondly, most often it is not possible at all because many
platforms that need to be integrated are provided by third parties. In addition, platforms are typically
used by many applications and it is usually not possible to offer a different interface for each of them.

For these reasons, an ADAPTER [GHJV94] can be inserted between the caller and the remote
interface that converts the provided interface into the interface that the caller expects and vice versa.
The adapter also transforms the data returned by the adaptee into the data structures expected by the
caller. For distributed systems two variants of the ADAPTER pattern, the OBJECT ADAPTER ([GHJV94,
BHSO07a]) and the INTEGRATION ADAPTER ([HZ12]), can be used to connect the interfaces and to



perform the appropriate transformations.

From a high-level perspective, OBJECT ADAPTERS usually have a similar structure as the PROXY
example depicted in Figure 6. The ADAPTERS would simply replace the PROXIES and introduce the
additional interface adaptation behaviour.

Very often new versions of platforms come with new versions of interfaces. This can be hidden
from the applications using the interfaces by exchanging the OBJECT ADAPTER. However, the more
complex the mapping between the interfaces is, the more expensive is the mapping in terms of perfor-
mance and development effort.

OBJECT ADAPTER

Problem A class or component offers an interface, but the interface does not match the one that
is needed by a client. We need to resolve the interface incompatibility.

Solution An OBJECT ADAPTER converts the interface of a class or component into another in-
terface clients expect. The ADAPTER lets classes or components work together that could not
otherwise because of incompatible interfaces.

Decision Drivers Interface adaptation lets us incorporate our classes or components into existing
systems that might expect different interfaces. The amount of work for creating an ADAPTER
depends on the similarity between the adaptee and target interfaces.

A general problem of components like OBJECT ADAPTERS in platform integration scenarios is that
invocations reaching the ADAPTER while it is being maintained (i.e., stopped and redeployed) would
get lost. In many cases, this is highly undesirable. This problem is addressed by an extension of the
ADAPTER pattern, the INTEGRATION ADAPTER [HZ12] pattern:

INTEGRATION ADAPTER

Problem Heterogeneous systems need to be connected and we need to shield the client from the
impact of system and system interface changes. The calling and called interfaces might change
over time and maintenance activities should not cause invocations or message to get lost.

Solution The INTEGRATION ADAPTER contains two connectors: one for the client system’s im-
port interface and one for the target system’s export interface. It plays the role of the transla-
tor between the heterogeneous systems and for their different interfaces, protocols, technologies
and synchronization mechanisms. The adapter can be made configurable at runtime by using the
COMPONENT CONFIGURATOR pattern, so that the adapter can be modified without affecting the
requests to the adapter. A COMPONENT CONFIGURATOR offers a configuration interface for stop-
ping, suspending and starting adapters. When new versions of the adapter must be deployed the
adapter is stopped. When new versions of the target system are deployed or the adapter is config-
ured at runtime the adapter is suspended. After the maintenance activities the adapter can process
all requests that have arrived in the meantime.

Decision Drivers The INTEGRATION ADAPTER provides flexible integration for applications
from external vendors. Generic adapters can be offered to support interconnectivity via common
standards (e.g., Web Services). A drawback of INTEGRATION ADAPTERS is that if many adapters
from different systems exist, they need to be managed in a centralized and controlled way.

An important part of the INTEGRATION ADAPTER pattern is its use of the COMPONENT CON-
FIGURATOR pattern [SSRBOOc] to stop, suspend, and start the adapter component during the process
lifetime of the integration platform. This pattern can also be used to make other integration solutions,
like the PROXY based solutions discussed before, configurable at runtime. This form of runtime adapt-
ability complements other configuration techniques available at the deployment time (e.g., deployment



descriptors) and at the runtime of the integration platform (e.g., invocation interceptors for the middle-
ware framework).

We illustrate in Figure 7 a potential INTEGRATION ADAPTER design. The INTEGRATION ADAPTER
implements a configurable component interface to realize the COMPONENT CONFIGURATOR pattern.
To avoid losing message while the adapter is being maintained, the INTEGRATION ADAPTER has an
asynchronous messaging interface to the client, which queues up messages until the maintenance ac-
tions are performed (see the discussion of MESSAGING in Section 4.4). The integrated platform is
connected via a synchronous connector. The adapter also performs the translation from asynchronous
calls to synchronous calls (see the discussion of CORRELATION IDENTIFIER in Section 4.5).

<< interface >>
Configurable Component

+ init()
+ finalize()
+ suspend()
+ resume()
+ info()
|
1 1
Asynchronous ) 1 1
Connector Integration Adapter Connector
send request / 1 - adapterID 1
receive response
Client System s T + getAdapterID()
1.* |
! 1
Correlation
Identifier Target System

Figure 7: Integration Adapter: Example Design

COMPONENT CONFIGURATOR

Problem The application must provide a mechanism to configure components at any time of
the application lifecycle. The components should be initiated, suspended, resumed, terminated or
exchanged dynamically at runtime without having any impact on the rest of the application.

Solution The component interfaces are decoupled from their implementation and used from the
application to dynamically control the components. Concrete components implement these inter-
faces in an application-specific manner.

Decision Drivers COMPONENT CONFIGURATOR offers a common interface for the administration
of components (initialize, suspend, resume and terminate). The implementation of the components
is decoupled from their configuration, thus increasing modularity and reuse. Configuration and
reconfiguration of components can be performed dynamically. This pattern increases also the
range of configuration alternatives. However, it has the liability of a lack of determinism, since
the behaviour of an application is not determined until its components are configured at runtime
and a potentially lowered reliability, since the dynamically configured components can affect
the execution of other components. Also, the dynamic linking adds extra levels of indirection to
invocations.

When the service-based integration platform must bridge between different communication proto-
cols, PROTOCOL PLUG-INS [VKZ05] can be used to realize translation between the different protocols.

10



PROTOCOL PLUG-IN
Problem A distributed application needs to support multiple protocols at the same time.

Solution PROTOCOL PLUG-INS contain implementation details at the communication protocol
layer and provide common interfaces for different communication protocols. For the configuration
of their parameters, the PROTOCOL PLUG-INS offer either an API or a configuration file.

Decision Drivers PROTOCOL PLUG-INS abstract from communication protocol details and al-
low flexible support of several communication protocols. They can also allow configuration and
optimization of the communication protocols used.

4.3 Interface Design

/ AN
| EXTENSION }
\ INTERFACE
~ /
_———— L
_ 2 N
extension to support I REMOTE !}
interface reuse { FACADE ,'
extension used to S -7
o= ~. Mmediate requests from ~——=—=_ i
N / N\ is a variant of
[ SERVICE  (ifferent channels | 3
: ABSTRACTION £ | FACADE |
I~ .
\__ LAYER  J \e_ ____/ isavariant of
/T T T TN
( \
used for data | GATEWAY |
transfer { ]
N __7
—_— ‘-~
/" DATA
| TRANSFER |

!
\\ OBJECT

Figure 8: Interface Design

When developing a service-based integration platform, we need to expose interfaces to the appli-
cation. In the simplest case, we can simply expose the PROXIES and ADAPTERS, as discussed in the
previous section. However, often we have additional interface design requirements, such as unifica-
tion or abstraction of interfaces, supporting different protocols or channels, optimization of invocation
flows, avoiding redundancies in interfaces, or supporting multiple interface versions.

We might have the same requirements for one or more of the platforms to be integrated. For in-
stance, many legacy applications do not expose an appropriate service-based interface. Sometimes it
makes sense to first make an appropriate service-based interface design for each of the platforms, and
then develop a service-based integration platform that offers a unified interface.

When designing interfaces for platforms or integration platforms, the design of the data transfer
might be an important concern. Transferring data over the network between two distributed applica-
tions can be very expensive when the number of calls increases. Therefore, we can use DATA TRANS-
FER OBJECTS [Fow03] which hold all the data to be sent. A DATA TRANSFER OBJECT transfers the
needed information within a single call. DATA TRANSFER OBJECTS may wrap primitive data types
(e.g., integers, strings) or other DATA TRANSFER OBJECTS.

11



DATA TRANSFER OBJECT

Problem When a remote interface is designed akin to a local interface, often many invocations
with small sets of data are sent. This can get very expensive in terms of bandwidth use and pro-
cessing of calls. Also, it leads to cluttered and unstable interfaces.

Solution DATA TRANSFER OBJECTS can be used to group the data that needs to be sent in one
object. Often multiple invocations transmitting only small sets of data can be replaced by a single
invocation transmitting the DATA TRANSFER OBJECT.

Decision Drivers The use of DATA TRANSFER OBJECTS makes interfaces more stable, as for
many changes only the DATA TRANSFER OBJECT needs to be changed and the interface can
remain the same. DATA TRANSFER OBJECTS can lead to more efficient use of bandwidth and
invocation processing. DATA TRANSFER OBJECTS need to be serialized before being sent on the
wire. The choice of the serialization form plays an important role for the performance of the
transmission. Using textual instead of binary data consumes more bandwidth and can potentially
lead to a significant performance penalty. Using binary serialization can introduce fragility into
the communication lines; in contrast, XML serialization can be more tolerant of changes.

From the viewpoint of the client of a platform, interface unification is often important. Platforms
expose multiple interfaces, often in multiple versions. The interfaces exposed by the platforms are often
not the interfaces required by the applications using the platforms. The FACADE pattern [GHIV94]
describes a general way to unify interfaces.

FACADE

Problem Clients require stable interfaces over multiple versions of a component and multiple,
heterogeneous components. Clients might require client-specific views on a component exposed
as a stable interface.

Solution A FACADE is an object or component that provides a unified and often simplified in-
terface for a set of software components. The FACADE or FACADES of a system are usually not
bypassed by clients.

Decision Drivers FACADE can be applied when multiple interfaces should be unified. Interface
unification, however, comes at a price. Often only the common denominators of interfaces can be
offered (e.g., in case multiple versions of an interface need to be unified in a FACADE), or uni-
fication of overlapping functionality can be difficult to reach. Introducing an additional FACADE
means to introduce an indirection that on the one hand costs performance but on the other hand
provides an additional point of control over the message flow.

A FACADE [GHJV94] provides a coarse-grained interface on fine-grained components. In dis-
tributed systems, a REMOTE FACADE [Fow03] can be used to specify a single point of access for a
group of components which provide complex services in order to mediate client requests to the appro-
priate components. A REMOTE FACADE can also aggregate features of different components into new
and/or higher-level services. It does not contain any domain logic and can use data from DATA TRANS-
FER OBJECTS. Using bulk accessors for the data ensures that using to the remote interface remains
efficient.

REMOTE FACADE

Problem Interaction between objects is better understood when small objects have small methods,
which leads to a fine-grained behaviour. However, using fine-grained interactions when making
calls between processes or machine boundaries can be very expensive in terms of performance.
Any object that is intended to be used as a remote object needs a coarse-grained interface to
minimize the number of calls needed for a process.

12



Solution A REMOTE FACADE translates the coarse-grained methods onto the underlying fine-
grained objects. Thus, it separates distinct responsibilities into different objects. A bulk accessor
is used to replace a number of getters and setters of the underlying objects with one getter and
setter.

Decision Drivers REMOTE FACADE provides access to a fine-grained object with a coarse-grained
interface. Using a coarse-grained object model improves performance because of the reduced
number of calls. It adds, however, additional programming effort, as the remote calls have to be
translated into smaller internal calls.

A GATEWAY [FowO03] is another variant of FACADE that represents an access point to an external
system used by an application. The application thus becomes independent of the specific interfaces of
the external system and also of its internal structure.

GATEWAY

Problem Complex interfaces lead to complicated applications. When there is a need to call an
external API that is difficult to understand and use, this complexity is spread through the whole
system.

Solution A GATEWAY is a wrapper that translates a specialized and complicated API into a simpler
API. All applications that need to call this API call instead the API offered by the GATEWAY.

Decision Drivers The introduction of a GATEWAY makes a system easier to test and any possible
changes in resources flexible. When the source API changes only the GATEWAY component needs
to be modified. When implementing a GATEWAY an issue that has to be considered is the handling
of exceptions and return values from the source API.

When a platform needs to support consuming and providing remote objects through multiple chan-
nels, a SERVICE ABSTRACTION LAYER [VogO1] can be used. It introduces an extra layer which con-
tains all the necessary logic to receive and delegate requests originating from the different channels.
To create a SERVICE ABSTRACTION LAYER a FACADE can be used to offer an interface for creating
and sending service requests.

SERVICE ABSTRACTION LAYER

Problem A system or platform must allow for providing and consuming remote objects through
multiple channels, i.e., remoting technologies and transport protocols. This channel support
should be independent from the core invocation handling for remote objects. New channels should
be addable on demand.

Solution The SERVICE ABSTRACTION LAYER adds an extra layer which receives and mediates
requests originating from different channels. Each channel contains a channel adapter which trans-
lates requests back and forth between the backend and frontend channel formats.

Decision Drivers SERVICE ABSTRACTION LAYER separates business from communication logic,
thus clients become decoupled from the business services. Therefore, changes in the business logic
do not affect the client implementations, as the clients use stable generic interfaces to interact
with the remote system. The SERVICE ABSTRACTION LAYER increases, however, the level of
indirection of requests. The introduction of this separate layer may reduce efficiency as all requests
have to be processed at runtime.

We show in Figure 9 an example of interface design by implementing a FACADE which uses data
from different DATA TRANSFER OBJECTS. The FACADE aggregates functionality from two applica-
tion components and exposes an interface for integration with the remote platform. In this example,

13



an ADAPTER inserts additional interface adaptation between the FACADE and the remote platform ser-
vices. By providing a SERVICE ABSTRACTION LAYER, as illustrated in Figure 10, we support multiple
remoting technologies through three different channels: a JMS, a SOAP, and a REST Interface. A
FACADE unifies the different channels and exposes a common interface for the remote platform.

c
2
g
= Application $:| Application $:|
2_ Component Component
c
= Facade E‘
[%]
o}
e | L
= o
S8
2% | oroHd pTo &
<E
£
el
©
[ Adapter E‘ Adapter E
ke)
@
(2]
© <
2 9o
g8 . —
S o Monitor
g2
=
Platform E‘ Platform E‘ Platform E
§ Service Service Service
o
ke
o

Figure 9: Interface Design with Facade and Integration with Adapter

Application$:| Application$:| Application$:|
Component Component Component
\
AN 1
z N N v
% ms 3] SOAP 3 | REST 2 ]
S © Interface Interface Interface
= @
© o
L2 T I )
[
0 = (S
g = > o Facade E
o E O ©
o5 » -
s =
o
()

Figure 10: Interface Design with Service Abstraction Layer

Another issue related to the design of interfaces is that the interfaces provided by platform appli-
cations are subject to adaptations and/or extensions due to changing requirements. To support different
client-specific interfaces, related functionality can be grouped in separate EXTENSION INTERFACES
[SSRBOO0b] and the common functionality can be included in a root interface.

14



EXTENSION INTERFACE

Problem The interface provided and exposed by a component is subject to adaptations and/or
extensions due to changing requirements of client components. Similarly, an anonymous number
of clients requires alternative, client-specific interfaces for components interfaces. Being limited
to a single and monolithic component interface means that changes propagate into existing client
components in an uncontrolled manner.

Solution Related functionality is grouped and exported via separate EXTENSION INTERFACES.
The grouping results from domain-specific (e.g., functional views) and/or temporal bindings (e.g.,
interface versioning). Common and/or administrative functionality (e.g., for selecting a particu-
lar view or version) is exposed by a root interface, to be included by each single EXTENSION
INTERFACE.

Decision Drivers The use of EXTENSION INTERFACES decreases the coupling between the clients
and components. The clients depend only on the interface roles they actually use, which ensures
that they do not break when signatures of services change or new services are added to the compo-
nents. To extend the functionality of a component only new EXTENSION INTERFACES need to be
added. EXTENSION INTERFACES can also be aggregated to offer a new functionality of a compo-
nent that aggregates other components. EXTENSION INTERFACES, however, may cause additional
indirection and runtime overhead, as they are introduced between the components and the clients.
It can also lead to increased complexity of client programming, as the clients must decide which
EXTENSION INTERFACES are suitable for their use case.

4.4 Communication Style

alternatives Synchronous realized using J ° I
o PROCEDURE |
Communication
L \ INVOCATION /
Communication N~
Style unicast model multicast model
Asynchronous ;7 ——\\ ,TTTETTN
Communication | POINT-TO- | ,’ PUBLISH- \I
'\ POINT | | SUBSCRIBER |
. N N /
alternatives —_—— == Som-=T 7 N
alternatives | |
—  one-way
|
N V2
-_—
| 1
e e e e e | e -
| < N7 N7 N Ny ’ \
" FRReanD T syncwith \ resur 1] ! | REQUEST -
| ! || PoLL oBJECT ! I} | MESSAGING  — |
| | FORGET s\ SERVER /| /! CALLBACK I\ | | ACKNOWLEDGE )
| N s N __ s N _ 7 \\ ______ / | ~_ ___// N 7/
) |
| Asynchronous Invocation Patterns J ______ -
- - —— {/ \
o REQUEST - |
P ~
asynchronous variants of y REMOTE \| ﬁ REPLY /I
| PROCEDURE i N v
\ INVOCATION / \Lunicast model J{nulticast model
N e e = // N Vs RN
| POINT - TO - | |I PUBLISH - \I
| SUBSCRIBER |
\ /

I poiNnT |
\ /

~ e

Figure 11: Communication Style

~N————— -

For each connection between two components in the platform integration solution, follow-on de-
cisions about the communication style must be made. For instance, once the design decisions for
integration and adaptation, as well as interface design, have been made at the component or service

15



level, at a lower level of abstraction follow-on decisions for the communication style used by the
connection between the components must be made. In this section we focus on the different options
for connecting distributed components. That is, in the platform integration design space these design
decisions are especially relevant for the connections between applications and service-based integra-
tion platform, connections between service-based integration platform and the platforms, distributed
connections between the platforms, and connections among distributed components within the service-
based integration platform.

A basic option is to use synchronous invocations for the connection between two distributed com-
ponents. Often synchronous invocations are realized following the REMOTE PROCEDURE INVOCA-
TION pattern [HWO04]. The remote application may respond either by sending a result value or a void
result, unless an execution problem occurs and an exception is sent back. All communication follows
the REQUEST-REPLY style [HWO04]. In a platform integration solution, this synchronous invocations
option will rarely be used because synchronous invocations can lead to slow and unreliable systems,
as the communication of the calling application must block until it receives the result.

Thus, in the following, we mainly focus on the asynchronous communication style and study the
various options for implementing it.

REMOTE PROCEDURE INVOCATION

Problem Applications in different programming languages that run on different platforms need
to share data and processes.

Solution Using REMOTE PROCEDURE INVOCATIONS means that each application offers a remote
interface to interact with the other applications. Thus, one application can get or change data from
another application by calling its remote interface.

Decision Drivers Applying the pattern results in tightly coupled applications. It is difficult to deal
with application downtimes, such as system crashes or downtimes for maintenance, as incoming
invocations will get lost during the downtimes. Hence, REMOTE PROCEDURE INVOCATION based
systems might be more unreliable than, e.g., MESSAGING based systems. Synchronous REMOTE
PROCEDURE INVOCATION may lead to slow and blocking applications.

Applications that communicate with each other using asynchronous communication do not need
to block their execution, but they can continue with other tasks while they are waiting for the results of
their invocations. The asynchronous invocation patterns offer many alternatives of invoking a remote
service asynchronously. They describe asynchronous variants of the REMOTE PROCEDURE INVOCA-
TION pattern. In particular, when a result or application error needs to be delivered either a POLL
OBJECT [VKZ05] or RESULT CALLBACK [VKZO05] can be used. FIRE AND FORGET [VKZ05] does
not return any result or acknowledgement to the application that invokes a remote object, but only
offers best effort semantics. When a notification that the request arrived to the remote application is
necessary, then SYNC WITH SERVER [VKZO05] can be used instead of FIRE AND FORGET.

FIRE AND FORGET offers one-way communication.

FIRE AND FORGET

Problem A client application wants to notify a remote object of an event. Neither a result is
expected, nor does the delivery have to be guaranteed. A one-way exchange of a single MESSAGE
is sufficient.

Solution A FIRE AND FORGET operation is performed by the communication middleware without
acknowledging the processing or delivery status to the client. The thread of control is yielded back
to the client immediately.

16



Decision Drivers The FIRE AND FORGET pattern provides non-blocking communication with
unreliable transmission. That means that the client is not notified of errors in transmission or
execution of the remote object. The remote object does not deliver any execution results to the
client.

SYNC WITH SERVER provides communication of type REQUEST-ACKNOWLEDGMENT [HWO04].

SYNC WITH SERVER

Problem A client application needs to ensure higher reliability of asynchronous invocations than
FIRE AND FORGET, but does not require the transmission of a result.

Solution The client sends the invocation as in FIRE AND FORGET but waits for a reply from the
server about the successful transmission of the invocation. The communication middleware blocks
only until the notification of the successful reception of the invocation arrives and then continues
the execution.

Decision Drivers SYNC WITH SERVER ensures successful transmission of requests and makes
the remote invocations more reliable than FIRE AND FORGET. It introduces, however, additional
latency, as the client must block until the notification of successful reception is received. Thus,
there is a trade-off between higher reliability and worse performance in comparison with FIRE
AND FORGET. Also the server application cannot inform the client for application errors as the
execution of the remote invocation happens asynchronously.

RESULT CALLBACK and POLL OBJECT offer the REQUEST-REPLY [HWO04] communication style.
POLL OBJECT can be used with the imperative programming style.

POLL OBJECT

Problem Remote invocations of a client must be processed asynchronously but the client needs
the result to continue its computations.

Solution A POLL OBIJECT receives the results from a remote invocation on behalf of the client.
The client periodically queries the POLL OBJECT for the results. The client can continue with
other tasks and when the results are available to the POLL OBJECT the client can fetch them the
next time it queries the POLL OBJECT.

Decision Drivers The server side stays oblivious to the client side POLL OBJECTS. The pattern
offers more reliable communication compared to FIRE AND FORGET, as the result is an implicit
acknowledgement, but it cannot immediately inform the client about an incoming result.

In contrast to POLL OBJECT, RESULT CALLBACK requires an event-based programming style to
consume the result. It has the benefit over POLL OBJECT to support immediate reaction upon the arrival
of a result.

RESULT CALLBACK

Problem The client needs to be informed about the results of its asynchronously invoked opera-
tions once the results become available to the communication middleware.

Solution A callback-based interface for remote invocations is provided on the client which passes
a callback object to the communication middleware upon a remote invocation. After the invoca-
tion, the client can continue with other tasks. When the call completes and the results become
available a callback is invoked on the client to process the result.

Decision Drivers The pattern has the same basic decision drivers as POLL OBJECT. RESULT
CALLBACK is preferred over POLL OBJECT when an immediate reaction on the incoming result

17



is needed. While POLL OBJECT works well with the imperative programming model of today’s
OO application, RESULT CALLBACK requires an event-based programming model to handle the
callbacks. The same or different callback objects can be used for different invocations of the same

type.

In asynchronous remote invocations, ASYNCHRONOUS COMPLETION TOKENS [SSRB0Oa] are
used to associate the callback with the original invocation. The pattern fulfills the same role as the
CORRELATION IDENTIFIER pattern [HWO04] discussed below.

To ensure reliability of communication and increase decoupling of the integrating platforms, MES-
SAGING [HWO04] provides the most convenient solution. The integrating applications exchange MES-
SAGES [HWO04] via a MESSAGE CHANNEL [HWO04] which can be either a POINT-TO-POINT CHANNEL
[HWO04] or a PUBLISH-SUBSCRIBE CHANNEL [HWO04]. The difference between them is that in the first
case we have only one receiver of the requests and in the second case the messages are broadcasted, as
there exist multiple receivers-subscribers of the messages.

The communication using MESSAGES can be either one-way or two-way. In a one-way commu-
nication the sender sends a message to a receiver using a one-way channel, without waiting for any
notification or result of its request. A two-way communication requires a two-way channel to allow
delivery of responses (void, result values, or exceptions). A REQUEST-REPLY communication can be
implemented in different ways combining different asynchronous communication styles. For example,
the client can first receive an acknowledgement of its request and then poll for the results (REQUEST-
ACKNOWLEDGE-POLL [Dail2]) or get notified about the delivery of its request and receive the request
results with a callback service (REQUEST-ACKNOWLEDGE-CALLBACK [Dail2]).

MESSAGING

Problem Applications that are developed independently, are built in different languages, and run
on different platforms need to share data and processes in a responsive way.

Solution MESSAGES are used to transfer packets of data frequently, immediately, reliably, and
asynchronously using customized formats.

Decision Drivers MESSAGING offers high reliability, as sending a message does not require both
systems to be up and running at the same time. Instead, message queues in the messaging sys-
tem can temporarily store the messages when systems are down. Hence, systems become more
decoupled from each other than in REMOTE PROCEDURE INVOCATION. However, complexity in-
creases, as many decisions about the messaging system, such as the message formats, the message
routing, the message transmission and the connection of the applications to the messaging system,
etc., have to be made.

The PUBLISH-SUBSCRIBE CHANNEL is the version of the PUBLISH-SUBSCRIBER [BHS07a]
pattern that applies for messaging. Apart from messaging, the POINT-TO-POINT and PUBLISH-
SUBSCRIBER styles can be also used in synchronous or asynchronous remote invocations for
unicasting and multicasting respectively. Hence, PUBLISH-SUBSCRIBER is an alternative to POINT-
TO-POINT connections, mainly discussed so far, that can be applied for all communication styles
discussed in this section.

PUBLISH-SUBSCRIBER

Problem Data changes in one place, but many components depend on this data and have to be
updated. That means, multiple application components need to be notified about changes in one
component.

Solution One dedicated component takes the role of the publisher and the other components are
its subscribers who subscribe in order to get notified for state changes of the publisher. An object

18



can be a subscriber to many publishers and can also play the role of both the subscriber and
publisher.

Decision Drivers Publishers are loosely coupled to subscribers. PUBLISH-SUBSCRIBER allows
listening for events without disturbing the communication flow. Thus, it can also be used for
debugging and logging purposes. However, using PUBLISH-SUBSCRIBER may introduce secu-
rity issues, as any subscriber is able to look at the events generated by the publisher. Although
PUBLISH-SUBSCRIBER offers high scalability, it does not guarantee the delivery of events to the
subscribers.

As in synchronous REMOTE PROCEDURE INVOCATIONS or in the asynchronous POLL OBJECT or
RESULT CALLBACK patterns, messages are also often used to deliver messages in REQUEST-REPLY
style:

REQUEST-REPLY

Problem Two applications communicate through an exchange of MESSAGES. Each MESSAGE
realizes a one-way conversation. The sending application requires a reply from the receiver of the
initial MESSAGE.

Solution To realize a two-way conversation, pairs of request and reply MESSAGES are exchanged.
Depending on the intended coupling between the sender and receiver, the reply MESSAGE is sent
either via the request’s back channel or, alternatively, via its own communication channel.

Decision Drivers The pattern provides a two-way message transmission on a two-way channel.
The requestor is always notified about the successful or unsuccessful completion and/or of the
result of its request. The two processes (request and reply) are decoupled. If the connection be-
tween requestor and receiver fails before the reply is sent, then the requestor must re-send its
request unless messages are persistent.

As in the SYNC WITH SERVER pattern, messages can be delivered in REQUEST-ACKNOWLEDGE
style:

REQUEST-ACKNOWLEDGE

Problem A client would like to notify a system about the fact that a request has arrived or about
an interesting event after a request has arrived. Requests do not need to be processed right away,
and the responses to the requests do not need to be delivered.

Solution When a service receives a request it forwards the request to a background process and
then returns an acknowledgement containing a unique request identifier.

Decision Drivers REQUEST-ACKNOWLEDGE communication alleviates the problem of unavail-
able resources or request spikes, as unlike ONE-WAY communication it lets the client know that
the requests have been received and will be processed. However, the client does not get informed
about application errors that may happen during the process execution.

4.5 Communication Flow

Transferring distributed service invocation data from the client applications to the integrated platform
services, mediated by the service-based integration platform, requires from the software designer to
make design decisions related to the data transformations in the service-based integration platform.
These decisions touch a variety of concerns, e.g., the routing of the invocations and their invocation
data to the intended receivers, as well as all data transformations at different levels (e.g., data repre-
sentation, marshaling, data transport).

19



[ CORRELATION |

IDENTIFIER )
\ 7/

[ —_——

used to correlate
asynchronous requests
and responses

4 \
[ MESSAGE |
ﬁ TRANSLATOR ,'
= ~. == ~ translate between N P
|‘ CONTENT-BASED | IS avariantof | MESSAGE  different data formats PO -
1 ROUTER ) A ROUTER ) ( Y
N 4 N ——— DATA MAPPER |
|
Ne /I
split multiple aggregate multiple |enrich content of filter content of
elements using a elements using a elements using a elements using a
_——— ——_—_Ne e — s e
{ 1ol 1o CONTENT o !
I SPLITTER | | AGGREGATOR | | | | CONTENT FILTER |
\ ;oA ;o ENRICHER ;o J
N ___ 7 N __ / N ___ v N __ /
Figure 12: Communication Flow
maintain /
———— < might translate —_———— N
/ \ introduce correlation IDs /'  proxy/
| FACADE \  ADAPTER !
N ——_7 \_______//
T T T T \\
| CORRELATION I
' IDENTIFIER I
N //
might might
sy embed embed s T T T N
( DATA \ [ \
| TRANSFER MESSAGING }
OBJECT N Y

Figure 13: Relationships between CORRELATION IDENTIFIER and other patterns

The communication flow perspective considers the flow of requests and replies through the in-
tegration platform as a series of data transformations, performed by infrastructure components. The
relevant data items are in-memory objects (e.g., DATA TRANSFER OBJECTS) and MESSAGES.

While many patterns described in this section have originally be described in the context of mes-

saging, in variants they can also be applied in combination with the other (asynchronous) invocation
patterns.

If sophisticated message or invocation routing is required, a MESSAGE ROUTER [HWO04] offers an
appropriate solution. The MESSAGE ROUTER listens at the incoming, or frontend, message channels

20



and redirects the messages intercepted towards the necessary processing chains and towards the actual
backend receivers, i.e., the platform services. With such a central routing component, there is a single
point of responsibility for administering the routing rules and to configure the processing chains needed
for preparing the messages for the individual platform services. The MESSAGE ROUTER can be made
configurable following the COMPONENT CONFIGURATOR pattern (see also Section 4.2).

MESSAGE ROUTER

Problem A message channel can be used to exchange messages of varying structure and content,
thus requiring different processing steps. To decouple the processing steps, without introducing
dedicated message channels, the MESSAGES have to be filtered depending on a set of conditions.

Solution A MESSAGE ROUTER component inserts a special filter that consumes a MESSAGE from
one incoming MESSAGE CHANNEL and republishes it to a different outgoing MESSAGE CHAN-
NEL, after having evaluated certain filter criteria. MESSAGE ROUTERS distribute MESSAGES either
to a fixed destination or redirect the messages depending on the message content (see CONTENT-
BASED ROUTER).

Decision Drivers A MESSAGE ROUTER centralizes message filters and the actual filter function-
ality (routing rules) in a single component which becomes the single point of maintenance and
failure. Message routing however adds to the processing overhead of the integration platform.

In a service-based integration platform, routing is often performed by a CONTENT-BASED ROUTER
[HWO04]. As a variant of the MESSAGE ROUTER, this router accesses the message content, i.e., envelope
and body elements, to evaluate the standing routing rules against the data extracted from the messages.
This way, the routing conditions can be set and transmitted by the MESSAGES themselves (e.g., in their
envelopes or by their type annotation), rather than by providing the routing-critical data through an
external source.

CONTENT-BASED ROUTER

Problem An integration solution deploys a MESSAGE ROUTER to have MESSAGES processed
adequately. However, the message routing is not to be decided by external factors or by fixed
routes, but rather by the messages’ content.

Solution A CONTENT-BASED ROUTER has the capacity to examine the message content and
distributes the message to a different channel based on its content (e.g., routing data in the message
envelope, its structure, or message values).

Decision Drivers As a kind of MESSAGE ROUTER, the use of a CONTENT-BASED ROUTER allows
for centrally managing message routing; without the need to modify either the client applications
or platform services. The routing functions, however, may change frequently causing extra main-
tenance effort. The recipients also have no control over the routing process.

Content-based routing is not applicable only for the exchange of MESSAGES representing service
invocation data (e.g., implicit invocations on domain objects), but it can also be used to differentiate
between invocation messages and messages carrying invocation-unrelated or opaque types of data.
Imagine application scenarios which involve setting up audio/video streaming data between client
applications and platform services (i.e., here, streaming services). Such data requires alternative pro-
cessing steps when being mediated by the integration platform; for example as part of an optimization
which bypasses routing and processing steps applicable to handshake and invocation messages only.

Besides acting as a matchmaker between messages and the available data transformation tasks, a
MESSAGE ROUTER also allows for composing processing chains to be applied on selected messages.
Message processing and filter components can be organized in a PIPES AND FILTERS [BMR100,
AZ05] style. Finally, the processing chains can be constructed in a way so that the delivery to the

21



responsible platform service is performed by republishing the transformed message to a backend, or
outgoing channel.

The data sent across the network will not always be used by the data receiver, i.e., the platform ser-
vices, as it is; whatever the dominating communication styles or the communication flow approach is
(MESSAGING vs. explicit component invocations). For example, for exposing FACADE interfaces using
DATA TRANSFER OBJECTS, the backend invocations must be decomposed into a series of invocations
upon one or more platforms and their input and output parameter types. The MESSAGING equivalent
to FACADES and DATA TRANSFER OBJECTS are compound messages, with each of the part messages
addressing a distinct platform service.

A SPLITTER [HWO04] disassembles the compound messages into their constituents which are ex-
pected by the target platform(s). Sometimes multiple elements need to be collected and reassembled
to be delivered to their final destination and to be accepted by the platform services as message end-
points. On the back channel, e.g., for asynchronous REQUEST-REPLY interactions, there is the need
for re-assembling the resulting data elements into a composite reply message. This bears the risk of
duplicates or an out-of-order reassembly.

The SPLITTER can for instance split the messages in the integration platform that are sent to the
different platform services.

SPLITTER

Problem Messages passing through an integration solution consist of multiple elements, each of
which must be processed separately. The incoming message appears as a composite message.

Solution A SPLITTER component is incorporated into the integration platform to break up the
composite message into a series of individual elements or element subsets. Each element subset
is then published as a distinct message. Common elements of the initial message are maintained
in the resulting messages (e.g., identification and sequencing tokens) in order to allow for re-
integrating reply messages later on.

Decision Drivers The primary driver for adopting a SPLITTER is that target platform services,
which are grouped by a dedicated FACADE, must receive the respective data subsets for which they
are responsible when answering invocations dispatched onto the facade interface. A SPLITTER can
not only break a message into its repetitive data chunks, but also a large message into individual
messages to simplify the further processing. On the negative side, there is data overhead in the
resulting messages (e.g., CORRELATION IDENTIFIERS, time stamps). Also, extra processing effort
is needed for aggregating reply messages afterwards.

Conversely, an AGGREGATOR [HWO04] merges individual messages or element subsets thereof into
compound messages to be delivered to the platform services. The AGGREGATOR detects the related
elements as well as their right order according to their CORRELATION IDENTIFIERS. On the reply
channel, an AGGREGATOR might require a SPLITTER.

The AGGREGATOR can for instance aggregate messages in the integration platform that are sent to
the different platform services.

AGGREGATOR

Problem We need to combine the data of individual, but related messages so that the aggregated
data can be processed as a whole by the target system.

Solution An AGGREGATOR component observes the message stream, collects and stores individ-
ual messages based on filter criteria and identification tokens (CORRELATION IDENTIFIERS) unit
it has received a complete set of related messages. After having assembled a single message out

22



of these parts, based on selected aggregation strategies, the resulting message is published for
delivery to the target system.

Decision Drivers In order to be able to aggregate incoming messages to an AGGREGATOR the
messages need to have a correlation that indicates which messages belong together. The aggrega-
tion decisions described by the aggregation algorithm bear the risk of introducing extra develop-
ment effort and additional processing complexity (depending on the aggregation strategy). At the
same time, message aggregation can realize an important optimization strategy in service-based
platform integration: the batch processing of service invocations. For batching, multiple content-
wise unrelated messages are packed into a single composite message to be delivered to a platform
service.

Apart from this whole-part mismatch between senders and receivers at the level of messages,

the data contained in the messages might simply be to excessive or incomplete to be (efficiently)
processable by the receivers. There are many possible reasons for this problem. For example, the
domain model of the target system might only correspond to a subset of the source domain model.
Or certain auxiliary invocation data contained in a message might not be relevant; for instance, the
data might only be required for add-on services or constitute metadata relevant only for the underlying
middleware technologies. Sometimes, security requirements demand the removal of message parts
(e.g., identity tokens). In such cases, a CONTENT FILTER [HWO04] is included in the processing chain

of a message to extract and drop excessive data.

CONTENT FILTER can be applied in the integrated platform to filter the messages that pass through

it.

CONTENT FILTER

Problem When sending messages from one system to another, it is common that situations occur
in which the target system is not interested in all data included in the forwarded messages.

Solution A CONTENT FILTER component is provided to remove unneeded, obsolete, or protected
data items from a message.

Decision Drivers Data filtering for messages is a critical adaptation mechanism to be supported
by an integration platform. It can also simplify the structure of a message (e.g., convert a tree into
a flat structure), or remove redundancy or ambiguity in a data structure. CONTENT FILTERS can
act as pre-processors before handling messages using MESSAGE TRANSLATORS.

Requirements for additional data can result from domain model mismatches, different underlying
middleware, or security requirements. In such cases, a CONTENT ENRICHER [HWO04] augments the
message with the missing information by accessing external data sources or the message context.

CONTENT ENRICHER can be used in the message processing of the integration platform.

CONTENT ENRICHER

Problem When sending messages from one system to another, it is common that situations occur
in which the target system requires more data than included in the original message.

Solution A CONTENT ENRICHER is a specialized message transformer which accesses data
sources external to the message processing system to add the missing data.

Decision Drivers A CONTENT ENRICHER may need to consult external resources to find the re-
quired data, based on references contained in a message. This may not only affect the message
processing throughput negatively, but also the synchronization decoupling in the communica-
tion flow. External resources might required synchronous communication, which requires special
treatment for the enricher component (e.g., introducing a special message consumer internal to

23




the integration platform). If the external source is an integrated platform service, the CONTENT
ENRICHER acts as a variant of AGGREGATOR.

A frequent source of mismatch between client applications and platform services are incompatibil-
ities between the data formats supported. Such format mismatches involve differences in data models,
data types, data representation, and data transport techniques.

When using explicit component invocations and in-memory object representations of the invoca-
tion data, a DATA MAPPER [Fow(3] can be used to deal with the unaligned or non-canonical data
formats between integrating platforms. A DATA MAPPER transforms, e.g., the data from one object
type to another. For dealing with marshalling and transport protocol mismatches, the DATA MAPPER
can use the services offered by MARSHALLER [VKZ05] and PROTOCOL PLUG-IN [VKZ05] compo-
nents as offered by the underlying middleware framework.

DATA MAPPER

Problem Two or more components exchange data in terms of in-memory objects. However, the
receiving interfaces require an incoming data format which is incompatible with the object struc-
tures exchanged. A format mismatch is the consequence, covering inconsistencies at the level of
two incompatible data models, and in-memory representation styles.

Solution Incorporate an auxiliary transformation layer in the component architecture which hosts
a group of mapper components. These DATA MAPPERS provide for the model and representation
transformations for data objects. Certain model and representation strategies are so captured as
dedicated modules and can be applied to data objects exchanged between different pairings of
client applications and platform services.

Decision Drivers The processing of service data in terms of in-memory objects requires colloca-
tion of the two components for which the data is mapped. PROXIES can be used, when process or
machine boundaries need to be crossed. When crossing process and machine boundaries, MES-
SAGE TRANSLATORS take the role of format filters.

MESSAGE TRANSLATOR [HWO04] can be incorporated into the processing chains of MESSAGES for
transposing them from one data format into another. In the processing chains, the MESSAGE TRANS-
LATORS usually come last; as they operate on the already filtered messages (see Figure 14).

The MESSAGE TRANSLATOR can for instance reside in the integration platform and translate be-
tween the client application message formats and the message formats of the platform services.

MESSAGE TRANSLATOR

Problem Two or more interacting applications operate on different message formats and there is
a message format mismatch.

Solution A dedicated filter component is used by the MESSAGE ROUTER to transform an incoming
message format into an outgoing message format. A single MESSAGE TRANSLATOR can cover
any, or even all, levels of transformation (model, type, representation, and transport).

Decision Drivers A key driver for providing a MESSAGE TRANSLATOR component in the integra-
tion platform is to avoid enforcing a uniform message format throughout all (existing and future)
client applications and platform services; if possible at all. A MESSAGE TRANSLATOR preserves
the independence of the integrated clients and services in terms of message formats; the adop-
tion of different standard formats or the modification of proprietary ones remain a localized event
without propagating to the other participants. However, depending on the degree of heterogeneity
within the distributed systems in terms of message formats to be mated, there is the risk of high
complexity (i.e., combinatorial explosion of message format transformations). This is particularly
valid for each MESSAGE TRANSLATOR realizing all transformation steps, potentially in redun-

24



dancy to other translators. This risk can be reduced by limiting a single translator’s responsibility
to a single transformation step (e.g., marshalling) and combining them to message processing
chains for a given integration scenario (e.g., a pair of client application and platform service).

A particular source of complexity in the communication flow design of a service-based integra-
tion platform is the repeated dis- and reassembly of data items; and bridging between process syn-
chronization styles. Both, the content and the synchronization decoupling, require the identification
of decoupled parts. Important examples are message parts of disassembled compound messages (see
SPLITTER pattern) or non-blocking backend replies to blocking frontend requests. Also, the permanent
interleaving of related messages in the integration platform requires a message tracking mechanism.

Adopting CORRELATION IDENTIFIERS [HWO04] is an adequate design decision to address such
tracking requirements. For asynchronous communication styles, where one has to (implicitly or ex-
plicitly) identify exactly a corresponding pair among multiple communication parties, these identifiers
are also referred to ASYNCHRONOUS COMPLETION TOKENS [BHSO07a].

As for designing the frontend interfaces, for instance, CORRELATION IDENTIFIERS can be em-
ployed and stored in the FACADE to track the resulting backend invocations at a per-request level. One
option is to maintain the identifier in the service descriptions, such that every communication with
the service needs to refer to a specific CORRELATION IDENTIFIER. Alternatively, a FACADE could also
store the CORRELATION IDENTIFIERS in the DATA TRANSFER OBJECTS, if available (see Section 4.3).

In a MESSAGING infrastructure, the CORRELATION IDENTIFIER is extensively used to realize con-
versational interactions, i.e., for exchanging and processing messages such in REQUEST-REPLY inter-
actions and MESSAGE SEQUENCE interactions [HWO04], to name but a few.

In some particular cases, one might need to integrate two or more software platforms that do
not support compatible CORRELATION IDENTIFIER mechanisms. The reason can be either one of the
platforms does not support CORRELATION IDENTIFIERS or both support CORRELATION IDENTIFIERS
but their CORRELATION IDENTIFIERS are not simply interchangeable. In such cases, components,
such as the PROXIES or ADAPTERS in this pattern language, are often introduced for mediating the
communication and data exchange between these platforms, i.e., translate and temporarily store the
CORRELATION IDENTIFIERS. This can be realized, e.g., by letting the mediators maintain an additional
table to map the CORRELATION IDENTIFIERS from one communication partner to the CORRELATION
IDENTIFIERS of the other communication partner, and vice versa.

CORRELATION IDENTIFIER

Problem Using asynchronous remote invocations or messages, the requesting component does
not block, even if a reply is expected as part of an asynchronous REQUEST-REPLY conversation.
However, upon incoming an asynchronous reply the receiving components must align the incom-
ing reply to the corresponding request.

Solution To correlate two messages, such as a request and a reply processed at different times,
both messages embed a unique identity token. In the request message, the CORRELATION IDENTI-
FIER is referred to as the request ID. The reply message then includes a token, the CORRELATION
IDENTIFIER, which matches or refers to the initial request ID.

Design Drivers For general MESSAGING and asynchronous REMOTE PROCEDURE INVOCATION
scenarios, it is sufficient to generate and maintain unique IDs for the messages. In service-based
platform integration, it is also required to preserve a reference to the client application having
submitted the original request, along with the unique identifier for the message as such. This
is needed to resume serving a service invocation for a particular client across the asynchronous
frontend connector of an INTEGRATION ADAPTER. Assuming that the client applications should
not and cannot be altered to emit an additional identifier token, to be used as the CORRELATION
IDENTIFIER or as a part of it, the integration platform has to maintain a mapping table which

25



aligns the requesting clients and the CORRELATION IDENTIFIERS issued.

The design decisions become embodied in the way the service-based integration platform lays
out the communication flow in terms of component interactions as depicted in Figure 14. Depending
on the decisions taken on the communication styles (see Section 4.4), there are various possibilities to
laying out the data transformation infrastructure in the service-based integration platform. For example,
the integration platform can be built using basic MESSAGING principles. Alternatively, an explicit
invocation style between transformer components can be applied. Both variants are sketched out as
exemplary setups in Figure 14.

The initial drivers for opting for either approach are the communication styles supported by the
components to integrate (i.e., the client applications and the platform services), as well as the decou-
pling strategies to be implemented by the integration platform. For example, while a straightforward
OBJECT ADAPTER can be easily constructed using explicit invocations, an INTEGRATION ADAPTER
with an asynchronous frontend connector which attaches to the client applications can leverage an
underlying MESSAGING infrastructure. Both approaches allow for minimizing, or ideally turning ob-
solete the need for modifying either the client applications and/or platform services to assist in the data
transformations required. Client applications or platform services not enabled for MESSAGING can be
integrated using bridging PROXY/ADAPTER components which act as the sending or receiving message
endpoints to a frontend and backend channel, respectively. This way, client applications and the plat-
form services do not have to be manipulated even for overcoming such a mismatch in communication
style.

c
2 Application {‘ Application {‘
‘S Component Component
a
2 \
T
L= 2 Applicationﬂ Applicationg
& S {‘ % Component Component
s i Proxy/ <
b5 Adapter ! !
o
S5 35 A v
[ ‘(B‘ 0 =
n > {' .S g Facade E
Q Message Router O O
E SE
S
S
E Data Mapper Data Mapper
[=%
iz /T
) g] Content £ |
Splitter Filt
fiter Adapter Adapter
- — Z] V@ e
Translator Translator Remote {' Remote {l
Proxy Proxy
Remote E
Proxy
1 I
1 | 1 |
€ w €
S Platform3_] Platform3_] Platform3_] S Platform3 ] Platform |
g Service Service Service g Service Service

Figure 14: Organizing Communication Flows in a Service-based Integration Platform

5 Motivating Example Revisited

In this section, we apply our pattern language to the industry case study introduced in Section 3, with
special emphasis on a single integration scenario as illustrated in Figure 3. In Figure 15, we present
an excerpt from the integration architecture containing the three backend platforms (i.e., the Yard

26



Management System YMS, the Warehouse Management System WMS, and the Remote Maintenance
System RMS), the Virtual Service Platform (VSP), and the operator application.

The services introduced for the integration scenario are grouped into components; for example,
the services initiateVoiceCall and endCall are enclosed by the component CallHandling. A FACADE
component (OperatorAppFacade) provides a common application interface for invoking the different
platform services. The component CommunicationFlowManager embodies the communication flow
between the operator application and the integrated platforms. In order to invoke the remote platform
services, ADAPTER and PROXY components are introduced into an integration layer below the Com-
municationFlowManager component. In case the access to the remote services does not require any
interface adaptations, a PROXY component is used (e.g., TruckManagementProxy, PositionReporting-
Proxy, etc.). Otherwise, an ADAPTER component is deployed to resolve interface incompatibilities,
i.e., changes to the parameter structure (e.g., CallHandlingAdapter and VideoHandlingAdapter) or to
operation names.

c
8
55
z _S OperatorApp E
o5
Q O
o< ‘

L
((E\
OperatorAppFacade $:|
£ Communicationﬂ
o FlowManager
g
o
8 .Call g Storage
= HandlingAdapter UnitsManagementProxy
9 Session
TU; 6 . HandlingAdap%| Truck . /J\
S Video $:| ManagementProxy Position $:| Dock $:|
b= HandlingAdapter (l\ /l\ ReportingProxy ManagementProxy
= T A @ PN T
[fa) [ [ 1
Call Session iti
Handling ] Handling i RZOS;:;?: 2] Dock
P g Management
Truck
Video Storage

)] [} 0
= Handling = Management = Units Management
o > =

Figure 15: Excerpt from the Integration Architecture

In Figure 16, we introduce two exemplary designs of the communication flows between the oper-
ator application and the three platforms as provided by the CommunicationFlowManager component
in Figure 15. In the first communication flow diagram, the platforms send notifications. These notifica-
tions are assigned CORRELATION IDENTIFIERS before they are enriched with platform details required
by the operator (WMSNotificationEnricher, YMSNotificationEnricher, RMSNotificationEnricher). The
atomic notifications are aggregated into one notification (in the PlatformNotificationAggregator) which
is then delivered to the operator application. To receive the notifications, the operator is expected to
subscribe to the appropriate notification channel (following the PUBLISH-SUBSCRIBER pattern). In the
second communication flow diagram, the operator invokes the operation moveTrackToDock and the re-
quest receives a CORRELATION ID. Afterwards the request is logged using a PUBLISH-SUBSCRIBER
interaction style. Finally, the request is added to the TruckRequestsQueue message queue at which the
YMS is listening for incoming tasks.

27



All three platform All notification The notifications
send notification messages get a get enriched with

messages correlation ID platform-specific

- information
o} g o
. . e . The operator
WMS % 11— D The notifications subscribes to get
E get aggregated notifications
WMSNotificationEnricher
(0] o]
—
O—0O 2 0 Operator
YMS > L= D U =0 > Application
8] > 0 L »
YMSNotificationEnricher | PlatformNotificationAggregator
RMS O—| |
8]
RMSNotificationEnricher
The operator invoke! All operations get BefzreYt’\r;leSy Erriv
the operation a correlation ID at the they
moveTrackToDock get logged
& é !
—>
Operator O O — YMS
Application 5] . —
\I, TruckRequestsQueue
Logger

Figure 16: Examples of Communication Flows

6 Related Work

Our pattern language describes a family of service-oriented architectures [HZ12] for platform-
integration purposes. From this viewpoint, our pattern language complements architectural patterns
emphasizing application, service, and business process integration in the large [HWO04] by adding the
architectural description of another integration style, service-based integration platforms, which has
not been explicitly discussed in pattern language form before.

However, our work is closely related to many other pattern languages. The works most closely
related are existing pattern languages that are integrated into ours. In particular, we used selected pat-
terns from those other pattern languages in the specific context of service-based platform integration
and adaptation. With this, we documented missing links and decision drivers (i.e., forces and conse-
quences). For decisions relating to adapting and integrating platform services, patterns on SOA integra-
tion [HZ12, Vog01, BHSO7b] and software architecture integration [AZ05, GHIV94] have been con-
sulted. Regarding decisions on service and component interface design, we identified relevant patterns
in two pattern languages on general software and service-oriented architectures [BMR 100, AZ05], as
well as in the pattern language on enterprise application integration [Fow03]. For decisions regard-
ing the communication style and communication flow in the platform integration solution, patterns on
object remoting middleware [VKZ05] and messaging systems [HWO04] have been integrated.

Zdun and Hentrich [HZ09, HZ12] describe a pattern language for process integration architec-
tures. This pattern language can be combined with the patterns described in this paper, by using either
a workflow or a business process engine (called macroflow engine in [HZ09, HZ12]). To the same
effect, a microflow engine for handling the integration logic can be incorporated into the service-based
integration platform. That is, the process-based integration patterns can be used to replace the com-

28



munication style and communication flow patterns, described in our pattern language, to support the
process-based integration style in a service-based integration platform.

Closely related are contributions about managing the variability in a SOA, in particular the pattern-
based approaches by Khan et al. [KKKS11]. By managing variability, we mean the separated specifica-
tion of differences (i.e., variation points and the binding options) between the variants to be instantiated
from a SOA (see also SEPARATE DESCRIPTION OF VARIABILITY in [Voe09]) and the corresponding
implementation of the so-specified variants using different variability techniques (e.g., static and dy-
namic parametrization, injection). SOA variability [RRS™08] must be dealt with or must even be re-
alized in a service-based integration platform. Prominent examples for SOA variations stressed in our
paper are forms of runtime re-configuration of platform internals (e.g., interface adapters) by applying
the COMPONENT CONFIGURATOR pattern. Varying service interfaces (e.g., interface evolution over
time, client-specific interfaces) and substituting services (e.g., for different client bases) are addressed
by the various patterns touching service interface design (e.g., FACADE; see Section 4.3).

While there have been numerous contributions for describing and managing variability in SOAs
(see more recently, e.g., [CKO7, NP10, aSRS*10, NCH11]), to the best of our knowledge, the ap-
proach by Khan et al. [KKKS11] is the only other pattern-based approach existing so far. Khan et al.
[KKKS11] present a catalogue of six patterns for describing recurring variability problems and vari-
ability solutions in SOAs. The patterns touch on service parametrization (e.g., distinguishing between
invocation parametrization and extrinsic configuration through various configuration descriptors), on
conditional routing of service invocations (e.g., based on business rules), on providing signature com-
patibility for services, on client-driven service adaptation (e.g., by injecting behaviour into services into
existing through configuration interfaces), and on service cloning (to serve client applications indepen-
dently from each other). While the pattern collection sketches the considerable range of variability in
a SOA, it is severely limited. Some patterns relate to very specific SOA variants, in particular SaaS
systems; others address general issues of SOA adaptation and SOA integration without referring to the
extensive body of existing pattern works on these subject matters. For example, the PARAMETER and
SERVICE WRAPPER patterns closely relate to patterns on component configuration and different vari-
ants of the ADAPTER pattern [GHJV94]. Finally, the relationship among the six patterns and between
the six patterns and related patterns are not described.

In recent years, software architecture is often seen as the principal design decisions governing a
system [TvdHO7, JBOS]. An important idea is to document the design rationale of the architecture
using means such as architectural design decisions (ADDs). ADD approaches propose prescriptive
architecture design decisions meta-models for structuring, relating, and navigating the actual tem-
plates created for a given architecture [TA05, KLvV06, dBFL108, ZKL 109, CZZ"11]. As conceptual
meta-models, ADDs are decomposed into compounds of decision descriptions, decision alternatives,
decision groups, artifacts and activities related to individual decisions; and the relations between these
building blocks.

By reusing and linking ADDs to patterns as design artifacts [ZZGL08, vHAQ09], documenting
architecture decisions can be substantially facilitated [HAZO7]. The work by Zimmermann et al. has
integrated various SOA pattern languages in a reusable ADD model. For Zimmermann et al. [ZKL109]
patterns take the role of architectural decision alternatives, i.e., they represent the solution space of an
ADD. The authors further discriminate between four different levels of decisions (executive, concep-
tual etc.), and different kinds of patterns as decision output are proposed for each level: At the executive
decision level, process and requirement analysis patterns enter as decision options. Then, at the so-
called conceptual decision level, high-level architectural patterns (e.g., BROKER vs. SHARED REPOSI-
TORY) and critical technology choices follow. At the third and technological decision level, design and
remoting patterns apply as decision alternatives [VKZ05]. For asset-level decisions, implementation-
level patterns and concrete technology options apply.

Drawing upon their experiences using a structured Wiki as an ADD documentation tool and a SOA-

29



centric industry case study, Capilla et al. [CZZ ™" 11] consider architectural patterns as concrete decision
alternatives. Regarding process-driven SOA patterns [HZ12], patterns enter the concrete solution cata-
logue maintained by the Wiki-based documentation tooling. In terms of their ADD meta-model, SOA
patterns predominantly represent decision alternatives (ADAlternatives), but also decision issues
and outcomes.

7 Concluding Remarks

A typical (service-based) application often relies on functions provided by different (service) platforms
specialized for different domains. As a consequence, many applications are faced with the requirement
for integration of services from one or even multiple heterogeneous platforms. However, platform
integration is a rather challenging task as the software architects and developers are confronted with
several design decisions at different levels of abstractions and different levels of granularity. There is a
considerable amount of patterns targeting various aspects of service-based integration and adaptation
[GHIV94, BMR 00, BHS07a, Fow03, HW04, VKZ05, HZ09, Dail2, HZ12]. Unfortunately, these
patterns, on the one hand, have been documented with a different focus and, on the other hand, walking
through several patterns scattered in different literature in order to arrive at a design solution for service
platform integration is tedious and time-consuming.

The major contribution of this paper is to revisit the existing patterns and design decisions re-
garding service-based integration and adaptation of platforms and organize them in a comprehensive
pattern language such that software architects and developers can systematically reference and fol-
low the pattern language to build up an appropriate platform integration and adaptation solution. The
pattern language presented in this paper considers four essential high-level architectural decision cat-
egories in the context of service platform integration, which are Adaptation and Integration, Interface
Design, Communication Style, and Communication Flow. Each category constitutes a number of ar-
chitectural design decisions described in terms of relevant patterns and their relationships along with
their variations or alternatives and the decisive reasons leading to choosing these patterns. Based on the
descriptions of this pattern language, the functional and non-functional properties of the service plat-
forms, and particular requirements of the service-based applications built on top of the platforms, one
might develop not only a platform integration solution but also a number of alternative configurations
of the solution.

While our pattern language covers the core design space of service-based platform integration,
there are many open issues relevant for the design of platform integration solutions, but not covered
yet in our pattern language. Our future endeavours will consider categories such as monitoring, QoS
and SLAs for platform integration solutions, more sophisticated adaptation options, and further pat-
terns at lower levels of abstraction and finer levels of granularity. In addition, follow-on tool support
would also be useful to enable software architects in better devising and utilizing an adequate set of
questions for developing and documenting a certain architectural design in service platform integra-
tion and adaptation. The pattern language described in this paper will provide the basis for such tools
supporting architectural design.

8 Acknowledgements

Thanks are due to Michael Weiss as our EuroPLoP shepherd. This work was partially supported by the
European Union FP7 project INDENICA (http://www.indenica.eu), grant no. 257483.

30



References

[aSRST10]

[AZ05]

[BHSO7a]

[BHSO7b]

[BMR100]

[CCMWO1]

[CKO7]

[CZZt11]

[Dail2]

[dBFL*08]

[Fow03]

[GHIV94]

[GMA12]

[HAZO7]

[HWO04]

Chang ai Sun, Rowan Rossing, Marco Sinnema, Pavel Bulanov, and Marco Aiello. Mod-
eling and managing the variability of Web service-based systems. Journal of Systems and
Software, 83(3):502-516, 2010.

P. Avgeriou and U. Zdun. Architectural patterns revisited — a pattern language. In Pro-
ceedings of 10th European Conference on Pattern Languages of Programs (EuroPlop
2005), pages 1-39, Irsee, Germany, July 2005.

Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Software
Architecture — A Pattern Language for Distributed Computing, volume 4 of Wiley Series
in Software Design Patterns. John Wiley & Sons Ltd., New York, 2007.

Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Software
Architecture — On Patterns and Pattern Languages. Wiley Series on Software Design
Patterns. John Wiley & Sons Ltd., Chichester, England, April 2007.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal,
editors. Pattern-Oriented Software Architecture — A System of Patterns. John Wiley &
Sons Ltd., Chichester, England, 2000.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
Services Description Language (WSDL) 1.1, mar 2001.

Soo Ho Chang and Soo Dong Kim. A Variability Modeling Method for Adaptable Ser-
vices in Service-Oriented Computing. Proceedings of the 11th International Software
Product Line Conference (SPLC’11), pages 261-268, 2007.

Rafael Capilla, Olaf Zimmermann, Uwe Zdun, Paris Avgeriou, and Jochen Kiister. An
enhanced architectural knowledge metamodel linking architectural design decisions to
other artifacts in the software engineering lifecycle. In Ivica Crnkovic, Volker Gruhn,
and Matthias Book, editors, Software Architecture, volume 6903 of Lecture Notes in
Computer Science, pages 303-318. Springer Berlin / Heidelberg, 2011.

Robert Daigneau. Service Design Patterns: fundamental design solutions for
SOAP/WSDL and restful Web Services. Addison-Wesley, 2012.

Remco C. de Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet, Viktor Clerc, and
Anton Jansen. Architectural knowledge: Getting to the core. In Post-Conference Pro-
ceedings of Third International Conference on Quality of the Software Architectures,
Components, and Applications (QoSA 2007) Medford, MA, USA, July 11-23, 2007, vol-
ume 4880 of Lecture Notes in Computer Science, pages 197-214. Springer, 2008.

Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 4th edition, 2003.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns —
Elements of Reusable Object-Oriented Software. Addison Wesley Professional Comput-
ing Series. Addison Wesley, October 1994.

Yaser Ghanam, Frank Maurer, and Pekka Abrahamsson. Making the leap to a soft-
ware platform strategy: Issues and challenges. Information and Software Technology,
54(9):968-984, 2012.

N. Harrison, P. Avgeriou, and Uwe Zdun. Using patterns to capture architectural deci-
sions. IEEE Software, 24(4):38-45, July 2007.

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley, 2nd edition, 2004.

31



[HZ09]

[HZ12]

[JBO5]

[KKKS11]

[KLvV06]

[NCHI11]

[NP10]

[RRST08]

[RS10]

[SSRBO00a]

[SSRBOOb]

[SSRBOOCc]

[TAO5]

[TvdHO7]

Carsten Hentrich and Uwe Zdun. A Pattern Language for Process Execution and Inte-
gration Design in Service-Oriented Architectures. In James Noble and Ralph Johnson,
editors, Transactions on Pattern Languages of Programming I, volume 5770 of Lecture
Notes in Computer Science, pages 136—191. Springer Berlin / Heidelberg, 2009.

Carsten Hentrich and Uwe Zdun. Process-Driven SOA: Patterns for Aligning Business
and IT. Infosys Press, 2012.

A.Jansen and J. Bosch. Software architecture as a set of architectural design decisions. In
Proceedings of the 5th Working IEE/IFP Conference on Software Architecture, WICSA,
2005.

Ateeq Khan, Christian Késtner, Veit Koppen, and Gunter Saake. Service variability pat-
terns. In Proceedings of the ER 2011 Workshops on Advances in Conceptual Modeling,
Recent Developments, and New Directions, number 6999 in Lecture Notes in Computer
Science, pages 130-140, 2011.

Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up and reasoning about
architectural knowledge. In Christine Hofmeister, Ivica Crnkovic, and Ralf Reussner,
editors, Quality of Software Architectures, volume 4214 of Lecture Notes in Computer
Science, pages 43—-58. Springer Berlin / Heidelberg, 2006.

Tuan Nguyen, Alan Colman, and Jun Han. Modeling and Managing Variability in
Process-Based Service Compositions. In Gerti Kappel, Zakaria Maamar, and Hamid
Motahari-Nezhad, editors, Proceedings of the 9th International Conference on Service-
Oriented Computing (ICSOC’09), volume 7084 of Lecture Notes in Computer Science,
pages 404—420. Springer-Verlag, 2011.

Nanjangud C. Narendra and Karthikeyan Ponnalagu. Towards a Variability Model for
SOA-Based Solutions. Proceedings of the IEEE International Conference on Services
Computing 2010, pages 562-569, 2010.

Anna Ruokonen, Vilho Raisanen, Mika Siikarla, Kai Koskimies, and Tarja Systa. Varia-
tion needs in service-based systems. In Proceedings of the 6th European Conference on
Web Services, pages 115-124. IEEE Computer Society, 2008.

Marko Rosenmiiller and Norbert Siegmund. Automating the Configuration of Multi Soft-
ware Product Lines. In Proceedings of the Fourth International Workshop on Variabil-
ity Modelling of Software-Intensive Systems, volume 37 of ICB-Research Report, pages
123-130. Universitdt Duisburg-Essen, 2010.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, chapter Extension Interface, pages 141-174. John Wiley
& Sons Ltd.Wiley, Chichester, England, 2000.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, chapter Interceptor, pages 109—141. John Wiley & Sons
Ltd.Wiley, Chichester, England, 2000.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture — Patterns for Concurrent and Networked Objects, vol-
ume 2 of Wiley Series in Software Design Patterns. John Wiley & Sons Ltd.Wiley, Chich-
ester, England, 2000.

Jeff Tyree and Art Akerman. Architecture decisions: Demystifying architecture. [EEE
Software, 22:19-27, 2005.

Richard N. Taylor and Andre van der Hoek. Software design and architecture: The once
and future focus of software engineering. Future of Software Engineering (FOSE '07),
pages 226-243, 2007.

32



[VHAO09]

[VKZO05]

[Voe09]

[Vog01]

[ZKL*09]

[ZZGLO08]

Uwe van Heesch and Paris Avgeriou. A pattern driven approach against architectural
knowledge vaporization. In Proceedings of 14th Annual European Conference on Pattern
Languages of Programming (EuroPLoP 2009), Irsee, Germany, July 8-12, 2009, volume
566 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

Markus Volter, Michael Kircher, and Uwe Zdun. Remoting Patterns: Foundations of
Enterprise, Internet and Realtime Distributed Object Middleware. Software Design Pat-
terns. John Wiley & Sons Ltd., Chichester, England, 2005.

Markus Voelter. Variability patterns. In Michael Weiss, editor, Proceedings of the 14th
European Conference on Pattern Languages of Programs (EuroPLoP 2009), July 8-12,
Irsee, Germany, volume 566 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

Oliver Vogel. Service Abstraction Layer. In Proceedings of EuroPLoP 2001, Irsee,
Germany, 2001.

Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley, and Nelly Schuster.
Managing architectural decision models with dependency relations, integrity constraints,
and production rules. Journal of Systems and Software, 82(8):1249-1267, 2009.

Olaf Zimmermann, Uwe Zdun, Thomas Gschwind, and Frank Leymann. Combining
pattern languages and reusable architectural decision models into a comprehensive and
comprehensible design method. In Proceedings of the Seventh Working IEEE / IFIP
Conference on Software Architecture (WICSA 2008), 18-22 February 2008, Vancouver,
BC, Canada, pages 157-166. IEEE Computer Society, 2008.

33



