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Abstract. Documenting system behavior explicitly using graphical
models (e.g. UML activity or sequence diagrams) facilitates communica-
tion about and understanding of software systems during development
and maintenance tasks. Creating graphical models manually is a time-
consuming and often error-prone task. Deriving models from system-
execution traces, however, suffers from resulting model sizes which render
the models unmanageable for humans. This paper describes an approach
for deriving behavior documentation from runtime tests in terms of UML
interaction models. Key to our approach is leveraging the structure of
scenario-based runtime tests to render the resulting interaction models
and diagrams tailorable by humans for a given task. Each derived model
represents a particular view on the test-execution trace. This way, one
can benefit from tailored graphical models while controlling the model
size. The approach builds on conceptual mappings (transformation rules)
between a test-execution trace metamodel and the UML2 metamodel. In
addition, we provide means to turn selected details of test specifications
and of testing environment (i.e. test parts and call scopes) into views on
the test-execution trace (scenario-test viewpoint). A prototype imple-
mentation called KaleidoScope based on a software-testing framework
(STORM) and model transformations (Eclipse M2M/QVTo) is available.

Keywords: Test-based documentation · Scenario-based testing ·
Test-execution trace · Scenario-test viewpoint · UML interactions ·
UML sequence diagram

1 Introduction

Scenarios describe intended or actual behavior of software systems in terms
of action and event sequences. Notations for defining and describing scenarios
include different types of graphical models such as UML activity and UML inter-
action models. Scenarios are used to model systems from a user perspective and
ease the communication between different stakeholders [3,17,18]. As it is almost
impossible to completely test a complex software system, one needs an effective
procedure to select relevant tests, to express and to maintain them, as well as
to automate tests whenever possible. In this context, scenario-based testing is a
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means to reduce the risk of omitting or forgetting relevant test cases, as well as
the risk of insufficiently describing important tests [21,32].

Tests and a system’s source code (including the comments in the source code)
directly serve as a documentation for the respective software system. For exam-
ple, in Agile development approaches, tests are sometimes referred to as a living
documentation [35]. However, learning about a system only via tests and source
code is complex and time consuming. In this context, graphical models are a pop-
ular device to document a system and to communicate its architecture, design,
and implementation to other stakeholders, especially those who did not author
the code or the tests. Moreover, graphical models also help in understanding
and maintaining a system, e.g., if the original developers are no longer available
or if a new member of the development team is introduced to the system. Alas,
authoring and maintaining graphical models require a substantial investment of
time and effort. Because tests and source code are primary development arti-
facts of many software systems, the automated derivation of graphical models
from a system’s tests and source code can contribute to limiting documenta-
tion effort. Moreover, automating model derivation provides for an up-to-date
documentation of a software system, whenever requested.

A general challenge for deriving (a.k.a. reverse-engineering) graphical models
is that their visualization as diagrams easily becomes too detailed and too exten-
sive, rendering them ineffective communication vehicles. This has been referred
to as the problem of model-size explosion [1,33]. Common strategies to cope with
unmanageable model sizes are filtering techniques, such as element sampling and
hiding. Another challenge is that a graphical documentation (i.e. models, dia-
grams) must be captured and visualized in a manner which makes the resulting
models tailorable by the respective stakeholders. This way, stakeholders can fit
the derived models to a certain analysis purpose, e.g., a specific development or
maintenance activity [9].

Fig. 1. Deriving tailored UML interaction models from scenario tests.

In this paper, we report on an approach for deriving behavior documentation
(esp. UML2 interaction models depicted via sequence diagrams) from scenario-
based runtime tests in a semi-automated manner (see Fig. 1). Our approach is
independent of a particular programming language. It employs metamodel map-
pings between the concepts found in scenario-based testing, on the one hand,
and the UML2 metamodel fragment specific to UML2 interactions [27], on the
other hand. Our approach defines a viewpoint [4] which allows for creating dif-
ferent views on the test-execution traces resulting in partial interaction models
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and sequence diagrams. Moreover, we present a prototypical realization of the
approach via a tool called KaleidoScope1. This paper is a revised and extended
version of our paper from ICSOFT 2015 [15]. This post-conference revision incor-
porates important changes in response to comments by reviewers and by confer-
ence attendees. For example, we included the OCL consistency constraints for
the derived UML interaction models.

Fig. 2. Conceptual overview of deriving tailored UML interaction models from
scenario-based runtime tests.

Figure 2 provides a bird’s-eye view on the procedure of deriving tailored inter-
action models from scenario-based runtime tests. After implementing the source
code of the SUT and specifying the scenario-test script, the respective tests are
executed (see steps 1© and 2© in Fig. 2). A “trace provider” component instru-
ments the test run (e.g. using dynamic analysis) and extracts the execution-
trace data2 for creating a corresponding scenario-test trace model (see step 3©).
After test completion, the test log is returned (including the test result). Based
on a view configuration and on the extracted trace model (see steps 4© and
5©), an interaction model (step 6©) is derived. This transformation is executed

by a “model builder” component, which implements the conceptual mappings
between the test-execution trace metamodel and the UML2 metamodel. The
concrete source and target models are instances of the corresponding metamod-
els. Notice that based on one trace model (reflecting one test run), multiple
tailored interaction models can be derived in steps 4© through 6©.3 Finally,
1 Available for download from our website [14].
2 For the purposes of this paper, a trace is defined as a sequence of interactions between

the structural elements of the system under test (SUT), see e.g. [38].
3 The process described so far is supported by our KaleidoScope tool [14].
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the models can be rendered by a diagram editor into a corresponding sequence
diagram (step 7©) to assist in analysis tasks by the stakeholders (step 8©).

The remainder of this paper is structured as follows: In Sect. 2, we explain how
elements of scenario tests can be represented as elements of UML2 interactions.
In particular, we introduce in Sect. 2.1 our metamodel of scenario-based testing
and in Sect. 2.2 the elements of the UML2 metamodel that are relevant for
our approach. In Sect. 2.3, we present the conceptual mappings (transformation
rules) between different elements of the scenario-test metamodel and the UML2
metamodel. Subsequently, Sect. 3 proposes test-based tailoring techniques for the
derived interaction models. In Sect. 3.1, we explain the option space for tailoring
interaction models based on a scenario-test viewpoint and illustrate a simple
application example in Sect. 3.2. Section 3.3 explains how tailoring interaction
models is realized by additional view-specific metamodel mappings. In Sect. 4,
we introduce our prototypical implementation of the approach. Finally, Sect. 5
gives an overview of related work and Sect. 6 concludes the paper.

2 Representing Scenario Tests as UML2 Interactions

2.1 Scenario-Test Structure and Traces

We extended an existing conceptual metamodel of scenario-based testing [34].
This extension allows us to capture the structural elements internal to sce-
nario tests, namely test blocks, expressions, assertions, and definitions of fea-
ture calls into the system under test (SUT; see Fig. 3). A trace describes the
SUT’s responses to specific stimuli [4]. We look at stimuli which are defined
by an executable scenario-test specification and which are enacted by execut-
ing the corresponding scenario test. In the following, we refer to the combined
structural elements of the scenario-test specifications and the underlying test-
execution infrastructure as the scenario-test framework (STF). This way, an
execution of a scenario-based TestSuite (i.e. one test run) is represented
by a Trace instance. In particular, the respective trace records instances of
FeatureCall in chronological order, describing the SUT feature calls defined
by the corresponding instances of FeatureCallDefinition that are owned
by a block. Valid kinds of Block are Assertion (owned, in turn, by Pre- or
Postcondition block) or other STF features such as Setup, TestBody or
Cleanup in a certain scenario test. In turn, each SUT Feature represents a
kind of Block. A block aggregates definitions of SUT feature calls. Instances
of FeatureCall represent one interaction between two structural elements
of the SUT. These source and target elements are represented by instan-
tiations of Instance. Every feature call maintains a reference to the calling
feature (caller) and the corresponding called feature (callee), defined and
owned by a given class of the SUT. Features are divided into structural fea-
tures (e.g. Property) and behavioral features (e.g. Operation). Moreover,
Constructor and Destructor owned by a class are also kinds of Feature.
A feature call additionally records Argument instances that are passed into the
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Fig. 3. Test-execution trace metamodel extends [34] to include test-block structure
and scenario-test traces.

called feature, as well as the return value, if any. The sum of elements specific
to a call is referred to as “call dependencies”.

2.2 Interaction-Specific Elements of UML2

UML interaction models and especially sequence diagrams offer a notation for
documenting scenario-test traces. A UML Interaction represents a unit of
behavior (here the aforementioned trace) with focus on message interchanges
between connectable elements (here SUT instances). In this paper, we focus on
a subset of interaction-specific elements of the UML2 metamodel that specify
certain elements of UML2 sequence diagrams (see Fig. 4). The participants in a
UML interaction model are instances of UML classes which are related to a given
scenario test. The sequence diagram then shows the interactions between these
instances in terms of executing and receiving calls on behavioral features (e.g.
operations) and structural features (e.g. properties) defined for these instances
via their corresponding UML classes. From this perspective, the instances
interacting in the scenario tests constitute the SUT. Instances which repre-
sent structural elements of the scenario-testing framework (STF; e.g. test cases,
postconditions), may also be depicted in a sequence diagram; for example as
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Fig. 4. Selected interaction-specific elements of the UML2 metamodel.

a test-driver lifeline [5]. The feature calls on SUT instances originating from
STF instances rather than other SUT instances represent the aforementioned
stimuli. This way, such feature calls designate the beginning and the end of a
scenario-test trace.

2.3 Mapping Test Traces to Interactions

To formalize rules for transforming scenario-test traces into UML interactions,
we define a metamodel mapping between the scenario-test trace metamodel, on
the one hand, and the corresponding excerpt from the UML2 metamodel, on the
other hand. For the purposes of this paper, we specified the corresponding map-
pings using transML diagrams [13], which represent model transformations in a
tool- and technology- independent manner compatible with the UML. In total,
18 transML mapping actions are used to express the correspondences. These
mapping actions (M1–M18) are visualized in Figs. 5, 6 and 12. The transML
mapping diagrams are refined by OCL expressions [24] to capture important
mapping and consistency constraints for the resulting UML interaction models.
The mapping constraints are depicted below each related transML mapping.
The mapping action represents the context for the OCL constraints and, this
way, allows for navigating to elements of the source and target model. The OCL
consistency constraints are fully reported in the Appendix of this paper.

In general, i.e. independent of a configured view, each Trace instance,
which comprises one or several feature calls, is mapped to an instance of UML
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Fig. 5. Mapping elements of scenario-test traces (specific to a feature call fC) to UML2
elements.

Interaction (see M10 in Fig. 5). This way, the resulting interaction model
reflects the entire test-execution trace (for viewpoint mappings, see Sect. 3.3).
However, each instance of FeatureCall (fC) contained by a given trace is
mapped to one UML Message instance (see M4). Each of the mappings of the
other trace elements (i.e. “call dependencies”) depends on mapping M4 and is
specific to fC. Each instance that serves as source or target of a feature
call is captured in terms of a pair of a ConnectableElement instance and
a Lifeline instance. A Lifeline, therefore, represents a participant in the
traced interaction, i.e., a ConnectableElement typed with the UML class
of the participant. See the transML mapping actions M1 and M2 in Fig. 5. An
instance of MessageOccurrence in the resulting interaction model represents
the feature call at the calling feature’s end as a sendEvent (see M5). Likewise,
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at the called feature’s end, the feature call maps to a receiveEvent (see M6).
Depending on the kind of the feature call, the resulting Message instance is
annotated differently. For constructor and destructor calls, the related message
has a create or delete signature, respectively. In addition, the corresponding
message is marked using messageSort createMessage or deleteMessage,
respectively (see M8 and M9). Note that in case of a constructor call, the target
is represented by the class of the created instance and the created instance is the
return value. This way, in this specific case, the return value is mapped to life-
line and connectable element typed by the target (see M8). Other calls map to
synchronous messages (i.e. messageSort synchCall). In this case, the name
of the callee feature and the names of the arguments passed into the call are
mapped to the signature of the corresponding Message instance (see M7). In
addition, an execution is created in the interaction model. An Execution rep-
resents the enactment of a unit of behavior within the lifeline (here the execution
of a called feature). The resulting Execution instance belongs to the lifeline of
the target instance and its start is marked by the message occurrence cre-
ated by applying M6. For the corresponding OCL consistency constraints based
on mapping M4, see Listing 1.3 in the Appendix.

Fig. 6. Mapping return value (specific to a feature call fC) to UML2 elements.

If a given feature call fC reports a return value, a second Message
instance will be created to represent this return value. This second message
is marked as having messageSort reply (see M12 in Fig. 6). Moreover, two
instances of MessageOccurrence are created acting as the sendEvent and
the receiveEvent (covering the lifelines mapped from target and source
instance related to fC, respectively). An instance of NamedElement acts as
the signature of this message, reflecting the actual return value (see M12).
In case of a missing return value, an ExecutionOccurrence instance is



334 T. Haendler et al.

provided to consume the call execution (finish) at the called feature’s end
(see M11). Listing 1.4 in the Appendix provides the corresponding OCL consis-
tency constraints based on mapping M12.

The chronological order of the FeatureCall instances in the recorded trace
must be preserved in the interaction model. Therefore we require that the mes-
sage occurrences serving as send and receiveEvents of the derived mes-
sages (see M5, M6, M12) preserve this order on the respective lifelines (along
with the execution occurrences). This means, that after receiving a message
(receiveEvent), the send events derived from called nested features are added
in form of events covering the lifeline. In case of synchronous calls with owned
return values, for each message, the receive event related to the reply message
enters the set of ordered events (see M12) before adding the send event of the
next call.

3 Views on Test-Execution Traces

In this section, we discuss how the mappings from Sect. 2 can be extended to
render the derived interaction models tailorable. By tailoring, we refer to specific
means for zooming in and out on selected details of a test-execution trace; and
for pruning selected details. For this purpose, our approach defines a scenario-
test viewpoint. A viewpoint [4] stipulates the element types (e.g. scenario-test
parts, feature-call scopes) and the types of relationships between these element
types (e.g. selected, unselected) available for defining different views on test-
execution traces. On the one hand, applying the viewpoint allows for control-
ling model-size explosion. On the other hand, the views offered on the derived
models can help tailor the corresponding behavior documentation for given
tasks (e.g. test or code reviews) and/or stakeholder roles (e.g. test developer,
software architect).

Fig. 7. Example of an option space for configuring views on test-execution traces by
combining scenario-test parts and feature-call scopes.
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3.1 Scenario-Test Viewpoint

To tailor the derived interaction models, two characteristics of scenario tests and
the corresponding scenario-test traces can be leveraged: the whole-part structure
of scenario tests and trackable feature-call scopes.

Scenario-Test Parts. Scenario tests, in terms of concepts and their specifica-
tion structure, are composed of different parts (see Sect. 2.1 and Fig. 3):

– A test suite encompasses one or more test cases.
– A test case comprises one or more test scenarios.
– A test case, and a test scenario can contain assertion blocks to specify pre-

and post-conditions.
– A test suite, a test case, and a test scenario can contain exercise blocks, as
setup, or cleanup procedures.

– A test scenario contains a test body.

Feature-Call Scopes. Each feature call in a scenario-test trace is scoped
according to the scenario-test framework (STF) and the system under test
(SUT), respectively, as the source and the target of the feature call. This way,
we can differentiate between three feature-call scopes:

– feature calls running from the STF to the SUT (i.e. test stimuli),
– feature calls internal to the SUT (triggered by test stimuli directly and indi-

rectly),
– feature calls internal to the STF.

The scenario-test parts and feature-call scopes form a large option space for
tailoring an interaction model. In Fig. 7, these tailoring options are visualized as
a configuration matrix. For instance, a test suite containing one test case with
just one included test scenario offers 14,329 different interaction-model views
available for configuration based on one test run (provided that the correspond-
ing test blocks are specified).4

3.2 Example

In this section, we demonstrate by example the relevance of specifying differ-
ent views on the test-execution traces for different tasks and/or stakeholder
roles. A stack-based dispenser component (one element of an exemplary SUT)
is illustrated in Fig. 8. A Stack provides the operations push, pop, size,
and full as well as the attributes limit and element, which are accessible
via corresponding getter/setter operations (i.e. getElements, getLimit and
setLimit).

4 The number of views computes as follows: There are (23−1) non-empty combinations
of the three feature-call scopes (SUT internal, STF internal, STF to SUT) times the
(211 − 1) non-empty combinations of at least 11 individual test parts (e.g. setup of
test case, test body of test scenario).
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Fig. 8. Excerpt
from a UML class
diagram of an
exemplary SUT.

Listing 1.1. Natural-language notation of scenario
pushOnFullStack.

1 Given: ’that a specific instance of Stack contains elements of the size of 2
and has a limit of 2’

2 When: ’an element is pushed on the instance of Stack’
3 Then: ’the push operation fails and the size of elements is still 2’

Listing 1.2. Excerpt from an exemplary test script specifying
test scenario pushOnFullStack.

1 set fs [::STORM::TestScenario new -name pushOnFullStack -testcase pushElement]
2 $fs expected_result set 0
3 $fs setup_script set {
4 [::Stack info instances] limit set 2
5 }
6 $fs preconditions set {
7 {expr {[[::Stack info instances] size] == 2}}
8 {expr {[[::Stack info instances] limit get] == 2}}
9 }
10 $fs test_body set {
11 [::Stack info instances] push 1.4
12 }
13 $fs postconditions set {
14 {expr {[[::Stack info instances] size] == 2}}
15 }

Consider the example of a test developer whose primary task is to conduct a
test-code review. For this review, she is responsible for verifying a test-scenario
script against a scenario-based requirements description. The scenario is named
pushOnFullStack and specified in Listing 1.1. The excerpt from the test script
to be reviewed is shown in Listing 1.2. To support her in this task, our approach
can provide her with a partial UML sequence diagram which reflect only selected
details of the test-execution trace. These details of interest could be interactions
triggered by specific blocks of the test under review, for example. Such a view
provides immediate benefits to the test developer. The exemplary view in Fig. 9
gives details on the interactions between the STF and the SUT, i.e. the test
stimuli observed under this specific scenario. To obtain this view, the configura-
tion pulls feature calls from a combination of setup, precondition, test body and
postcondition specific to this test scenario. The view from Fig. 9 corresponds to
configuration 1© in Fig. 7.

As another example, consider a software architect of the same SUT. The
architect might be interested in how the system behaves when executing the
test body of the given scenario pushOnFullStack. The architect prefers a
behavior documentation which additionally provides details on the interaction
between SUT instances. A sequence diagram for such a view is presented in
Fig. 10. This second view effectively zooms into a detail of the first view in
Fig. 9, namely the inner workings triggered by the message push(1,4). The
second view reflects configuration 2© in Fig. 7.

3.3 Viewpoint Mappings

UML interaction models and corresponding sequence diagrams allow for realiz-
ing immediate benefits from a scenario-test viewpoint. For example, sequence
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Fig. 9. Sequence diagram derived from
pushOnFullStack highlighting calls
running from STF to SUT.

Fig. 10. Sequence diagram derived
from pushOnFullStack zooming in
on test body and representing both,
calls running from STF to SUT and
calls internal to the SUT.

diagrams provide notational elements which can help in communicating the
scenario-test structure (suite, case, scenario) to different stakeholders (architects,
developers, and testers). These notational features include combined fragments
and references. This way, a selected part can be visually marked in a diagram
showing a combination of test parts (see, e.g., Fig. 9). Alternatively, a selected
part of a scenario test can be highlighted as a separate diagram (see Fig. 10). On
the other hand, interaction models can be tailored to contain only interactions
between certain types of instances. Thereby, the corresponding sequence diagram
can accommodate views required by different stakeholders of the SUT. In Fig.
9, the sequence diagram highlights the test stimuli triggering the test scenario
pushOnFullStack, whereas the diagram in Fig. 10 additionally depicts SUT
internal calls.

Conceptually, we represent different views as models conforming to the view
metamodel in Fig. 11. In essence, each view selects one or more test parts and
feature-call scopes, respectively, to be turned into an interaction model. Gen-
erating the actual partial interaction model is then described by six additional
transML mapping actions based on a view and a trace model (see M13–18 in
Fig. 12). In each mapping action, a given view model (view) is used to ver-
ify whether a given element is to be selected for the chosen scope of test parts
and call scopes. Upon its selection, a feature call with its call dependencies is
processed according to the previously introduced mapping actions (i.e. M1-M9,
M11, and M12).

Mappings Specific to Call Scope. As explained in Sect. 3.1, a view can define
any, non-empty combination of three call scopes: STF internal, SUT internal,
and STF to SUT. In mapping action M18, each feature call is evaluated according
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Fig. 11. View metamodel.

Fig. 12. Mappings specific to a given configured view with callScope and
testPartition. For clarity, the case for configuring a view with one call scope and
one test partition is depicted.

to the structural affiliations of the calling and the called feature, respectively.
For details, see the OCL helper operation conformsToCallScope(v:View)
in Listing 1.5 shown in the Appendix. Note that in case of explicitly docu-
menting SUT behavior (i.e. SUT internal and STF to SUT ), lifelines can alter-
natively just represent SUT instances. In this case, the sendEvent of each
call running from STF to SUT (and, in turn, each receiveEvent of the
corresponding reply message) is represented by a Gate instance (instead of
MessageOccurrence) which signifies in the UML a connection point for relat-
ing messages outside with inside an interaction fragment.

Mappings Specific to Test Partition. The viewpoint provides for map-
ping structural elements of the STF to structural elements of UML interac-
tions to highlight feature calls in their scenario-test context. Relevant contexts
are the STF and scenario-test blocks (see M13–M17 in Fig. 12). Feature calls
relate directly to a test block, with the call definition being contained by a
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block, or indirectly along a feature-call chain. This way, the STF and the respec-
tive test parts responsible for a trace can selectively enter a derived interaction
as participants (e.g. as a test-driver lifeline). Besides, the scenario-test blocks
and parts nested in the responsible test part (e.g. case, scenario, setup, pre-
condition) can become structuring elements within an enclosing interaction,
such as combined fragments. Consider, for example, a test suite being selected
entirely. The trace obtained from executing the TestSuite instance is mapped
to an instance of Interaction (M13 in Fig. 12). Scenario-test parts such as
test cases and test scenarios, as well as test blocks, also become instances of
Interaction when they are selected as active partition in a given view (M14,
M16). Alternatively, they become instances of CombinedFragment along with
corresponding interaction operands (M15, M17), when they are embedded with
the actually selected scenario-test part (see isNestedIn(p:Partition) in
Listing 1.5 in the Appendix). Hierarchical ownership of one (child) test part by
another (parent) part is recorded accordingly as enclosingOperand relation-
ship between child and parent parts. The use of combined fragments provides for
a general structuring of the derived interaction model according to the scenario-
test structure. All feature calls associated with given test parts (see M18 in
Fig. 12 and the mapping constraint conformsToTestPartition(v:View)
in Listing 1.5 in the Appendix) are effectively grouped because their corre-
sponding message occurrences and execution occurrences (both being a kind
of InteractionFragment) become linked to a combined fragment via an
enclosing interaction operand. Combined fragments also establish a link to the
Lifeline instances representing the SUT instances interacting in a given view.
To maintain the strict chronological order of feature calls in a given trace, the
resulting combined fragments must apply the InteractionOperator strict
(see Sect. 2.1).5

4 Prototype Implementation

The KaleidoScope6 tool can derive tailored UML2 interaction models from
scenario-based runtime tests. Figure 13 depicts a high-level overview of the
derivation procedure supported by KaleidoScope. The architectural components
of KaleidoScope (STORM, trace provider, and model builder) as well as the
diagram editor are represented via different swimlanes. Artifacts required and
resulting from each derivation step are depicted as input and output pins of the
respective action.

4.1 Used Technologies

The “Scenario-based Testing of Object-oriented Runtime Models” (STORM)
test framework provides an infrastructure for specifying and for executing
5 The default value seq provides weak sequencing, i.e. ordering of fragments just along

lifelines, which means that occurrences on different lifelines from different operands
may come in any order [27].

6 Available for download from our website [14].
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Fig. 13. Process of deriving tailored interaction models with KaleidoScope.

scenario-based component tests [34]. STORM provides all elements of our
scenario-based testing metamodel (see Fig. 3). KaleidoScope builds on and
instruments STORM to obtain execution-trace data from running tests defined
as STORM test suites. This way, KaleidoScope keeps adoption barriers low
because existing STORM test specifications can be reused without modifica-
tion. STORM is implemented using the dynamic object-oriented language “Next
Scripting Language” (NX), an extension of the “Tool Command Language”
(Tcl). As KaleidoScope integrates with STORM, we also implemented Kaleido-
Scope via NX/Tcl. In particular, we chose this development environment because
NX/Tcl provides numerous advanced dynamic runtime introspection techniques
for collecting execution traces from scenario tests. For example, NX/Tcl pro-
vides built-in method-call introspection in terms of message interceptors [36] and
callstack introspection. KaleidoScope records and processes execution traces, as
well as view configuration specifications, in terms of EMF models (Eclipse Mod-
eling Framework; i.e. Ecore and MDT/UML2 models). More precisely, the mod-
els are stored and handled in their Ecore/XMI representation (XML Metadata
Interchange specification [26]). For transforming our trace models into UML
models, the required model transformations [6] are implemented via
“Query/View/Transformation Operational” (QVTo) mappings [25]. QVTo
allows for implementing concrete model transformations based on conceptual
mappings in a straightforward manner.

4.2 Derivation Actions

Run Scenario Tests. For deriving interaction models via KaleidoScope, a
newly created or an existing scenario-test suite is executed by the STORM
engine. At this point, and from the perspective of the software engineer,
this derivation-enabled test execution does not deviate from an ordinary one.
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Fig. 14. Trace metamodel, EMF Ecore.

View
callScope : CallScopeKind
name : EString

TestPartition
testBlock : TestBlockKind
testScenario : EString
testCase : EString
isEntireTestSuite : EBoolean
name : EString

<<enumeration>>
CallScopeKind
sftToSut
sutIntern
all

<<enumeration>>
TestBlockKind
setup
preconditions
testbody
postconditions
cleanup

partition 1

Fig. 15. View meta-
model, EMF Ecore.

The primary objective of this test run is to obtain the runtime data required to
build a trace model. Relevant runtime data consist of scenario-test traces (SUT
feature calls and their call dependencies) and structural elements of the scenario
test (a subset of STF feature calls and their call dependencies).

Build Trace Models. Internally, the trace-provider component of KaleidoScope
instruments the STORM engine before the actual test execution to record the
corresponding runtime data. This involves intercepting each call of relevant fea-
tures and deriving the corresponding call dependencies. At the same time, the
trace provider ascertains that its instrumentation remains transparent to the
STORM engine. To achieve this, the trace provider instruments the STORM
engine and the tests under execution using NX/Tcl introspection techniques.
In NX/Tcl, method-call introspection is supported via two variants of message
interceptors [36]: mixins and filters. Mixins [37] can be used to decorate entire
components and objects. Thereby, they intercept calls to methods which are
known a priori. In KaleidoScope, the trace provider registers a mixin to intercept
relevant feature calls on the STF, i.e. the STORM engine. Filters [23] are used by
the trace provider to intercept calls to objects of the SUT which are not known
beforehand. To record relevant feature-call dependencies, the trace provider uses
the callstack introspection offered by NX/Tcl. NX/Tcl offers access to its opera-
tion callstack via special-purpose introspection commands, e.g. nx::current,
see [22]. To collect structural data on the intercepted STF and SUT instances, the
trace provider piggybacks onto the structural introspection facility of NX/Tcl,
e.g., info methods, see [22]. This way, structural data such as class names, fea-
ture names, and relationships between classes can be requested. The collected
runtime data is then processed by the trace provider. In particular, feature calls
at the application level are filtered to include only calls for the scope of the
SUT. This way, calls into other system contexts (e.g., external components or
lower-level host language calls) are discarded. In addition, the execution traces
are reordered to report “invocations interactions” first and “return interactions”
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second. Moreover, the recorded SUT calls are linked to the respective owning
test blocks. The processed runtime data is then stored as a trace model which
conforms to the Trace metamodel defined via Ecore (see Fig. 14). This result-
ing trace model comprises the relevant structural elements (test suite, test case
and test scenario), the SUT feature calls and their call dependencies, each being
linked to a corresponding test block.

Configure Views. Based on the specifics of the test run (e.g. whether an entire
test suite or selected test cases were executed) and the kind of runtime data
collected, different views are available to the software engineer for selection. In
KaleidoScope, the software engineer can select a particular view by defining
a view model. This view model must conform to the View metamodel speci-
fied using Ecore (see Fig. 15). KaleidoScope allows for configuring views on the
behavior of the SUT by combining a selected call scope (SUT internal, STF to
SUT, or both) and a selected test partition (entire test suite or a specific test
case, scenario, or block), as described in Sect. 3.

Build Interaction Models. The model-builder component of KaleidoScope
takes the previously created pair of a trace model and a view model as input
models for a collection of QVTo model transformations. The output model of
these QVTo transformations is the UML interaction model. The conceptual map-
pings presented in Subsects. 2.3 and 3.3 are implemented in QVT Operational
mappings [25], including the linking of relationships between the derived ele-
ments. In total, the transformation file contains 24 mapping actions.

Display Sequence Diagrams. Displaying the derived interaction models as
sequence diagrams and presenting them to the software engineer is not handled
by KaleidoScope itself. As the derived interaction models are available in the
XMI representation, they can be imported by XMI-compliant diagram editors.
In our daily practice, we use Eclipse Papyrus [8] for this task.

5 Related Work

Closely related research can be roughly divided into three groups: reverse-
engineering sequence diagrams from system execution, techniques addressing
the problem of model-size explosion in reverse-engineered behavioral models and
extracting traceability links between test and system artifacts.

Reverse-Engineering UML Sequence Diagrams. Approaches applying
dynamic analysis set the broader context of our work [2,7,12,28]. Of partic-
ular interest are model-driven approaches which provide conceptual mappings
between runtime-data models and UML interaction models. Briand et al. [2] as
well as Cornelissen et al. [5] are exemplary for such model-driven approaches.
In their approaches, UML sequence diagrams are derived from executing
runtime tests. Both describe metamodels to define sequence diagrams and for
capturing system execution in form of a trace model. Briand et al. define map-
pings between these two metamodels in terms of OCL consistency constraints.



Deriving Tailored UML Interaction Models 343

Each test execution relates to a single use-case scenario defined by a system-level
test case. Their approaches differ from ours in some respects. The authors build
on generic trace metamodels while we extend an existing scenario-test meta-
model to cover test-execution traces. Briand et al. do not provide for scoping
the derived sequence diagrams based on the executed tests unlike Cornelissen et
al. (see below). They, finally, do not capture the mappings between trace and
sequence model in a formalized way.

Countering Model-Size Explosion. A second group of related approaches
aims at addressing the problem of size explosion in reverse-engineered behav-
ioral models. Fernández-Sáez et al. [10] conducted a controlled experiment on
the perceived effects of derived UML sequence diagrams on maintaining a soft-
ware system. A key result is that derived sequence diagrams do not necessarily
facilitate maintenance tasks due to an excessive level of detail. Hamou-Lhadj
and Lethbridge [16] and Bennett et al. [1] surveyed available techniques which
can act as counter measures against model-size explosion. The available tech-
niques fall into three categories: slicing and pruning of components and calls
as well as architecture-level filtering. Slicing (or sampling) is a way of reducing
the resulting model size by choosing a sample of execution traces. Sharp and
Rountev [33] propose interactive slicing for zooming in on selected messages and
message chains. Grati et al. [11] contribute techniques for interactively high-
lighting selected execution traces and for navigating through single execution
steps. Pruning (or hiding) provides abstraction by removing irrelevant details.
For instance, Lo and Maoz [20] elaborate on filtering calls based on different
execution levels. In doing so, they provide hiding of calls based on the distinc-
tion between triggers and effects of scenario executions. As an early approach of
architectural-level filtering, Richner and Ducasse [31] provide for tailorable views
on object-oriented systems, e.g., by filtering calls between selected classes. In our
approach, we adopt these techniques for realizing different views conforming to
a scenario-test viewpoint. In particular, slicing corresponds to including interac-
tions of certain test parts (e.g., test cases, test scenarios) only, selectively hiding
model elements to pulling from different feature-call scopes (e.g., stimuli and
internal calls). Architectural-level filtering is applied by distinguishing elements
by their structural affiliation (e.g., SUT or STF).

Test-to-System Traceability. Another important group of related work pro-
vides for creating traceability links between test artifacts and system artifacts
by processing test-execution traces. Parizi et al. [29] give a systematic overview
of such traceability techniques. For instance, test cases are associated with SUT
elements based on the underlying call-trace data for calculating metrics which
reflect how each method is tested [19]. Qusef et al. [30] provide traceability links
between unit tests and classes under test. These links are extracted from trace
slices generated by assertion statements contained by the unit tests. In gen-
eral, these approaches do not necessarily derive behavioral diagrams, however
Parizi et al. conclude by stating the need for visualizing traceability links. These
approaches relate to ours by investigating which SUT elements are covered by
a specific part of the test specification. While they use this information, e.g.,
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for calculating coverage metrics, we aim at visualizing the interactions for doc-
umenting system behavior. However, Cornelissen et al. [5] pursue a similar goal
by visualizing the execution of unit tests. By leveraging the structure of tests,
they aim at improving the understandability of reverse-engineered sequence dia-
grams (see above), e.g., by representing the behavior of a particular test part
in a separate sequence diagram. While they share our motivation for test-based
partitioning, Cornelissen et al. do not present a conceptual or a concrete solu-
tion to this partitioning. Moreover, we leverage the test structure for organizing
the sequence diagram (e.g., by using combined fragments) and consider different
scopes of feature calls.

6 Conclusion

In this paper, we presented an approach for deriving tailored UML interaction
models for documenting system behavior from scenario-based runtime tests. Our
approach allows for leveraging the structure of scenario tests (i.e. test parts and
call scopes) to tailor the derived interaction models, e.g., by pruning details and
by zooming in and out on selected details. This way, we also provide means
to control the sizes of the resulting UML sequence diagrams. Our approach is
model-driven in the sense that test-execution traces are represented through a
dedicated metamodel. Conceptual mappings (transformation rules) between this
metamodel and the UML metamodel are captured by transML diagrams refined
by inter-model constraint expressions (OCL). To demonstrate the feasibility of
our approach, we developed a prototype implementation called KaleidoScope.
The approach is applicable for any software system having an object-oriented
design and implementation, provided that suitable test suites and a suitable test
framework are available. A test suite (and the guiding test strategy) is qualified
if tests offer structuring abstractions (i.e. test parts as in scenario tests) and if
tests trigger inter-object interactions. The corresponding test framework must
offer instrumentation to obtain test-execution traces.

In a next step, we will investigate via controlled experiments how the derived
interaction models can support system stakeholders in comprehension tasks on
the tested software system and on the test scripts. From a conceptual point of
view, we plan to extend the approach to incorporate behavioral details such as
measured execution times into the interaction models. From a practical angle,
we seek to apply the approach on large-scale software projects. For this, our
KaleidoScope must be extended to support runtime and program introspection
for other object-oriented programming languages and for the corresponding test
frameworks.
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Appendix

Listing 1.3. OCL consistency constraints
based on mapping M4 in Fig. 5.

1 context M4 inv:
2 message.name=featureCall.name and
3 (featureCall.argument->notEmpty() implies message.

argument.name=featureCall.argument.name) and
4 message.sendEvent.oclIsTypeOf(

MessageOccurrenceSpecification) and
5 message.sendEvent.name=featureCall.caller.name and
6 message.sendEvent.covered.name=featureCall.source.

name and
7 message.sendEvent.covered.represents.name=

featureCall.source.name and
8 message.sendEvent.covered.represents.type.name=

featureCall.source.definingClass.name and
9 message.receiveEvent.oclIsTypeOf(

MessageOccurrenceSpecification) and
10 message.receiveEvent.name=featureCall.callee.name

and
11 if(featureCall.callee.oclIsTypeOf(Constructor)) then

{
12 message.messageSort=MessageSort::createMessage and
13 message.signature.name=’create’ and
14 message.receiveEvent.covered.name=featureCall.

returnValue.value and
15 message.receiveEvent.covered.represents.name=

featureCall.returnValue.value and
16 message.receiveEvent.covered.represents.type.name=

featureCall.target.name
17 } else {
18 message.receiveEvent.covered.name=featureCall.

target.name and
19 message.receiveEvent.covered.represents.name=

featureCall.target.name and
20 message.receiveEvent.covered.represents.type.name=

featureCall.target.definingClass.name and
21 if (featureCall.callee.oclIsTypeOf(Destructor))

then {
22 message.messageSort=MessageSort::deleteMessage and
23 message.signature.name=’delete’
24 } else {
25 message.messageSort=MessageSort::synchCall and
26 message.signature.name=featureCall.callee.name and
27 (featureCall.returnValue->isEmpty() implies

message.receiveEvent.execution.finish.
oclIsTypeOf(ExecutionOccurrence))

28 } endif
29 } endif

Listing 1.4. OCL consistency constraints
based on mapping M12 in Fig. 6.

1 context M12 inv:
2 message.messageSort=MessageSort::reply and
3 message.name=returnValue.value and
4 message.signature.name=returnValue.value and
5 message.argument->isEmpty() and
6 message.sendEvent.oclIsTypeOf(

MessageOccurrenceSpecification) and
7 message.sendEvent.name=returnValue.featureCall.

callee.name and
8 message.sendEvent.covered.name=returnValue.

featureCall.target.name and
9 message.sendEvent.covered.represents.name=

returnValue.featureCall.target.name and
10 message.sendEvent.covered.represents.type.name=

returnValue.featureCall.target.definingClass.
name and

11 message.receiveEvent.oclIsTypeOf(
MessageOccurrenceSpecification) and

12 message.receiveEvent.name=returnValue.featureCall.
caller.name and

13 message.receiveEvent.covered.name=returnValue.
featureCall.source.name and

14 message.receiveEvent.covered.represents.name=
returnValue.featureCall.source.name and

15 message.receiveEvent.covered.represents.type.name=
returnValue.featureCall.source.definingClass.
name

Listing 1.5. OCL helper operations
applied in mappings M15, M17 and M18
in Fig. 12.

1 context FeatureCall
2 def: conformsToCallScope(v:View) : Boolean =
3 if (v.callScope=’sutIntern’) then {
4 self.isDefinedByStfBlock=false and
5 self.calleeOwnedByStfClass=false
6 } else {
7 if (v.callScope=’stfToSut’) then {
8 self.isDefinedByStfBlock and
9 self.calleeOwnedByStfClass=false
10 } else {
11 if (v.callScope=’stfIntern’) then {
12 self.isDefinedByStfBlock and
13 self.calleeOwnedByStfClass
14 } else { false } endif
15 } endif
16 } endif
17 def: conformsToTestPartition(v:View) : Boolean =
18 self.owningBlock.isNestedIn(v.testPartition)
19 def: isDefinedByTestBlock : Boolean =
20 block.oclIsTypeOf(Setup) or
21 block.oclIsTypeOf(TestBody) or
22 block.oclIsTypeOf(Cleanup) or
23 (block.oclIsTypeOf(Assertion)implies(block.block.

oclIsTypeOf(Precondition) or
24 block.block.oclIsTypeOf(Postcondition))
25 def: calleeOwnedByStfClass : Boolean =
26 Set{TestSuite, TestCase, TestScenario, Setup,

Precondition, TestBody, Postcondition,
Cleanup}->includes(self.callee.owningClass.
name)

27 def: block : Block = self.definition.Block
28
29 context TestPart
30 def: isNestedIn(p:TestPartition) : Boolean =
31 if (p.oclIsTypeOf(TestSuite)) then {
32 true
33 } else {
34 if (p.oclIsTypeOf(TestCase)) then {
35 (self.oclIsTypeOf(TestCase) implies p.name=self.

name) and
36 (self.oclIsTypeOf(TestScenario) implies p.name=

self.testCase.name) and
37 (self.oclIsTypeOf(Block) implies (
38 (self.testCase->notEmpty() and p.name=self.

testCase.name) or
39 (self.testScenario->notEmpty() and p.name=self.

testScenario.testCase.name)))
40 } else {
41 if (p.oclIsTypeOf(TestScenario)) then {
42 (not self.oclIsTypeOf(TestCase)) and
43 (self.oclIsTypeOf(TestScenario) implies (
44 p.name=self.name and
45 p.testCase.name = self.testCase.name
46 )) and
47 (self.oclIsTypeOf(Block) implies (
48 p.name=self.testScenario.name and
49 p.testCase.name=self.testScenario.testCase.name

))
50 } else {
51 if (p.oclIsTypeOf(Block)) then {
52 self.oclIsTypeOf(Block) and p.name=self.name

and
53 ((p.testCase->notEmpty() and self.testCase->

notEmpty()) implies p.testCase.name =
self.testCase.name) and

54 (p.testScenario->notEmpty() and self.
testScenario->notEmpty()) implies p.
testScenario.name = self.testScenario.
name))

55 } else { false } endif
56 } endif
57 } endif
58 } endif
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